Please use this identifier to cite or link to this item:
標題: 射頻磁控濺鍍硫氧化鋅薄膜的光學性質與微結構探討
Microstructure and Optical Properties of Zn(O,S) Thin Films Prepared by Radio Frequency Magnetron Sputtering
作者: 郭柄豪
Kuo, Bing-Hau
關鍵字: 薄膜太陽能電池
thin film solar cell
buffer layer
出版社: 材料科學與工程學系所
引用: 1. Kasap, S. O., Optoelectronics and Photonics: Principles and Practices. Prentice Hall: 2001. 2. Sze, S. M.; Ng, K. K., Physics of Semiconductor Devices. third ed.; Wiley-Interscience: John Wiley&Sons: 2007. 3. Panse, P., Copper Gallium Diselenide Solar Cells: Processing, Characterization and Simulation Studies. University of South Florida (USF): 2003. 4. Wagner, S., CuInSe2∕CdS heterojunction photovoltaic detectors. Applied Physics Letters 1974, 25 (8), 434. 5. Kazmerski, L. L.; White, F. R.; Morgan, G. K., Thin-film CuInSe2/CdS heterojunction solar cells. Applied Physics Letters 1976, 29 (4), 268. 6. Mickelsen, R. A.; Chen, W. S., High photocurrent polycrystalline thin-film CdS/CuInSe2 solar cella. Applied Physics Letters 1980, 36 (5), 371. 7. Gabor, A. M.; Tuttle, J. R.; Albin, D. S.; Contreras, M. A.; Noufi, R.; Hermann, A. M., High-efficiency CuInxGa1−xSe2 solar cells made from (Inx,Ga1−x)2Se3 precursor films. Applied Physics Letters 1994, 65 (2), 198. 8. Werner, J. H.; Mattheis, J.; Rau, U., Efficiency limitations of polycrystalline thin film solar cells: case of Cu(In,Ga)Se2. Thin Solid Films 2005, 480-481, 399-409. 9. Vossen, J. L.; Kern, W., Thin Film Processes II. Academic Press, Inc.: Bonton, 1991. 10. 莊達人, VLSI 製造技術. 高立圖書有限公司: 2002. 11. Ohring, M., The Materials Science of Thin Films, Academic Press. Academic Press: New York, 1992. 12. Bunshah, R. F.; Nimmagadda, R.; Dunford, W.; Movchan, B. A.; Demchishin, A. V.; Chursanov, N. A., Structure and properties of refractory compounds deposited by electron beam evaporation. Thin Solid Films 1978, 54 (1), 85-106. 13. Thornton, J. A., Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings. Journal of Vacuum Science and Technology 1974, 11 (4), 666-670. 14. McCloy, J. S.; Science, T. U. o. A. M.; Engineering, Properties and Processing of Chemical Vapor Deposited Zinc Sulfide. The University of Arizona: 2008. 15. Klingshirn, C. F.; Waag, A., Zinc Oxide: From Fundamental Properties Towards Novel Applications. Springer: 2010. 16. Yeh, C.-Y.; Lu, Z. W.; Froyen, S.; Zunger, A., Zinc-blende–wurtzite polytypism in semiconductors. Physical Review B 1992, 46 (16), 10086-10097. 17. Jackson, P.; Hariskos, D.; Lotter, E.; Paetel, S.; Wuerz, R.; Menner, R.; Wischmann, W.; Powalla, M., New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%. Progress in Photovoltaics: Research and Applications 2011, 19 (7), 894-897. 18. Naghavi, N.; Abou-Ras, D.; Allsop, N.; Barreau, N.; Bucheler, S.; Ennaoui, A.; Fischer, C. H.; Guillen, C.; Hariskos, D.; Herrero, J.; Klenk, R.; Kushiya, K.; Lincot, D.; Menner, R.; Nakada, T.; Platzer-Bjorkman, C.; Spiering, S.; Tiwari, A. N.; Torndahl, T., Buffer layers and transparent conducting oxides for chalcopyrite Cu(In,Ga)(S,Se)2 based thin film photovoltaics: present status and current developments. Progress in Photovoltaics: Research and Applications 2010, 18 (6), 411-433. 19. Minemoto, T.; Hashimoto, Y.; Satoh, T.; Negami, T.; Takakura, H.; Hamakawa, Y., Cu(In,Ga)Se2 solar cells with controlled conduction band offset of window/Cu(In,Ga)Se2 layers. Journal of Applied Physics 2001, 89 (12), 8327. 20. Klenk, R., Characterisation and modelling of chalcopyrite solar cells. Thin Solid Films 2001, 387 (1–2), 135-140. 21. Furlong, M. J.; Froment, M.; Bernard, M. C.; Cortes, R.; Tiwari, A. N.; Krejci, M.; Zogg, H.; Lincot, D., Aqueous solution epitaxy of CdS layers on CuInSe2. J Cryst Growth 1998, 193 (1–2), 114-122. 22. Nakada, T.; Kunioka, A., Direct evidence of Cd diffusion into Cu(In, Ga)Se2 thin films during chemical-bath deposition process of CdS films. Applied Physics Letters 1999, 74 (17), 2444. 23. Liao, D.; Rockett, A., Cu depletion at the CuInSe2 surface. Applied Physics Letters 2003, 82 (17), 2829. 24. Schmid, D.; Ruckh, M.; Grunwald, F.; Schock, H. W., Chalcopyrite/defect chalcopyrite heterojunctions on the basis of CuInSe2. Journal of Applied Physics 1993, 73 (6), 2902. 25. Naghavi, N.; Spiering, S.; Powalla, M.; Cavana, B.; Lincot, D., High-efficiency copper indium gallium diselenide (CIGS) solar cells with indium sulfide buffer layers deposited by atomic layer chemical vapor deposition (ALCVD). Progress in Photovoltaics: Research and Applications 2003, 11 (7), 437-443. 26. Persson, C.; Zhao, Y.-J.; Lany, S.; Zunger, A., n-type doping of CuInSe2 and CuGaSe2. Physical Review B 2005, 72 (3). 27. Barreau, N.; Bernede, J. C.; Marsillac, S.; Mokrani, A., Study of low temperature elaborated tailored optical band gap β-In2S3−3xO3x thin films. J Cryst Growth 2002, 235 (1–4), 439-449. 28. Wada, T.; Hashimoto, Y.; Nishiwaki, S.; Satoh, T.; Hayashi, S.; Negami, T.; Miyake, H., High-efficiency CIGS solar cells with modified CIGS surface. Solar Energy Materials and Solar Cells 2001, 67 (1–4), 305-310. 29. Pistor, P.; Caballero, R.; Hariskos, D.; Izquierdo-Roca, V.; Wachter, R.; Schorr, S.; Klenk, R., Quality and stability of compound indium sulphide as source material for buffer layers in Cu(In,Ga)Se2 solar cells. Solar Energy Materials and Solar Cells 2009, 93 (1), 148-152. 30. Barreau, N., Indium sulfide and relatives in the world of photovoltaics. Solar Energy 2009, 83 (3), 363-371. 31. Zavrazhnov, A. Y.; Naumov, A. V.; Pervov, V. S.; Riazhskikh, M. V., Chemical vapor transport for the control of composition of low-volatile solids: II. The composition control of indium sulfides: Technique of the charge dilution. Thermochimica Acta 2012, 532 (0), 96-102. 32. Ohtomo, A.; Kawasaki, M.; Koida, T.; Masubuchi, K.; Koinuma, H.; Sakurai, Y.; Yoshida, Y.; Yasuda, T.; Segawa, Y., MgxZn1−xO as a II–VI widegap semiconductor alloy. Applied Physics Letters 1998, 72 (19), 2466. 33. Minemoto, T.; Matsui, T.; Takakura, H.; Hamakawa, Y.; Negami, T.; Hashimoto, Y.; Uenoyama, T.; Kitagawa, M., Theoretical analysis of the effect of conduction band offset of window/CIS layers on performance of CIS solar cells using device simulation. Solar Energy Materials and Solar Cells 2001, 67 (1–4), 83-88. 34. Torndahl, T.; Platzer-Bjorkman, C.; Kessler, J.; Edoff, M., Atomic layer deposition of Zn1−xMgxO buffer layers for Cu(In,Ga)Se2 solar cells. Progress in Photovoltaics: Research and Applications 2007, 15 (3), 225-235. 35. Shimakawa, S.-i.; Hashimoto, Y.; Hayashi, S.; Satoh, T.; Negami, T., Annealing effects on Zn1−xMgxO/CIGS interfaces characterized by ultraviolet light excited time-resolved photoluminescence. Solar Energy Materials and Solar Cells 2008, 92 (9), 1086-1090. 36. Bhattacharya, R. N.; Contreras, M. A.; Teeter, G., 18.5% Copper Indium Gallium Diselenide (CIGS) Device Using Single-Layer, Chemical-Bath-Deposited ZnS(O,OH). Japanese Journal of Applied Physics 2004, 43 (No. 11B), L1475-L1476. 37. Nakada, T.; Hongo, M.; Hayashi, E., Band offset of high efficiency CBD-ZnS/CIGS thin film solar cells. Thin Solid Films 2003, 431-432, 242-248. 38. Nakada, T.; Mizutani, M.; Hagiwara, Y.; Kunioka, A., High-efficiency Cu(In,Ga)Se2 thin-film solar cells with a CBD-ZnS buffer layer. Solar Energy Materials and Solar Cells 2001, 67 (1–4), 255-260. 39. Zimmermann, U.; Edoff, M. R. a. M., CADMIUM-FREE CIGS MINI-MODULES WITH ALD-GROWN Zn(O, S)-BASED BUFFER LAYERS. 21st European Photovoltaic Solar Energy Conference, 4-8 September 2006, Dresden, Germany 2006. 40. Minemoto, T.; Okamoto, A.; Takakura, H., Sputtered ZnO-based buffer layer for band offset control in Cu(In,Ga)Se2 solar cells. Thin Solid Films 2011, 519 (21), 7568-7571. 41. Persson, C.; Platzer-Bjorkman, C.; Malmstrom, J.; Torndahl, T.; Edoff, M., Strong Valence-Band Offset Bowing of ZnO1-xSx Enhances p-Type Nitrogen Doping of ZnO-like Alloys. Physical Review Letters 2006, 97 (14), 146403. 42. Meyer, B. K.; Polity, A.; Farangis, B.; He, Y.; Hasselkamp, D.; Kramer, T.; Wang, C., Structural properties and bandgap bowing of ZnO1−xSx thin films deposited by reactive sputtering. Applied Physics Letters 2004, 85 (21), 4929. 43. von Wenckstern, H.; Schmidt, H.; Brandt, M.; Lajn, A.; Pickenhain, R.; Lorenz, M.; Grundmann, M.; Hofmann, D. M.; Polity, A.; Meyer, B. K.; Saal, H.; Binnewies, M.; Borger, A.; Becker, K. D.; Tikhomirov, V. A.; Jug, K., Anionic and cationic substitution in ZnO. Progress in Solid State Chemistry 2009, 37 (2-3), 153-172. 44. Janetzko, F.; Jug, K., Miscibility of Zinc Chalcogenides. The Journal of Physical Chemistry A 2004, 108 (25), 5449-5453. 45. Bar, M.; Ennaoui, A.; Klaer, J.; Kropp, T.; Saez-Araoz, R.; Allsop, N.; Lauermann, I.; Schock, H. W.; Lux-Steiner, M. C., Formation of a ZnS∕Zn(S,O) bilayer buffer on CuInS2 thin film solar cell absorbers by chemical bath deposition. Journal of Applied Physics 2006, 99 (12), 123503. 46. Goudarzi, A.; Aval, G. M.; Sahraei, R.; Ahmadpoor, H., Ammonia-free chemical bath deposition of nanocrystalline ZnS thin film buffer layer for solar cells. Thin Solid Films 2008, 516 (15), 4953-4957. 47. He, Y.; Wang, L.; Zhang, L.; Li, M.; Shang, X.; Fang, Y.; Chen, C., Solubility limits and phase structures in epitaxial ZnOS alloy films grown by pulsed laser deposition. J Alloy Compd 2012, 534 (0), 81-85. 48. Sartale, S. D.; Sankapal, B. R.; Lux-Steiner, M.; Ennaoui, A., Preparation of nanocrystalline ZnS by a new chemical bath deposition route. Thin Solid Films 2005, 480–481 (0), 168-172. 49. Heller, J., Reactive sputtering of metals in oxidizing atmospheres. Thin Solid Films 1973, 17 (2), 163-176.
摘要: 銅銦鎵硒太陽電池為未來各類薄膜太陽能電池中最具發展潛力的材料之一,然而目前高效率的CIGS太陽能電池仍以水浴法所製備的硫化鎘作為主要緩衝層材料,為減少使用鎘離子對環境造成的隱憂,以及產業化的應用考量,尋找無鎘化緩衝層材料和全真空製程將是發展CIGS太陽能電池產業需要克服的議題之一。 本研究主要是利用射頻磁控濺鍍系統沉積硫氧化鋅薄膜,研究改變不同的射頻濺鍍功率、氬氧混合氣體的氧分率和基板溫度,探討薄膜的微結構與光學特性。在固定基板溫度473K和氧分率2%下,探討射頻功率對薄膜的影響;隨著射頻功率的增加,(002)繞射峰往低角度偏移,同時可以發現硫氧化鋅薄膜為一HCP的結構。電子能譜的定量分析可以發現,隨著功率增加氧含量由12.63 at%下降至7.61 at%,而硫含量由35.98 at.%上升至40.71 at%,UV/VIS分析得知之光吸收邊緣由4.12 eV偏移至3.88 eV,亦即射頻功率增加能隙有一紅移現象。 在固定基板溫度473K和射頻功率175W下,探討通入氣體氧分率對薄膜的影響。隨著氧分率超過4%後,所產生的薄膜為一非晶結構,由對薄膜的定量分析得知隨著氧分率增加,氧含量由10.79 at%提升至62.31 at%,而硫含量由40.35 at%下降至4.55 at%,其光吸收邊緣由4.03 eV偏移至4.17 eV,即氧分率增加能隙有一藍移現象。 而在固定射頻功率和氧分率4%下,探討改變基板溫度對薄膜的影響。由X光晶體繞射分析發現隨著基板溫度增加,(002)繞射峰往高角度偏移;由TEM的選區繞射確定為HCP結構,而光學吸收邊緣波長隨著基板溫度增加由4.10 eV偏移至4.03 eV,亦即基板溫度增加能隙有一紅移現象。
Cu(In,Ga)Se (CIGS) solar cell is one of most promising material in thin film solar cell. The chemical bath deposition CdS is typically used as buffer layer in high efficiency solar cell. However, Cd is very toxic and taken consideration in great impact to environment. It is quite important issue for mass production to search Cd-free alternated buffer layer and develop all-vacuum process in the future. A series of ZnO1−xSx films prepared by radio-frequency reactive magnetron sputtering on soda-lime glasses as substrates. The composition, structure, and optical properties of the films deposited at different RF power, O2/(Ar+O2) ratio and substrate temperature were studied. The structure of the films deposited under various process parameters was characterized by XRD revealed that the films are wurtzite structure. The XRD peak shift to lower angle position with increasing RF power. The layer composition show that oxygen concentration decrease from 12.63 to 7.61 at.% and sulfur increase from 35.98 to 40.71 at.% as RF power increases. The optical absorption edge shift from 4.12 to 3.88 eV (red shift effect). Amorphous structure was found as O2/(Ar+O2) excess 4%. ESCA show the content of oxygen increase from 10.79 to 62.31 at.% and sulfur decrease from 40.35 to 4.55 at.% with oxygen flow increase. The optical transmission spectra show absorption edge shift 4.03 to 4.17 eV (blue shift effect). The XRD peak shift to higher angle was observed as substrate temperature increased. From TEM observation, the films were wurtzite structure with (002) preferred orientation. The optical absorption edge shift from 4.10 to 4.03 eV (red shift effect).
其他識別: U0005-1308201321460600
Appears in Collections:材料科學與工程學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.