Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11381
標題: 應用銅光杯散熱結構改善高電壓發光二極體陣列之特性研究
Improvement of High-Voltage LED Arrays Using a Copper-Cup Heat Spreader
作者: 唐力紳
Tang, Li-Shen
關鍵字: 熱阻
thermal resistance
銅光杯
陣列發光二極體模組
cup-shaped copper sheet
array LEDs module
出版社: 材料科學與工程學系所
引用: [1] M. R. Krames, G. Christenson, D. Coffins, L. W. Cook, M. G. Craford, A. Edwards, R. M. Fletcher, N. Gardner, W. Goetz, W. Imler, E. Johnson, R. S. Kern, R. Khare, F. A. Kish, C. Lowery, M. J. Ludowise, R. Mann, M. Maranowski, S. Maranowski, P. S. Martin, J. O''Shea, S. Rudaz, D. Steigerwald, J. Thompson, J. J. Wierer and J. Yu, “High-Brightness AlGaInN Light-Emitting Diodes,” SPIE, vol. 2, p. 3938, 2000. [2] J. Petroski, “Cooling High Brightness LEDs: Developments Issues, and Challenges,” Nest Generation Thermal Management Materials and Systems Conference, June 15-17, 2005. [3] S. Paolini, “Future trends in solid state lighting,” IMAPS Advanced Technology Workshop on power LED Packaging and Assembly, Oct. 26-28, 2005, Palo, CA, USA. [4] R. Steen, “Solid state lighting for general illumination,” IMAPS Advanced Technology Workshop on Power LED Packaging and Assembly, Oct. 26-28, 2005, Palo, CA, USA. [5] F. Wall, “Bringing it all togetherxthe basics of building an LED module/assembly,” IMAPS Advance Technology Workshop on Power LED Packaging and Assembly, Oct. 26-28, 2005, Palo, CA, USA. [6] F. Wall, P. Martin and G. Harbers, “High Power LED Package Requirement,” SPIE, vol. 85, p. 5187, 2004. [7] H. Sugawara, M. Ishikawa and G. Hatakoshi, “High Efficiency InGaAlP/GaAs Visible Light Emitting Diodes,” App. Phys. Lett., vol. 58, p. 1010, 1991. [8] H. Sugawara, M. Ishikawa and G. Hatakoshi, “High Brightness InGaAlP Green Light Emitting Diodes,” App. Phys. Lett., vol. 61, p. 1752, 1992. [9] D. A. Vanderwater, I. H. Tan, G. E. Hofler, D. C. DeFevere and F. A. Kish, “High Brightness AlGaInP Light Emitting Diodes,” IEEE J. Sel. Top Quantum Electron., vol. 85, p. 1752, 1997. [10] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada and T. Mukai, “Superbright Green InGaN Single Quantum Well Structure Light Emitting Diodes,” Jpn. J. Appl. Phys., vol. 34, p. 1332, 1995. [11] F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald and M. G. Craford, “Very High Efficiency Semiconductor Wafer Bonded Transparent Substrate (AlxGa1–x)0.5In0.5P/GaP Light Emitting Diodes,” Appl. Phys. Lett., vol. 64, p. 2839, 1994. [12] F. A. Kish, D. A. Vanderwater, D. C. DeFevere, D. A. Steigerwald, G. E. Hofler, K. G. Park and F. M. Steranka, “High Reliable and Efficient Semiconductor Wafer Bonded AlGaInP/GaP Light Emitting Diodes,” Electron. Lett., vol. 32, p. 132, 1996. [13] S. Yoshida, S. Misawa and S. Gonda, “Epitaxial Growth of GaN/AlN Heterostructures,” J. Vac. Sci. Technol. B., vol. 1, p. 250, 1982. [14] A. Zukauskas, M. S. Shur and R. Gaska, “Introduction to Solid-State Lighting,” New York: Wiley and Sons Press, p. 12, 2002. [15] M. Hao, T. Sugahara, H. Sato, Y. Morishima, Y. Naoi, L. T. Romano and S. Sakai, “Study of Threading Dislocations in Wurtzite GaN Films Grown on Sapphire by Metalorganic Chemical Vapor Deposition,” Jpn. J. Appl. Phys., vol. 37, p. 291, 1998. [16] E. Kuokstis, C. Q. Chen, J. W. Yang, M. Shatalov, M. E. Gaevski, V. Adivarahan and M. A. Khan, “Room Temperature Optically Pumped Laser Emission from a-plane GaN with High Optical Gain Characteristics,” Appl. Phys. Lett., vol. 84, p. 2998, 2004. [17] A. Zukauskas, M. S. Shur and R. Gaska, “Introduction to Solid-State Lighting,” Wiley and Sons Press, p. 12 , 2002. [18] S. Nakamura and G. Fasol, “The Blue Laser Diode: GaN Based Light Emitters and Lasers,” Springer Press, p. 10, 2000. [19] S. Nakamura and S. F. Chichibu, “Introduction to Nitride Semiconductor Blue Laser Diode and Light Emitter Diodes,” Taylor and Francis Press, p. 45, 2000. [20] N. Narendran and Y. Gu, “Life of LED-Based White Light Sources,” IEEE/OSA J. Disp. Technol, vol. 1, p. 1, 2005. [21] R. H. Horng, C. C. Chiang, H. Y. Hsiao, X. Zheng, D. S. Wuu and H. I. Lin, “Improved Thermal Management of GaN/Sapphire Light-Emitting Diodes Embedded in Reflective Heat Spreaders,” Appl. Phys. Let., vol. 93, p. 111907, 2008. [22] R. H. Horng, H. Y. Hsiao, C. C. Chiang, D. S. Wuu, Y. L. Tsai and H. I. Lin, “Novel Device Design for High-PowerInGaN/Sapphire LEDs Using Copper Heat Spreader With Reflector,” IEEE J. Sel. Top Quantum Electron., vol. 15, p. 4, 2009. [23] 史光國, “半導體LED及固態照明,” 全華科技, p. 21, 2005. [24] E. Hecht, “Optics 4th,” Wesley press, p. 117, 2002. [25] 黃調元, “半導體元件物理與製作技術,” 國立交通大學出版社, p. 41, 2003. [26] Y. Xi and E. F. Schubert, “Junction Temperature Measurement in GaN Ultraviolet Light Emitting Diodes Using Diode forward Voltage Method,” Appl. Phys. Lett., vol. 85, p. 2163, 2004. [27] Y. Xi, J. Q. Xi, T. Gessmann, J. M. Shah, J. K. Kim, E. F. Schubert, A. J. Fischer, M. H. Crawford, K. H. A. Bogart and A. A. Allerman, “Junction and Carrier Temperature Measurements in Deep Ultraviolet Light Emitting Diodes Using Three Different Methods,” Appl. Phys. Lett., vol. 86, p. 1907, 2005. [28] P. Incropera and P. DeWitt, “Introduction To Heat Transfer 4th,” Wiley and Sons Press, p. 13, 2001. [29] J. Moran and N. Shapiro, “Fundamentals of Engineering Thermodynamics 6th,” John Wiley and Sons Press, p. 110, 2004. [30] P. Incropera, P. DeWitt, L. Bergman and S. Lavine, “Fundamentals of Heat and Mass Transfer 4th,” John Wiley and Sons Press, p. 69, 1997. [31] Frank Kreith and M. S. Bohn, “Principles of Heat Transfer 6th,” Brooks and Cole, p. 6, 2001. [32] Allen C. Hamilton Jr., “Acid Sulfate and Pyrophosphate Copper Plating,” Plating and Surface Finishing, p. 24, 1998. [33] T. Thomas and R. Thomas, “Electroplating bath control for copper interconnects,” Solid State Technology, p. 47, 1998. [34] W. C. Gau, T. C. Chang and J. C. Hu, “Copper electroplating for future ultralarge scale integration interconnection,” J. Vac. Sci. Technol. B., vol. 18, 2000. [35] 游振菖, “探討半導體金屬化製程之金屬鉭薄膜的沉積與化學添加劑對銅沉積之影響,” 私立中原大學化學工程系研究所碩士論文, 2002. [36] 江鎰禎, “高功率發光二極體之散熱光杯取光設計與陣列模組構裝技術製作,” 國立中興大學材料工程學系碩士論文, 2010. [37] Y. Zhu , C. Xu, X. Da, T. Liang, J. Zhang and G. Shen, “Enhanced Output of Flip-Chip Light-Emitting Diodes with a Sidewall Reflector,” Solid-State Electronics, vol. 51, p. 674, 2007. [38] S. H. Huang, R. H. Horng, S. L. Li, K. W. Yen, D. S. Wuu, C. K. Lin and H. Liu, “Thermally Stable Mirror Structures for Vertical-Conducting GaN/Mirror/Si Light-Emitting Diodes,” IEEE Photonics Technology Lett., vol. 19, p. 23, 2007. [39] 蕭翔允, “高散熱發光二極極體構裝設計與實做研究,” 國立中興大學材料工程學系碩士論文, 2008. [40] G. Iyer, E. Ouyang, W. Kittidacha, S. Tantideeravit and Suresh LK Spansion Inc. “Pb-free Solder: SAC105 vs SAC305 Drop-Test Reliability Data Comparison,” IEEE/CPMT International Electronics Manufacturing Technology (IEMT), vol. 32, p. 251, 2007. [41] 洪志欣, “高功率LED之前瞻性熱管理設計與構裝技術製作,” 國立中興大學材料工程學系碩士論文, 2010. [42] G. Farkas, Q. V. V. Vader, A. Poppe and G. Bognar, “Thermal Investigation of High Power Optical Devices by Transient Testing,” IEEE Transactions on components and packaging technologies, vol. 28, p. 1, 2005. [43] C. P. Wang and S. B. Huang, “Technology of Interface Thermal Resistance Measurement for LED Package,” Industrial Materials Magazine, p. 266, 2009. [44] 陳隆建, “發光二極體之原理與製程,” 全華科技出版社, 2006. [45] Y. S Chen, K. H Chien, Y. M. Ferng, C. C. Wang, T. C. Hung and B. S. Pei, “Numerical simulation of a heat sink embedded with a vapor chamber and calculation of effective thermal conductivity of a vapor chamber,” Applied Thermal Engineering vol. 29, p. 2655, 2009.
摘要: 本論文主要經由材料與結構設計將散熱銅光杯結構應用於一般陣列多顆晶粒(LED)的製程,並與一般無光杯結構的陣列LEDs模組比較;經由實驗結果得知,在散熱銅光杯結構中,設計製作出適合的銅基座厚度與面積,同時利用高散熱的複合焊料封裝,可以成功解決散熱問題。此外,本論文也針對散熱銅光杯對於LEDs模組光功率的影響作一探討。 由模擬結果得知銅光杯結構對於LEDs的取光與散熱可以得到改善,且經由實際表面溫度量測,3×3陣列LEDs模組在注入電流為1050 mA時,一般無光杯結構晶粒表面最高溫度約為52.6°C,而具散熱銅光杯結構晶粒表面最高溫度約為42.67°C。4×4陣列LEDs模組在注入電流為1400 mA時,一般無光杯結構晶粒表面最高溫度約為58.55°C,而具散熱銅光杯結構晶粒表面最高溫度約為48.85°C。5×5陣列LEDs模組在注入電流為1750 mA時,一般無光杯結構晶粒表面最高溫度約為68.51°C,而具散熱銅光杯結構晶粒表面最高溫度約為56.73°C。此外,藉由量測LEDs封裝後的整體熱阻,發現封裝後的熱阻至少已降低至原始封裝結構的70%以下,確實達到低熱阻的要求。比較在未有樹脂封裝的3×3、4×4、5×5陣列LEDs模組,在注入電流為1050 mA、1400 mA、1750 mA時,一般無光杯結構光功率為3621.7 mW、6346.3 mW、9760.4 mW,而具散熱銅光杯結構光功率為4098.5 mW、7150.3 mW、10919.6 mW。 研究結果顯示,具光杯結構應用於陣列模組製作,不論光及熱效應皆有明顯改善。最後藉由模擬與實驗結果將不同樹脂封裝形式運用在散熱銅光杯陣列模組上,在光功率的表現上,半圓形封裝形式比平坦型封裝形式高出55%,因此對於提高整體取光效率來說,將以此封裝形式作為散熱銅光杯陣列模組的最佳封裝形式。由於散熱銅光杯結構可以將LEDs所產生的熱直接由晶粒端傳導至銅基座,並快速傳遞至鋁散熱基板,因此對於整體LEDs模組,除了可以達到快速散熱的效果,並且提升其取光效率。
In this study, the cup-shaped copper structure was developed to improve heat dissipation of high-power LEDs array module using electroplating technique. From our design and measurement, the copper surface area and thickness were optimized for cup-shaped copper structure. Meanwhile, the compound solder was also used to enhance the thermal dissipation of LEDs. Moreover, the effect of cup-shaped copper on the output power of LEDs was investigated. For LEDs with original structure and copper heat spreader, the highest surface temperatures of 3�3 array LEDs modules were 52.6 and 42.67 �C (with 1050 mA injection current), while the highest surface temperatures of 4�4 array LEDs modules were 58.55 and 48.85 �C (with 1400 mA injection current), respectively. As the 5�5 array LEDs modules with original structure and copper heat spreader were fabricated, the highest surface temperatures at 1750 mA injection current were 68.51 and 56.73 �C, respectively. The thermal resistance of optimal LEDs array module with copper heat spreader on heat sink using compound solder is reduced obviously. On the other hand, the output powers of 3�3, 4�4 and 5�5 array LEDs modules with original structure were 3621.7, 6346.3 and 9760.4 mW at injection currents of 1050, 1400 and 1750 mA, respectively. Meanwhile, the output powers of these samples with copper heat spreader can be improved to 4098.5, 7150.3 and 10919.6 mW, respectively. The optical and thermal characteristics of array LEDs module have been improved significantly using the cup-shaped copper structure. Furthermore, various types of epoxy-packaged LEDs with cup-shaped structure were also fabricated. It is found that the light extraction efficiency of LED with semicircle package has 55% improvement as compared to that of LED with flat package. The cup-shaped copper structure was contacted directly with sapphire to enhance heat dissipation. In addition to efficient heat dissipation, the light extraction of the lateral emitting in high-power LEDs can be improved.
URI: http://hdl.handle.net/11455/11381
其他識別: U0005-3008201213584100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-3008201213584100
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.