Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11383
標題: 成長鋰鋁層狀氫氧化合物(Li-Al-CO3 LDH)透明薄膜於AZ31基材以及在稀薄氯化鈉濃度環境下該LDH薄膜提升抗腐蝕性質之研究
Corrosion resistance in a humid environment for magnesium alloy AZ31 coated by optically transparent Li-Al-CO3 hydrotalcite film
作者: 許家漢
Syu, Jia-Han
關鍵字: AZ31 鎂合金
AZ31 magnesium alloy
鋰鋁層狀氫氧化物
透明薄膜
疏水性
高濕度腐蝕測試
Li-Al-CO3 LDH
transparent film
hydrophobic
high-humidity test
出版社: 材料科學與工程學系所
引用: [1] H. Takuda, T. Yoshii, N. Hatta, Finite-element analysis of the formability of a magnesium-based alloy AZ31 sheet, Journal of Materials Processing Technology, 89–90 (1999) 135-140. [2] H. Takuda, H. Fujimoto, N. Hatta, Modelling on flow stress of Mg–Al–Zn alloys at elevated temperatures, Journal of Materials Processing Technology, 80–81 (1998) 513-516. [3] D.A. Jones, Principles and Prevention of Corrosion, Prentice Hall, Englewood Cliffs, NJ, 2nd ed., (1996) 40-74. [4] A.A. Zuleta, E. Correa, M. Sepulveda, L. Guerra, J.G. Castano, F. Echeverria, P. Skeldon, G.E. Thompson, Effect of NH4HF2 on deposition of alkaline electroless Ni–P coatings as a chromium-free pre-treatment for magnesium, Corrosion Science, 55 (2012) 194-200. [5] J.E. Gray, B. Luan, Protective coatings on magnesium and its alloys—a critical review, Journal of alloys and compounds, 336 (2002) 88. [6] H.H. Elsentriecy, K. Azumi, H. Konno, Improvement in stannate chemical conversion coatings on AZ91D magnesium alloy using the potentiostatic technique, Electrochimica Acta, 53 (2007) 1006-1012. [7] C. Blawert, W. Dietzel, E. Ghali, G. Song, Anodizing Treatments for Magnesium Alloys and Their Effect on Corrosion Resistance in Various Environments, Advanced Engineering Materials, 8 (2006) 511-533. [8] Y. Song, D. Shan, R. Chen, E.H. Han, Corrosion characterization of Mg–8Li alloy in NaCl solution, Corrosion Science, 51 (2009) 1087-1094. [9] F. Zucchi, A. Frignani, V. Grassi, G. Trabanelli, C. Monticelli, Stannate and permanganate conversion coatings on AZ31 magnesium alloy, Corrosion Science, 49 (2007) 4542-4552. [10] C. Wang, S. Zhu, F. Jiang, F. Wang, Cerium conversion coatings for AZ91D magnesium alloy in ethanol solution and its corrosion resistance, Corrosion Science, 51 (2009) 2916-2923. [11] C.S. Lin, H.C. Lin, K.M. Lin, W.C. Lai, Formation and properties of stannate conversion coatings on AZ61 magnesium alloys, Corrosion Science, 48 (2006) 93-109. [12] A.L. Rudd, C.B. Breslin, F. Mansfeld, The corrosion protection afforded by rare earth conversion coatings applied to magnesium, Corrosion Science, 42 (2000) 275-288. [13] M. Zhao, S. Wu, J.R. Luo, Y. Fukuda, H. Nakae, A chromium-free conversion coating of magnesium alloy by a phosphate–permanganate solution, Surface and Coatings Technology, 200 (2006) 5407-5412. [14] K.Y. Chiu, M.H. Wong, F.T. Cheng, H.C. Man, Characterization and corrosion studies of fluoride conversion coating on degradable Mg implants, Surface and Coatings Technology, 202 (2007) 590-598. [15] G.L. Song, “Electroless” deposition of a pre-film of electrophoresis coating and its corrosion resistance on a Mg alloy, Electrochimica Acta, 55 (2010) 2258-2268. [16] C.H. Liang, R.F. Zheng, N.B. Huang, L.S. Xu, Conversion coating treatment for AZ31 magnesium alloys by a phytic acid bath, Journal of Applied Electrochemistry, 39 (2009) 1857-1862. [17] L. Jianrui, G. Yina, H. Weidong, Study on the corrosion resistance of phytic acid conversion coating for magnesium alloys, Surface and Coatings Technology, 201 (2006) 1536-1541. [18] Z.L. Hsieh, M.C. Lin, J.Y. Uan, Rapid direct growth of Li–Al layered double hydroxide (LDH) film on glass, silicon wafer and carbon cloth and characterization of LDH film on substrates, Journal of Materials Chemistry, 21 (2011) 1880-1890. [19] A.V. Besserguenev, A.M. Fogg, R.J. Francis, S.J. Price, D. O''Hare, V.P. Isupov, B.P. Tolochko, Synthesis and Structure of the Gibbsite Intercalation Compounds [LiAl2(OH)6]X {X = Cl-, Br-, NO3-} and [LiAl2(OH)6]Cl‧H2O Using Synchrotron X-ray and Neutron Powder Diffraction, Chemistry of Materials, 9 (1997) 241-247. [20] A.M. Fogg, A.J. Freij, G.M. Parkinson, Synthesis and Anion Exchange Chemistry of Rhombohedral Li/Al Layered Double Hydroxides, Chemistry of Materials, 14 (2001) 232-234. [21] J.K. Lin, C.L. Hsia, J.Y. Uan, Characterization of Mg,Al-hydrotalcite conversion film on Mg alloy and Cl- and anion-exchangeability of the film in a corrosive environment, Scripta Materialia, 56 (2007) 927-930. [22] J.K. Lin, J.Y. Uan, Formation of Mg,Al-hydrotalcite conversion coating on Mg alloy in aqueous HCO3−/CO32− and corresponding protection against corrosion by the coating, Corrosion Science, 51 (2009) 1181-1188. [23] J.K. Lin, K.L. Jeng, J.Y. Uan, Crystallization of a chemical conversion layer that forms on AZ91D magnesium alloy in carbonic acid, Corrosion Science, 53 (2011) 3832-3839. [24] J. Chen, Y. Song, D. Shan, E.H. Han, In situ growth of Mg–Al hydrotalcite conversion film on AZ31 magnesium alloy, Corrosion Science, 53 (2011) 3281-3288. [25] J. Wang, D. Li, Q. Liu, X. Yin, Y. Zhang, X. Jing, M. Zhang, Fabrication of hydrophobic surface with hierarchical structure on Mg alloy and its corrosion resistance, Electrochimica Acta, 55 (2010) 6897-6906. [26] T. Ishizaki, S.P. Cho, N. Saito, Morphological control of vertically self-aligned nanosheets formed on magnesium alloy by surfactant-free hydrothermal synthesis, CrystEngComm, 11 (2009) 2338. [27] L. Wang, B.P. Zhang, T. Shinohara, Corrosion behavior of AZ91 magnesium alloy in dilute NaCl solutions, Materials & Design, 31 (2010) 857-863. [28] L. Wang, T. Shinohara, B.P. Zhang, H. Iwai, Characterization of surface products on AZ31 magnesium alloy in dilute NaCl solution, Journal of Alloys and Compounds, 485 (2009) 747-752. [29] E.A. Matter, S. Kozhukharov, M. Machkova, V. Kozhukharov, Comparison between the inhibition efficiencies of Ce(III) and Ce(IV) ammonium nitrates against corrosion of AA2024 aluminum alloy in solutions of low chloride concentration, Corrosion Science, 62 (2012) 22-33. [30] J. Smolinski, Electrolytic deposition and diffusion of lithium into magnesium, Journal of Applied Chemistry, (1956) 180-186. [31] M.C. Lin, C.Y. Tsai, J.Y. Uan, Converting hcp Mg–Al–Zn alloy into bcc Mg–Li–Al–Zn alloy by electrolytic deposition and diffusion of reduced lithium atoms in a molten salt electrolyte LiCl–KCl, Scripta Materialia, 56 (2007) 597-600. [32] Y. Watanabe, M. Toyoshima, K. Itoh, High purity aluminium-lithium master alloy by molten salt electrolysis, Journal de Physique Colloque C3, 48 (1987) 85-91. [33] W.J. Hamer, M.S. Malmberg, B. Rubin, Theoretical electromotive forces for cells containing a single solid or molten chloride electrolyte, Journal of the Electrochemical Society, 103 (1956) 8-16. [34] J. Sangster, A.D. Pelton, in Binary Alloy Phase Diagrams, eds. T. B. Massalski, H. Okamoto, P. R. Subramanian and L. Kacprzak, ASM International, Materials Park, OH, USA, 2nd edn, 1(1996) 165. [35] M.C. Lin, F.T. Chang, J.Y. Uan, Synthesis of Li–Al-carbonate layered double hydroxide in a metal salt-free system, Journal of Materials Chemistry, 20 (2010) 6524. [36] ASTM B879-79, Standard Practice for Applying Non-Electrolytic Conversion Coatings on Magnesium Alloys, ASTM, Philadelphia, PA, 2007. [37] C.J. Serna, J.L. White, S.L. Hem, Hydrolysis of aluminum-tri-(sec-butoxide) in ionic and nonionic media, Clays Clay Minerials, 25 (1977) 384-391. [38] C.J. Serna, J.L. Rendon, J.E. Iglesias, Crystal-chemical study of layered [A12Li(OH)6]+X- nH2O, Clays Clay Minerals, (1982) 180-184. [39] I. Sissoko, E.T. Iyagba, R. Sahai, P. Biloen, Anion intercalation and exchange in Al(OH)3-derived compounds, Journal of Solid State Chemistry, 60 (1985) 283-288. [40] P.K. Dutta, M. Puri, Anion exchange in lithium aluminate hydroxides, The Journal of Physical Chemistry, 93 (1989) 376-381. [41] I.C. Chisem, W. Jones, Ion-exchange properties of lithium aluminium layered double hydroxides, Journal of Materials Chemistry, 4 (1994) 1737. [42] Aramendı, amp, x, M. a, A. a, V. Borau, C. Jimenez, J.M. Marinas, J.R. Ruiz, F.J. Urbano, Comparative Study of Mg/M(III) (M=Al, Ga, In) Layered Double Hydroxides Obtained by Coprecipitation and the Sol–Gel Method, Journal of Solid State Chemistry, 168 (2002) 156-161. [43] F.R. Costa, A. Leuteritz, U. Wagenknecht, D. Jehnichen, L. Hausler, G. Heinrich, Intercalation of Mg–Al layered double hydroxide by anionic surfactants: Preparation and characterization, Applied Clay Science, 38 (2008) 153-164. [44] T. Ishizaki, I. Shigematsu, N. Saito, Anticorrosive magnesium phosphate coating on AZ31 magnesium alloy, Surface and Coatings Technology, 203 (2009) 2288-2291. [45] R. Ambat, N.N. Aung, W. Zhou, Evaluation of microstructural effects on corrosion behaviour of AZ91D magnesium alloy, Corrosion Science, 42 (2000) 1433-1455. [46] M.C. Zhao, M. Liu, G.L. Song, A. Atrens, Influence of pH and chloride ion concentration on the corrosion of Mg alloy ZE41, Corrosion Science, 50 (2008) 3168-3178. [47] H. Altun, S. Sen, Studies on the influence of chloride ion concentration and pH on the corrosion and electrochemical behaviour of AZ63 magnesium alloy, Materials & Design, 25 (2004) 637-643.
摘要: 本研究在AZ31表面快速成長鋰鋁層狀氫氧化物(Li-Al-CO3 LDH)透明薄膜以及在低氯化鈉濃度及高濕度環境中測試此LDH薄膜抗腐蝕能力。AZ31(陰極)與不鏽鋼管(陽極)浸置於含有鋰離子及鋁離子的鹼性水溶液中,且於兩極之間施加直流電壓。上述製程於25 °C進行之。鋰鋁層狀氫氧化物透明薄膜由高密度的片狀氫氧化物組成,而且這些片狀物接近地垂直站立在AZ31基材表面。片狀氫氧化物在試片表面的緻密程度會隨著電壓提高而降低。通以3.2 V與 4 V的電壓進行表面處理時LDH薄膜無法成長於試片表面。因此在研究中以2伏特作為Li-Al-CO3 LDH穩定成長的電壓參數。Li-Al-CO3 LDH薄膜厚度隨著處理時間呈線性增加。實驗顯示在0.6 M 氯化鈉濃度中進行極化腐蝕測試,經表面處理3000秒之試片的平均腐蝕電位(Ecorr)為-1.518 VAg/AgCl及平均腐蝕電流密度(Icorr)為1.66 μA/cm2。900秒表面處理試片的Ecorr約為-1.525 VAg/AgCl、Icorr約為5.601 μA/cm2。上述結果均明顯優於AZ31基材(Ecorr ~-1.538VAg/AgCl, Icorr ~49.46μA/cm2)。相同極化測試在0.1 M氯化鈉溶液中,經表面處理900秒成長的化成薄膜與AZ31的腐蝕電流有一個級別的差距,前者具有較小的腐蝕電流密度與較高的腐蝕電位。本研究使用微小表面電極量測試片表面接觸腐蝕溶液(0.1 M NaCl與水) pH值變化。相較於AZ31之表面pH值在1分鐘內快速上升至pH約10.1,AZ31表面具有LDH的試片,pH值在10分鐘內緩慢上升。高濕度腐蝕長期測試結果:經300秒表面處理的試片經過48小時腐蝕測試後,進行紅外線光譜儀分析發現H2O-CO3鍵的訊號消失及Al-OH鍵的訊號降低。相對於表面處理900秒的試片,在長達96小時腐蝕測試後仍保有LDH皮膜鍵結訊號。在高濕度低鹽度的腐蝕環境下,此皮膜層的疏水性質及較厚的Li-Al-CO3 LDH皮膜厚度來共同提升抗腐蝕的能力。
An optically-transparent Li-Al-CO3 hydrotalcite (Li-Al-CO3 LDH) film directly formed on AZ31 substrate by applying a DC voltage (V DC) between cathode (AZ31) and anode (stainless steel) in a Li+/Al3+ aqueous solution. Two V DC was the optimum voltage required to have a uniform Li-Al-CO3 LDH film on AZ31 Mg sample after performing electrolysis experiments. Under the same 2V DC voltage during electrolysis, the thickness of the LDH film on AZ31 linearly increased with electrolysis time. The LDH film was optically-transparent. For instance, the LDH film after 900 sec electrolysis had a better optical transparency than that after 1800 sec or 3000 sec electrolysis. Hydrogen was bubbling on AZ31 surface at applied voltages larger than 2 V DC. Thus, LDH film was unable to grow on AZ31 sample surface when 3.2 V DC and 4 V DC were used. Polarization measurements were performed in 0.1 M and 0.6 M NaCl solutions. The 3000s-coated sample that tested in 0.6 M NaCl solution had average values of corrosion potential (Ecorr) ~-1.518 VAg/AgCl and corrosion current density (Icorr) ~1.66 μA/cm2. The 900s-coated sample had values of Ecorr ~-1.525 VAg/AgCl and Icorr ~5.601 μA/cm2. Above results were much better than raw AZ31 substrate (Ecorr ~-1.538 VAg/AgCl and Icorr ~49.46 μA/cm2). Surfacial pH on AZ31 substrate rised rapidly to pH~10.1 in 1 min. For comparison, the surfacial pH on LDH-coated sample slowly increased to pH ~9.5 in 10 min. FTIR results showed that the main chemical bonds H2O-CO32- and Al-OH in LDH structure dissociated, leading to sufacial pH gradually increasing to a relatively higher level. Owing to the following effects: alkaline environment developed by LDH itself, the hydrophobicity and the thicker thickness LDH coating on AZ31 Mg alloy surface exhibited good corrosion resistance.
URI: http://hdl.handle.net/11455/11383
其他識別: U0005-0708201215402200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0708201215402200
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.