Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11385
標題: 成長鎳矽化物/矽異質結構奈米線及其氣體感測性質之研究
Fabrication of Nickel Silicide/Si Heterostructure and their Gas Sensing Properties
作者: 陳俊安
Chen, Chun-An
關鍵字: 原子力顯微鏡
Atomic force microscopy
鎳矽化物奈米線
氣體感測
Nickel silicide nanowire
Gas sensing
出版社: 材料科學與工程學系所
引用: [1]J. C. She, S. Z. Deng, N. S. Xu, R. H. Yao, and J. Chen,“Fabrication of vertically aligned Si nanowires and their application in a gated field emission device”, Applied Physics Letters 88, 013112 (2006). [2]Y. Wu, J. Xiang, C. Yang, W. Lu, and C. M. Lieber, “Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures”, Nature 430, 61 (2004). [3]Z. Liu, S. Wang, N. Otogawa, Y. Suzuki, M. Osamura, Y. Fukuzawa, T. Ootsuka, Y. Nakayama, H. Tanoue, and Y. Makita,“A thin-film solar cell of high-quality-FeSi/Si heterojunction prepared by sputtering”, Solar Energy Materils and Solar Cells 90,276 (2006). [4]R. S. Wagner, and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth”, Applied Physics Letters 4, 89 (1964). [5]K. Q. Peng, Y. J. Yan, S. P. Gao, and J. Zhu,“Synthesis of Large-Area silicon nanowire arrays via self-assembling nanoelectrochemistry”, Advanced Materials 14, 1164 (2002). [6]T. Hanrath, and B. A. Korgel, “Nucleation and growth of germanium nanowires seeded by organic monolayer-coated gold nanocrystals ”, Journal of the American Chemical Society 124, 1424 (2002). [7]H. H. Solak, D. He, W. Li, S. Singh-Gasson, F. Cerrinaa, B. H. Sohn, X. M. Yang, and P. Nealey, “Exposure of 38nm Period Grating Patterns with Extreme Ultraviolet Interferometric Lithography”, Applied Physics Letters 75, 2328 (1999). [8]P. Candeloro, A. Gerardino, E. D. Fabrizio, S. Cabrini, G. Giannini, L. Mastrogiacomo, M. Ciria, R. C. O’Handley, G. Gubbiotti, and G. Carlotti,“Patterned Magnetic Permalloy and Nickel Films: Fabrication by Electron Beam and X-Ray Lithographic Techniques”, Japanese Journal of Applied Physics 41, 5149 (2002). [9]R. Klauser, M. L. Huang, S. C. Wang, C. H. Chen, T. J. Chuang, A. Terfort, and M. Zharnikov,“Lithography with a Focused Soft X-ray Beam and a Monomolecular Resist”, Langmuir 20,2050 (2004). [10]J. M. Hueso, R. Abargues, J. C. Ferrer, S. D. Agouram, J. L. S. Valdes, and J. P. Martinez Pastor,“Au-PVA Nanocomposite Negative Resist for One-Step Three-Dimensional e-Beam Lithography”, Langmuir 26,2825 (2009). [11]J. Joo, B. Y. Chow, and J. M. Jacobson, “Nanoscale patterning on insulating substrates by critical energy electron beam lithography”, Nano Letters 6, 2021 (2006). [12]J. C. Garno, Y. Yang, N. A. Amro, S. Cruchon Dupeyrat, S. Chen, and G. Y. Liu, “Precise positioning of nanoparticles on surfaces using scanning probe lithography”, Nano Letters 3, 389 (2003). [13]S. Nishimura, T. Ogino, and J. I. Shirakashi,“Micrometer Scale Local Oxidation Lithography Using Scanning Probe Microscopy”, Japanese Journal of Applied Physics 47, 715 (2008). [14]Z. Li, M. Wu, T. Liu, C. Wu, Z. Jiao, and B. Zhao,“Preparation of TiO2 Nanowire Gas Nanosensor by AFM Anode OXidation”, Ultramicroscopy 108, 1334 (2008). [15]C. Tsai, S. Jian, and H. Wen,“Tip-Induced Local Anodic Oxidation on p-GaAs Surface with Non-Contact Atomic Force Microscopy”, Applied Surface Science 254, 1357 (2007). [16]I. F. Cuesta, X. Borrise, and F. P. Murano,“Atomic Force Microscopy Local Oxidation of Silicon Nitride Thin Films for Mask Fabrication”, Nanotechnology 16, 2731 (2005). [17]P. Avouris, T. Hertel, and R. Martel, “Atomic force microscope tip-induced local oxidation of silicon : kinetics , mechanism , and nanofabrication”, Applied Physics Letters 71, 285 (1997). [18]F.P&ez-Murano, G. Abadal, N. Barniol, X. Aymerich, J. Set-vat, P. Gorostiza, and F. Sanz, “Nanometer‐scale oxidation of Si(100) surfaces by tapping mode AFM”, Journal of Applied Physics 78,6797 (1995). [19]Montserrat Calleja and Ricardo Garcia, “Nano-oxidation of silicon surfaces by noncontact atomic-force microscopy : Size dependence on voltage and pulse duration”, Applied Physics Letters 76, 3427 (2000). [20]J. A. Dagata, J. Schneir, H. H. Harary, C. J. Evans, M. T. Postek, and J. Bennett, “Modification of hydrogen-passivated silicon by a scanning tunneling microscope operating in air” Applied Physics Letters 56, 2001 (1990). [21]T. Teuschler, K. Mahr, S. Miyazaki, M. Hundhausen, and L. Ley, “Nanometer-scale field-induced oxidation of Si(111):H by a conducting-probe scanning force microscope: Doping dependence and kinetics”, Applied Physics Letters 67, 3144 (1995). [22]A. E. Gordon, R. T. Fayfield, D. D. Litfin, and T. K. Higman, “Mechanisms of surface anodization produced by scanning probe microscopes”, Journal of Vacuum Science & Technology B 13, 2805 (1995). [23]D. Stievenard, P. a. Fontaine, and E. Dubois, “Nanooxidation using a scanning probe microscope: An analytical model based on field induced oxidation”, Applied Physics Letters 70, 3272 (1997). [24]J. A. Dagata, T. Inoue, J. Itoh, and H. Yokoyama, “Understanding scanned probe oxidation of silicon”, Applied Physics Letters 73, 271 (1998). [25]J. A. Dagata, T. Inoue, J. Itoh, K. Matsumoto, H. Yokoyama, and I. Introduction, “Role of space charge in scanned probe oxidation” Journal of Applied Physics 84, 6891 (1998). [26]K. Birkelund and J. A. Dagata, “Voltage modulation scanned probe oxidation”, Applied Physics Letters 75, 199 (1999). [27]R. Garcı, “Patterning of silicon surfaces with noncontact atomic force microscopy : Field-induced formation of nanometer-size water bridges”, Journal of Applied Physics 86, 1898 (1999). [28]M. Tello and R. Garcı́a, “Nano-oxidation of silicon surfaces: Comparison of noncontact and contact atomic-force microscopy methods”, Applied Physics Letters 79, 424 (2001). [29]H. Search, C. Journals, A. Contact, M. Iopscience, and I. P. Address, “Tapping mode SPM local oxidation nanolithography with sub-10 nm resolution”, Journal of Physics: Conference Series 052021, 8 (2008). [30]J. Mart and R. Garcia, “Silicon nanowire circuits fabricated by AFM oxidation nanolithography”, Nanotechnology 21, 245301 (2010). [31]K. E. Bean,”Anisotropic etching of silicon”, Electron Devices, IEEE Transactions 25, 1185 (1978). [32]J. C. Greenwood, “Ethylene diamine-catechol-water mixture shows Preferential etching of p-n junction”, Journal of The Electrochemical Society 116, 1325 (1969). [33]H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, “Anisotropic etching of crystalline silicon in alkaline solutions”, Journal of The Electrochemical Society 137, 3612 (1990). [34]B. Xiang, Q. X. Wang, Z. Wang, X. Z. Zhang, L. Q. Liu, J. Xu, and D. P. Yu, “Synthesis and field emission properties of TiSi nanowires”, Applied Physics Letters 86, 243103 (2005). [35]S. Zhou, X. Liu, Y. Lin, and D. Wang, “Spontaneous growth of highly conductive two-dimensional single-crystalline TiSi2 nanonets”, Angewandte Chemie 47, 7681 (2008). [36]J. Du, Z. Ren, K. Tao, A. Hu, P. Hao, Y. Huang, G. Zhao, W. Weng, G. Han, and P. Du, "Self-Induced preparation of assembled shrubbery TiSi nanowires by chemical vapor deposition", Crystal Growth & Design 8, 3543 (2008). [37]Y. C. Chou, W. W. Wu, S. L. Cheng, B. Y. Yoo, N. Myung, L. J. Chen, and K. N. Tu, "In-situ TEM observation of repeating events of nucleation in epitaxial growth of nano CoSi2 in nanowires of Si", Nano Letters 8, 2194 (2008). [38]K. Okubo, Y. Tsuchiya, O. Nakatsuka, A. Sakai, S. Zaima, and Y. Yasuda, “Influence of structural variation of Ni silicide thin films on electrical property for contact materials”, Japanese Journal of Applied Physics 43, 1896 (2004). [39]O. Nakatsuka, K. Okubo, Y. Tsuchiya, A. Sakai, S. Zaima, and Y. Yasuda, “Low-temperature formation of epitaxial NiSi2 layers with solid-phase reaction in Ni/Ti/Si(001) systems”, Japanese Journal of Applied Physics 44, 2945 (2005). [40]S. Y. Chen and L. J. Chen, “Self-assembled epitaxial NiSi2 nanowires on Si(001) by reactive deposition epitaxy”, Thin Solid Films 508, 222 (2006). [41]S. Y. Chen and L. J. Chen, “Nitride-mediated epitaxy of self-assembled NiSi2 nanowires on (001)Si”, Applied Physics Letters 87, 253111 (2005). [43]H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel,“Anisotropic etching of crystalline silicon in alkaline solutions”, J. Electrochem. Soc. 137, 3612, (1990). [44]P. J. Hesketh, C. Ju, and S. Gowda,“Surface free energy model of silicon anisotropic etching”, J. Electrochem. Soc. 140, 4, (1993). [45]Y. Wu, J. Xiang, C. Yang, W. Lu, and C. M. Lieber, “Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures”, Nature 430, 61 (2004). [46]Y. C. Lin, K. C. Lu, W. W. Wu, J. Bai, L. J. Chen, K. N. Tu, and Y. Hung, “Single crystalling PtSi nanowires, PtSi/Si/PtSi nanowires heterostructures, and nanodevices”, Nano letters 8,913,(2008). [47]M. E. Franke, T. J. Koplin, and U. Simon, “Metal and metal oxide nanoparticles in chemiresistors : does the nanoscale matter?”, Small 2, 36 (2006). [48]T. J. Hsueh, C. L. Hsu, S. J. Chang, I. C. Chen, “Laterally grown ZnO nanowire ethanol gas sensors”, Sensors and actuators B 126, 473, (2007). [49]I. D. Kim, A. Rothschild, H. L. Tuller, “Advances and new directions in gas-sensing devices”, Acta Materialia 61, 974, (2013). [50]Y. Dan, S. Evoy, and A. T. Charlie Johnson, “Chemical gas sensors based on nanowires” [51]T. Hyodo, Y. Baba, K. Wada, Y. Shimizu, and M. Egashira, “Hydrogen sensing properties of SnO2 varistors loaded with SiO2 by surface chemical modification with diethoxydimethylsilane”, Sensors and Actuators B:Chemical 64, 175 (2000). [52]F. Lu, Y. Liu, M. Dong, and X. Wang, “Nanosized tin oxide as the novel material with simultaneous detection towards CO,H2 and CH4”, Sensors and Actuators B:Chemical 66,225 (2000). [53]H. Du, J. Wang, M. Su, P. Yao, Y. Zheng, and N. Yu, “Formaldehyde gas sensor based on SnO2/In2O3 hetero-nanofibers by a modified double jets electrospinning process”, Sensors and Actuators B:Chemical 166, 746 (2012). [54]N. Singh, A. Ponzoni, R. K. Gupta, P. S. Lee, and E. Comini,“Synthesis of In2O3-ZnO core-shell nanowire and their app;ication in gas sensing”, Sensors and Actuators B:Chemical 160, 1346 (2011). [55]A. Heiling, N. Barsan, U. Weimar, M. Schweizer-Berberich, J. W. Gardner, and W. Gopel, “Gas identification by modulating temperatures of SnO2-based thick film sensors”, Sensors and Actuators B:Chemical 43, 45 (1997). [56]K. W. Kim, P. S. Cho, S. J. Kim, J. H. Lee, C. Y. Kang, J. S. Kim, and S. J. Yoon, “The selective detection of C2H5OH using SnO2-ZnO thin film gas sensors prepared by combinatorial solution deposition ”, Sensors and Actuators B:Chemical 123, 318 (2007). [57]G. De, R. Kohn, G. Xomeritakis, and C. J. Brinker,“Nanocrystalline mesoporous palladium activated tin oxide thin films as room-temperature hydrogen gas sensors”, Chem Commun (Camb) 18, 1840(2007). [58]I. S. Hwang, J. K. Choi, S. J. Kim, K. Y. Dong, J. H. Kwon, B. K. Ju, and J. H. Lee, “Enhanced H2S sensing characteristics of SnO2 nanowires functionalized with CuO”, Sensors and Actuators B:Chemical 142, 105 (2009). [59]S. N. Das, J. P. Kar, J. H. Choi, T. I. Lee, K. J. Moon, and J. M. Myoung, “Fabrication and characterization of ZnO single nanowire-based hydrogen sensor”, J. Phys. Chem.. C 114, 1689 (2010). [60]Z. Fan, and J. G. Lu, “Chemical sensing with ZnO nanowires field-effect transistor”, IEEE 5, 393 (2006). [61]C. Y. Lu, S. P. Chang, and S. J. Chang, “ZnO nanowire-based oxygen gas sensor”, IEEE 9, 485 (2009). [62]T. J. Hsueh, Y. W. Chen, S. J. Chang, S. F. Wang, C. L. Hsu, Y. R. Lin, T. S. Lin, and I. C. Chen, “ZnO nanowire-based CO sensors prepared on patterned ZnO:Ga/SiO2/Si templates”, Sensor and Actuators B 125, 498 (2008). [63]F. T. Liu, S. F. Gao, S. K. Pei, S. C. Tseng, and C. H. J. Liu, “ZnO nanorod gas sensor for NO2 detection ”, Journal of the Taiwan Institute of Chemical Engineers 40, 528 (2009). [64]M. W. Ahn, K. S. Park, J. H. Heo, J. G. Park, and D. W. Kim, “Gas sensing properties of defect-controlled ZnO nanowire gas sensor”, Appl. Phys. Lett. 93, 263103 (2008). [65]T. J. Hsueh, and S. J. Chang, “Highly sensitive ZnO nanowire ethanol sensor with Pd adsorption”, Applied Physics Letters 91, 053111 (2007). [66]E. R. Waclawik, J. Chang, A. Ponzoni, I. Concina, D. Zappa, E. Comini, N. Motta, G. Faglia, and G. Sberveglieri, “Functionalised zinc oxide nanowire gas sensors:Enhanced NO2 gas sensor response by chemical modification of nanowire surfaces”, Beilstein J. Nanotechnol. 3, 368 (2012). [67]O. Lupan, V. V. Ursaki, G. Chai, L. Chow, G. A. Emelchenko, I. M. Tiginyanu, A. N. Gruzintsev, and A. N. Redkin, “Selective hydrogen gas nanosensors using individual ZnO nanowire with fast response at room temperature”, Sensors and actuators B:Chemical 144, 56 (2010). [68]K. Arshak, and I.Gaidan, “Development of a novel gas sensor based on oxide thick films”, Materials Science and Engineering B 118, 44 (2005). [69]B. Wang, L. F. Zhu, Y. H. Yang, N. S. Xu, and G.W. Yang, “Fabrication of a SnO2 nanowire gas sensor and sensor performance for hydrogen”, The Journal of Physical Chemistry C 112, 6643 (2008). [70]I. S. Hwang, E. B. Lee, S. J. Kim, J. K. Choi, J. H. Cha, H. J. Lee, B. K. Ju, and J. H. Lee, “Gas sensing properties of SnO2 nano wires on micro-heater”, Sensors and actuators B:Chemical 154, 295 (2011). [71]I. S. Hwang, Y. J. Choi, J. H. Park, and J. G. park , “Synthesis of SnO2 nanowires and their gas sensing characteristics”, Journal of the Korean Physical Society 49, 1229 (2006). [72]D. Chen, J. Xu, Z. Xie, and G. Shen, “Nanowires assembled SnO2 nanopolyhedrons with enhanced gas sensing properties”, Appl. Mater. Interfaces 3, 2112(2011). [73]A. Fort, M. Mugnaini, V. Vignoli, S. Rocchi, E. Comini, G. Faglia, and A. Ponzoni, “Characterization and modelling of SnO2 nanowire sensors for CO detection”, [74]A. Kolmakov, D. O. Klenov, Y. Lilach, S. Stemmer, and M. Moskovits, “Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles”, Nano Letters 5, 667 (2005). [75]Z. Wang, Z. Li, T. Jiang, X. Xu, and C. Wang, “Ultrasitive hydrogen sensor based on Pd-loaded SnO2 electrospun nanofibers at room temperature”, Appl. Mater. Interfaces 5, 2013 (2013). [76]L. H. Qian, K. Wang, Y. Li, H. T. Fang, Q. H. Lu, and X. L. Ma, “CO sensor based on Au-decorated SnO2 nanobelt”, Materials Chemistry and Physics 100, 82 (2006). [77]J. Pan, R. Genesan, H. Shen, and S. Mathur, “Plasma-modified SnO2 nanowires for enhanced gas sensing”, J. Phys. Chem. C 114, 8245 (2010). [78]A. Sharma, M. Tomar, and V. Gupta, “A low temperature operated NO2 gas sensor based on TeO2/SnO2 p-n heterointerface”, Sensors and actuators B:Chemical 176, 875 (2013). [79]B. J. Hansen, N. Kouklin, G. Lu, I-K. Lin, J. Chen, and X. Zhang, “Transport, analyte detection, and opto-electronic response of p-type CuO nanowires”, J. Phys. Chem. C 114, 2440 (2010). [80]M. Mashock, K. Yu, S. Cui, S. Mao, G. Lu, and J. Chen, “Modulating gas sensing properties of CuO nanowires through creation of discrete nanosized p-n junctions on their surfaces”, American Chemical Society 4, 4192 (2012) [81]N. D. Hoa, N. V. Quy, H. Jung, D. Kim, H. Kim, and S. K. Song, “Synthesis of porous CuO nanowires and it application to hydrogen detection ”, Sensors and actuators B:Chemical 146 266 (2010). [82]P. Raksa, A. Gardchareon, T. Chairuangsri, P. Mangkorntong, N. Mangkorntong, and S. Choopun, “Ethanol sensing properties of CuO nanowires prepared by an oxidation reaction” , Ceramics International 35, 649 (2009). [83]S. Steinhauer, E. Brunet, T. Maier, G. C. Mutinati, and A. Kock, “Suspended CuO nanowires for ppb level H2S sensing in dry and humid atmosphere”, Sensors and actuators B:Chemical 186, 550 (2013). [84]N. D. Hoa, N. V. Quy, M. A. Tuan, N. V. Hieu, “Facile synthesis of p-type semiconducting cupric oxide nanowires and their gas-sensing properties”, Physica E 42, 146 (2009). [85]S. W. Choi, A. katoch, J. Zhang, and S. S. Kim, “Electrospun nanofibers of CuO-SnO2 nanocomposite as semiconductor gas sensors for H2S detection”, Sensors and actuators B:Chemical 176, 585 (2013). [86]J. Chen, K. Wang, L. Hartman, and W. Zhou, “H2S detection by vertically aligned CuO nanowire array sensors”, J. Phys. Chem. C 112, 16017 (2008). [87]H. Yamaura, J. Tamaki, K. Moriya, N. Miura, and N. Yamazoe,“Selective CO Detection by Using Indium Oxide-Based Semiconductor Gas Sensor”, J. Elect rochem. Soc. 143, L36 (1996). [88]L. Liao, Z. Zhang, B. Yan, Z. Zheng, Q. L. Bao, T. Wu, C. M. Li, Z. X. Shen, J. X. Zhang, H. Gong, J. C. Li, and T. Yu, “Multifunctional CuO nanowire devices: p-type field effect transistors and CO gas sensors”, Nanotechnology 20, 085203 (2009). [89]Y. S. Kim, I. S. Hwang, S. J. Kim, C. Y. Lee, and J. H. Lee,“CuO nanowire gas sensors for air quality control in automotive cabin”, Sensors and Actuators B :Chemical 135, 298 (2008). [90]K. Q. Peng, X. Wang, and S. T. Lee, “Gas sensing properties of single crystalline porous silicon nanowires”, Applied Physics Letters 95, 243112 (2009). [91]A. A. Talin, L. L. Hunter, F. Leonard, and B. Rokad, “Large area, dense silicon nanowire array chemical sensors”, Applied Physics Letters 89, 153102 (2006). [92]M. Li, M. Hu, Q. Liu, S. Ma, and P. Sun, “Microstructure characterization and NO2-sensing properties of porous silicon with intermediate pore size”, Applied Surface Science 268, 188 (2013). [93]J. S. Noh, H. Kim, B. S. Kim, E. Lee, H. H. Cho, and W. Lee, “High-performance vertical hydrogen sensors using Pd-coated rough Si nanowires”, J. Mater. Chem. 21, 15935 (2011). [94]L. Yang, H. Lin, Z. Zhang, L. Cheng, S. Ye, and M. Shao, “Gas sensing of tellurium-modified silicon nanowires to ammonia and propylamine”, Sensors and Actuators B 177, 260 (2013). [95]A. E. Gad, M. W. G. Hoffmann, F. Hernandez-Ramirez, J. D. Prades, H. Shen, and S. Mathur, “Coaxial p-Si/n-ZnO nanowire heterostructures for energy and sensing applications”, Materials Chemistry and Physics 135, 618 (2012). [96]K. Birkelund and J. A. Dagata, “Voltage modulation scanned probe oxidation”, Applied Physics Letters 75, 199 (1999). [97]T. Young, E. Di, D. Ricci, and S. Cincotti, “Patterning surface oxide nanostructures using atomic force microscope local anodic oxidation”, Physica E 40, 1941 (2008). [98]H. Search, C. Journals, A. Contact, M. Iopscience, and I. P. Address, “SPM local oxidation nanolithography with active control of cantilever dynamics” Journal of Physics: Conference Series 61, 1066 (2007). [99]T. H. Chen, H. F. Hsu, H. Y. Wu, “Formation of Ni-silicide nanowires on silicon-on-insulator substrates by atomic force microscope lithography and solid phase reaction”, ECS Journal of Solid State Science and Technology 1, 90 (2012). [100]劉尚武, “原子力顯微鏡場致氧化絕緣層覆矽基材與鎳矽化物於矽奈線成長之研究”, 國立中興大學碩士論文(2012). [101]K. Okubo, Y. Tsuchiya, O. Nakatsuka, A. Sakai, S. Zaima, and Y. Yasuda, “Influence of Structural Variation of Ni Silicide Thin Films on Electrical Property for Contact Materials”, Japanese Journal of Applied Physics 43, 1896 (2004). [102]O. Nakatsuka, K. Okubo, Y. Tsuchiya, A. Sakai, S. Zaima, and Y. Yasuda, “Low-temperature formation of epitaxial NiSi2 layers with solid-phase reaction in Ni/Ti/Si(001) systems”, Japanese Journal of Applied Physics 44, 2945 (2005). [103]A. Vantomme, S. Degroote, J. Dekoster, G. Langouche, and R. Pretorius, “Concentration-controlled phase selection of silicide formation during reactive deposition”, Applied Physics Letters 74, 3137 (1999). [104]Y.-C. Lin, Y. Chen, D. Xu, and Y. Huang, “Growth of nickel silicides in Si and Si/SiOx core/shell nanowires”, Nano letters 10, 4721 (2010). [105]N. S. Dellas, B. Z. Liu, S. M. Eichfeld, C. M. Eichfeld, T. S. Mayer, and S. E. Mohney, “Orientation dependence of nickel silicide formation in contacts to silicon nanowires”, Journal of Applied Physics 105, 094309 (2009). [106]王俊喻, “尺寸對於矽奈米線陣列之場發特性及鎳矽化物/矽異質結構奈米線電性的影響”國立中興大學碩士論文(2012).
摘要: 由於奈米製成尺寸日益縮小,使現今電子元件尺寸縮小至今已近物理極限,而一維奈米線結構具有特殊的光電特性,使其在未來奈米電子元件發展重點之一。低電阻的金屬矽化物在奈米尺度下仍保有優良的電性,且與矽基材有良好的接面特性,而鎳矽化物的矽消耗量低,以及有良好的熱穩定性,應用於奈米電子元件中具有高度的潛力。利用掃描探針微影術製備奈米元件不需在真空環境下,以簡單的製程步驟就能達到奈米尺度微影的目的,且能精確控制奈米圖樣的位置,可應用於奈米電子元件中。而反應式磊晶法在高溫下沉積金屬,控制反應時金屬原子濃度,容易形成與基材有良好的磊晶關係的金屬矽化物,期望可應用於多段式鎳矽化物/矽異質結構奈米線的成長與元件上的應用。 因此本實驗利用輕敲式原子力顯微鏡搭配脈衝式的電壓供應,在SOI基材上製備氧化線;再以適當的濕式蝕刻製備矽奈米線。接著利用反應式磊晶法蒸鍍不同量的金屬,探討蒸鍍量對鎳矽化物/矽異質結構奈米線的成核機制與氣體感測影響。 由結果顯示,在鎳矽比小於1/80時只是局部有反應物出現,當鎳矽原子比為1/8時可以形成多段的鎳矽化物/矽異質結構奈米線,鎳矽比增加到1/4時可能使奈米線完全反應成鎳矽化物,我們發現初始反應時,鎳矽化物晶粒大部分都集中在(111)面,而(100)面較少。 經由以矽(100)與矽(111)面基板蒸鍍相當於製作異質結構奈米線時的鎳厚度,進行不同矽晶面的成核機制討論,發現(100)面成長的NiSi2為一個六面體的結構,於(111)面成長的NiSi2為一個五面體的結構,使在(111)基材生成之NiSi2具有較低的表面能使成核時之活化能較低,因此NiSi2在Si (111)面較易成核,而同時在具有(111)及(100)面的奈米線,成長NiSi2時較易於(111)面上成核,因此在(111)面上之NiSi2的晶粒數目較高。 氣體感測性質上具鎳矽化物奈米晶粒之矽奈米線(鎳矽原子比為1/80)與多段式鎳矽化物/矽異質結構奈米線(鎳矽原子比為1/8)在氧氣感測上比矽奈米線在感測反應上還要好,矽奈米線的反應為177%,而具鎳矽化物奈米晶粒之矽奈米線的反應可以達到361%,以及多段式鎳矽化物/矽異質結構奈米線的反應可達到237%。
Recentli, the size of electronic device approaches to limitations of Moore''s law. One dimension nanostructures are attractive study in the future due to their unique photoelectrice characteristics. Metal silicides have excellent electric properties in nanoscale. Moreover, nickel silicides are promising materials for applying in the nanoelectronic device because of their low Si consumption and thermal stability. Scanning probe lithography can operate in air and fabricate nanostructure simply. Using reactive deposition epitaxy (RDE) can promote the epitaxial growth of metal silicide on silicon. We expect that it can be used in the formation of multiple Ni-silicide/Si heterostructures. In this study, Si oxide nanowires were fabricated on SOI substrates by AFM field induced. Future, Si nanowires were fabricated by aselective wet etching. Furthmorw, the effects of deposition amount on the formation of silicide were studied. The result show that when Ni:Si ratio less than 1/80 has reactants appear in the local. When the Ni:Si ratio is 1/8 can be formed multiple Ni-silicide/Si heterostructures nanowires. Ni:Si ratio add to 1/4 may make nanowire complete reaction to nickel silicide, and we found that nickel silicide grains are concentrated on the (111) plan in the initial reaction. By silicon (100) and (111) substrate evaporation equivalent nickel thickness when made of heterostructures nanowires, carry out nucleation mechanisms discussed with different silicon surface. Found that the (100) plan growth NiSi2 is a hexahedral structure, and the (111) plan growth NiSi2 is a pentahedron structure. So that the (111) substrate to generate NiSi2 have lower surface energy lead to lower activation on the nucleation. While having (100) and (111) plane nanowires is easier growth NiSi2 on (111) plane. Therefore, on (111) plane have more number of NiSi2 grains. The gas sensing properties for response of nickel silicide nanowires is better than silicon nanowires. The response of silicon nanowire is 177%, and response of silicon nanowire with nickel silicide nanograins could be up to 361%, and response of multiple Ni-silicide/Si heterostructures nanowires could be up to 237%.
URI: http://hdl.handle.net/11455/11385
其他識別: U0005-2208201323172200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2208201323172200
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.