Please use this identifier to cite or link to this item:
標題: 核殼複合BiFeO3/α-Fe2O3粉體之合成及其染料吸附之研究
Synthesis and dye adsorption behavior of BiFeO3/α-Fe2O3 core/shell composite particles
作者: 林瑞德
Lin, Ruei-De
關鍵字: 鐵酸鉍
Bismuth ferrite
Iron(III) Oxide
Dye adsorption
Methyl orange
出版社: 材料科學與工程學系所
引用: 1. P. Reiss, M. Protiere, and L. Li, “Core/Shell semiconductor nanocrystals”, Small, 5, 154-168 (2009). 2. V. Salgueirino-Maceira and M. A. Correa-Duarte, “Increasing the complexity of magnetic Core/Shell structured nanocomposites for biological applications”, Advanced Materials, 19, 4131-4144 (2007). 3. M. Sastry, A. Swami, S. Mandal, and P. Selvakannan, “New approaches to the synthesis of anisotropic, core–shell and hollow metal nanostructures”, Journal of Materials Chemistry, 15, 3161-3174 (2005). 4. S. Wei, Q. Wang, J. Zhu, L. Sun, H. Lin, and Z. Guo, “Multifunctional composite core-shell nanoparticles”, Nanoscale, 3, 4474-4502 (2011). 5. P. Ravindran, R. Vidya, A. Kjekshus, H. Fjellvag, and O. Eriksson, “Theoretical investigation of magnetoelectric behavior in BiFeO 3 ”, Physical Review B, 74, 224412 (2006). 6. T. Xian, H. Yang, J. F. Dai, Z. Q. Wei, J. Y. Ma, and W. J. Feng, “Photocatalytic properties of BiFeO 3 nanoparticles with different sizes”, Materials Letters, 65, 1573-1575 (2011). 7. L. Fei, J. Yuan, Y. Hu, C. Wu, J. Wang, and Y. Wang, “Visible light responsive perovskite BiFeO 3 pills and rods with dominant {111} c facets”, Crystal Growth & Design, 11, 1049-1053 (2011). 8. S. Li, Y. H. Lin, B. P. Zhang, J. F. Li, and C. W. Nan, “BiFeO 3 /TiO 2 core-shell structured nanocomposites as visible-active photocatalysts and their optical response mechanism”, Journal of Applied Physics, 105, 054310 (2009). 9. S. W. Chen, C. C. Lee, M. T. Chen, and J. M. Wu, “Synthesis of BiFeO 3 /ZnO core-shell hetero-structures using ZnO nanorod positive templates”, Nanotechnology, 22, 115605 (2011). 10. J. Luo and P. A. Maggard, “Hydrothermal synthesis and photocatalytic activities of SrTiO 3 -coated Fe 2 O 3 and BiFeO 3 ”, Advanced Materials, 18, 514-517 (2006). 11. G. Catalan and J. F. Scott, “Physics and applications of bismuth ferrite”, Advanced Materials, 21, 2463-2485 (2009). 12. T. Bak, J. Nowotny, M. Rekas, and C. C. Sorrell, “Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects”, International Journal of Hydrogen Energy, 27, 991-1022 (2002). 13. J. Chen, L. Xu, W. Li, and X. Gou, “α-Fe 2 O 3 nanotubes in gas sensor and lithium-ion battery applications”, Advanced Materials, 17, 582-586 (2005). 55 14. H. Ke, W. Wang, Y. Wang, J. Xu, D. Jia, Z. Lu, and Y. Zhou, “Factors controlling pure-phase multiferroic BiFeO 3 powders synthesized by chemical co-precipitation”, Journal of Alloys and Compounds, 509, 2192-2197 (2011). 15. D. B. Hernandez-Uresti, A. Martinez-de la Cruz, and L. M. Torres-Martinez, “Photocatalytic properties of PbMoO 4 synthesized by co-precipitation method: organic dyes degradation under UV irradiation”, Research on Chemical Intermediates, 38, 817-828 (2011). 16. G. Xi, B. Yue, J. Cao, and J. Ye, “Fe 3 O 4 /WO 3 hierarchical core-shell structure: high-performance and recyclable visible-light photocatalysis”, Chemistry, 17, 5145-5154 (2011). 17. Y. Wang, S. Li, X. Xing, F. Huang, Y. Shen, A. Xie, X. Wang, and J. Zhang, “Self-assembled 3D flowerlike hierarchical Fe 3 O 4 @Bi 2 O 3 core-shell architectures and their enhanced photocatalytic activity under visible light”, Chemistry, 17, 4802-4808 (2011). 18. S. H. Han, K. S. Kim, H. G. Kim, H. G. Lee, H. W. Kang, J. S. Kim, and C. I. Cheon, “Synthesis and characterization of multiferroic BiFeO 3 powders fabricated by hydrothermal method”, Ceramics International, 36, 1365-1372 (2010). 19. Y. S. Koo, T. Bonaedy, K. D. Sung, J. H. Jung, J. B. Yoon, Y. H. Jo, M. H. Jung, H. J. Lee, T. Y. Koo, and Y. H. Jeong, “Magnetodielectric coupling in core/shell BaTiO 3 /γ-Fe 2 O 3 nanoparticles”, Applied Physics Letters, 91, 212903 (2007). 20. L. Wang, H. Wei, Y. Fan, X. Gu, and J. Zhan, “One-dimensional CdS/α-Fe 2 O 3 and CdS/Fe 3 O 4 heterostructures : epitaxial and nonepitaxial growth and photocatalytic activity”, Journal of Physical Chemistry C, 113, 14119-14125 (2009). 21. J. Xu, F. Huang, Y. Yu, A. Yang, and Y. Wang, “SnO 2 /α-Fe 2 O 3 nanoheterostructure with novel architecture : structural characteristics and photocatalytic properties”, CrystEngComm, 13, 4873-4877 (2011). 22. Y. S. Koo, D. H. Kim, and J. H. Jung, “Synthesis of Electric/Magnetic oxide Core/Shell nanoparticles and their characteristics”, Journal of the Korean Physical Society, 48, 677-680 (2006). 23. W. Yan, H. Fan, and C. Yang, “Ultra-fast synthesis and enhanced photocatalytic properties of alpha-Fe 2 O 3 /ZnO core-shell structure”, Materials Letters, 65, 1595-1597 (2011). 24. C.Y. Cao, J. Qu, W. S. Yan, J. F. Zhu, Z. Y. Wu, and W. G. Song, “Low-cost synthesis of flowerlike alpha-Fe 2 O 3 nanostructures for heavy metal ion removal: adsorption property and mechanism”, Langmuir, 28, 4573-4579 56 (2012). 25. B. Prasad, C. Ghosh, A. Chakraborty, N. Bandyopadhyay, and R. K. Ray, “Adsorption of arsenite (As 3+ ) on nano-sized Fe 2 O 3 waste powder from the steel industry”, Desalination, 274, 105-112 (2011). 26. B. Saha, S. Das, J. Saikia, and G. Das, “Preferential and enhanced adsorption of different dyes on iron oxide nanoparticles : a comparative study”, The Journal of Physical Chemistry C, 115, 8024-8033 (2011). 27. W. Tang, Q. Li, C. Li, S. Gao, and J. K. Shang, “Ultrafine α-Fe 2 O 3 nanoparticles grown in confinement of in situ self-formed “cage” and their superior adsorption performance on arsenic(III)”, Journal of Nanoparticle Research, 13, 2641-2651 (2010). 28. N. N. Nassar, “Kinetics, mechanistic, equilibrium, and thermodynamic studies on the adsorption of acid red dye from wastewater by γ-Fe 2 O 3 nanoadsorbents”, Separation Science and Technology, 45, 1092-1103 (2010). 29. A. Uheida, G. Salazar-Alvarez, E. Bjorkman, Z. Yu, and M. Muhammed, “Fe 3 O 4 and gamma-Fe 2 O 3 nanoparticles for the adsorption of Co 2+ from aqueous solution”, Journal of Colloid and Interface Science, 298, 501-507 (2006). 30. M. D''Arcy, D. Weiss, M. Bluck, and R. Vilar, “Adsorption kinetics, capacity and mechanism of arsenate and phosphate on a bifunctional TiO 2 -Fe 2 O 3 bi-composite”, Journal of Colloid and Interface Science, 364, 205-212 (2011). 31. W. Deligeer, Y. W. Gao, and S. Asuha, “Adsorption of methyl orange on mesoporous γ-Fe 2 O 3 /SiO 2 nanocomposites”, Applied Surface Science, 257, 3524-3528 (2011). 32. F. Fu, Z. Gao, L. Gao, and D. Li, “Effective adsorption of anionic dye, alizarin red s, from aqueous solutions on activated clay modified by iron oxide”, Industrial & Engineering Chemistry Research, 50, 9712-9717 (2011). 33. Y. Xie, D. Qian, D. Wu, and X. Ma, “Magnetic halloysite nanotubes/iron oxide composites for the adsorption of dyes”, Chemical Engineering Journal, 168, 959-963 (2011). 34. D. Wu, P. Zheng, P. R. Chang, and X. Ma, “Preparation and characterization of magnetic rectorite/iron oxide nanocomposites and its application for the removal of the dyes”, Chemical Engineering Journal, 174, 489-494 (2011). 35. W. Zhou, H. Fu, K. Pan, C. Tian, Y. Qu, P. Lu, and C.-C. Sun, “Mesoporous TiO 2 /γ-Fe 2 O 3 : bifunctional composites for effective elimination of arsenite contamination through simultaneous photocatalytic oxidation and adsorption”, J. Phys. Chem. C, 112, 19584-19589 (2008). 36. J. Hu, I. M. C. Lo, and G. Chen, “Performance and mechanism of chromate (VI) adsorption by δ-FeOOH-coated maghemite (γ-Fe 2 O 3 ) nanoparticles”, Separation and Purification Technology, 58, 76-82 (2007). 37. L. B. Wang, L. X. Song, Z. Dang, J. Chen, J. Yang, and J. Zeng, “Controlled growth and magnetic properties of α-Fe 2 O 3 nanocrystals: Octahedra, cuboctahedra and truncated cubes”. CrystEngComm, 14, 3355-3358 (2012). 38. N. Mohammadi, H. Khani, V. K. Gupta, E. Amereh, and S. Agarwal, “Adsorption process of methyl orange dye onto mesoporous carbon material-kinetic and thermodynamic studies”, Journal of Colloid and Interface Science, 362, 457-462 (2011). 39. L. Xiong, Y. Yang, J. Mai, W. Sun, C. Zhang, D. Wei, Q. Chen, and J. Ni, “Adsorption behavior of methylene blue onto titanate nanotubes”, Chemical Engineering Journal, 156, 313-320 (2010).
摘要: 本研究利用簡單快速之化學共沉澱法(Co-precipitation)合成出單晶之鐵酸鉍(BiFeO3)粉體,利用電子顯微鏡(FESEM、TEM)觀察其表面形貌為不規則狀,並利用熱重與熱差分析儀(TG/DTA)和X光繞射儀(XRD)之中斷實驗相互佐證其結晶溫度在487oC。將合成之BiFeO3與α-三氧化二鐵(α-Fe2O3)利用簡單之溶劑熱法(Solvothermal),再經過500oC煅燒後形成核殼結構,利用FESEM、TEM、HR-TEM、XRD、zeta介面電位分析佐證α-Fe2O3是否以粒子的方式披覆於BiFeO3粒子表面形成核殼結構。由FESEM、TEM中可發現BiFeO3粒子外層有α-Fe2O3粒子包覆,並利用HR-TEM可以在核殼界面處發現BiFeO3與α-Fe2O3之晶格影像,再經由XRD中可發現BiFeO3與α-Fe2O3之繞射峰共存,而由DLS中之zeta電位量測可知,BiFeO3與α-Fe2O3之核殼結構(BiFeO3/α-Fe2O3)其等電位點(IEP)在6.7,與純α-Fe2O3之IEP在7.2相近。 本研究利用超導量子干涉磁量儀(SQUID)量測BiFeO3/α-Fe2O3核殼結構粒子在室溫(298K)下之磁性質並測試其磁性回收之可行性,可發現其具有弱的鐵磁性(磁滯區小),且其飽和磁化量(Ms)約2.65 emu/g,而剩磁(Mr)約0.06 emu/g、矯頑磁力(Hc)約23 Oe,雖鐵磁性弱,但亦可利用磁鐵回收粉末。 本研究發現BiFeO3/α-Fe2O3核殼結構粒子對於甲基橙(Methyl orange,MO)與亞甲基藍(Methylene blue,MB)染料吸附具有選擇性,利用BiFeO3/α-Fe2O3核殼結構粒子吸附亞甲基藍染料並無吸附效果,而利用BiFeO3/α-Fe2O3核殼結構粒子吸附甲基橙染料則有顯著吸附效果,實驗中發現鐵之前驅鹽為2 mmol之條件所合成之BiFeO3/α-Fe2O3核殼結構粒子對於甲基橙之吸附量最大(~76%),當鐵前驅鹽濃度增加至3 mmol時其甲基橙之吸附量下降(~59%),若再增加至4 mmol時其甲基橙之吸附量大幅下降(~10%),而當鐵前驅鹽濃度減少至1 mmol時其甲基橙之吸附量亦是下降(~67%)趨勢。 本研究利用比表面積分析儀量測BiFeO3/α-Fe2O3核殼結構粒子之比表面積,發現吸附效果最佳(鐵前驅鹽:2 mmol)之複合粉體之比表面積為30.1(m2/g),吸附效果最差(鐵前驅鹽:4 mmol)之複合粉體之比表面積為47.5(m2/g),代表比表面積對於吸附之效果,並非為主要原因。
Single-crystalline bismuth ferrite (BiFeO3) particles with an irregular morphology have been chemically prepared by a facile co-precipitation route. The crystallization temperature began at 487 oC by thermogravimetric/differential thermal analysis (TG/DTA) and XRD. BiFeO3/α-Fe2O3 core/shell structured particles (BiFeO3/α-Fe2O3) were then prepared solvothermally followed by calcination at 500 oC in air atmosphere. From FESEM and TEM examinations, α-Fe2O3 particles preferentially coated on the BiFeO3, and from the lattice images, the interface between the crystalline BiFeO3 and α-Fe2O3 was apparent by HR-TEM. XRD also revealed the presence of BiFeO3 and α-Fe2O3. This finding together with the isoelectric point (IEP) of BiFeO3/α-Fe2O3 (~6.7) which differs substantially from the pure α-Fe2O3 (~7.2), provided additional evidence for the formation of core-shell structure. The magnetic properties of BiFeO3/α-Fe2O3 core/shell structure were examined by superconducting quantum interference magnetometer (SQUID) at room temperature. The BiFeO3/α-Fe2O3 core/shell particles showed weak ferromagnetic, allowed recycle of the powder by magnet. The saturation magnetization (Ms) was determined at 2.65 emu/g, the remanence (Mr) was about 0.06 emu/g, and the coercive force (Hc) was about 23 Oe. The BiFeO3/α-Fe2O3 core/shell particles exhibited a strong selective affinity to methyl orange (MO) molecules than that of methylene blue (MB). In the adsorption experiment of MO, we observed that the BiFeO3/α-Fe2O3 (Fe precursor : 2 mmol) particles showed a maximum amount of adsorption ~76%. Then the amount of adsorption for MO reduced to ~59% and ~10% when the Fe precursor concentration used for the synthesis of BiFeO3/α-Fe2O3 increased from 2 mmol to 3 mmol and 4 mmol, respectively. The MO adsorption also reduced to ~67% as the Fe precursor concentration was at 1 mmol. The BET surface area of the BiFeO3/α-Fe2O3 particles increased from 30.1 to 47.5 m2/g when the Fe precursor was raised from 2 to 4 mmol. The preferential adsorption is hence not governed by the available surface sites but of presumably electrostatic effect.
其他識別: U0005-1708201201272900
Appears in Collections:材料科學與工程學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.