Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11399
標題: 樹枝狀高分子/石墨烯複合材料上承載白金奈米顆粒之製備與特性研究
Preparation and Characterization of Dendrimer/Graphene Nanocomposites Supporting Platinum Nanoparticle
作者: 廖婉伶
Liao, Wan-Ling
關鍵字: 石墨烯
graphene
樹枝狀高分子
白金奈米顆粒
dendrimer
Pt nanoparticle
出版社: 材料科學與工程學系所
引用: 1.馬遠榮,奈米科技,2002,商周出版。 2.王孟傑、葉仰哲、黃彥臻、李雯雯、劉致中,奈米技術在新興材料領域應用展望,2008,p2-4,工業研究技術院。 3.黃淑娟、江偉宏、郭信良、陳燕芳、陳志勇,石墨烯材料/太陽光電技術專題,2012,工業材料雜誌304期。 4.郭清癸, 黃俊傑, 牟中原,金屬奈米粒子的製造 ,2001,物理雙月刊(23卷6期) 5.E.Fitzer, K. H. Kochling, H. P. Boehm, H. Marsh., “Recommended terminology for the description of carbon as a solid” Pure Appl. Chem., 1955, 67, 473-506. 6.A. K. Geim, K. S. Novoselov, “The rise of grapheme” , Nature, 2007, 6, 183-191. 7.Peierls, R. E., “Quelques proprietes typiques des corpses solides”, Ann. I. H. Poincare, 1935, 5, 177–222. 8.L. D. Landau, “Zur Th eorie der phasenumwandlungen II”, Phys. Z. Sowjetunion, 1937, 11, 26–35. 9.L. D. Landau, E. M. Lifshitz, “Statistical physics part I”, Pergamon : Oxford, 1980, Sections 137 and 138 10.K. S. Novoselov, A. K. Geim,S. V. Morozov, “Electric field effect in atomically thin carbon films”, Science, 2004, 306, 666–6693. 11.Lee, C., Wei, X., Kysar, J. W. & Hone, J., “Measurement of the elastic properties and intrinsic strength of monolayer grapheme”, Science, 2008, 321, 385–388. 12.A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, “Superior thermal conductivity of single-layer graphene”, Nano Lett., 2008, 8, 902 –907. 13.K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. L. Stormer, “Ultrahigh electron mobility in suspended grapheme”, Solid State Commun., 2008, 146, 351–355. 14.Stoller, M. D., Park, S., Zhu, Y., An, J. & Ruoff, R. S. “Graphene-based ultracapacitors”, Nano Lett., 2008, 8, 3498–3502. 15. M. S. Dresselhaus, G. Dresselhaus, “Intercalation compounds of graphite”, Adv. Phys., 2002, 51, 1-186. 16.K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, A. K. Geim, “Two-dimensional atomic crystals”, PNAS, 2005, 102, 10451–10453. 17.M. Eizenberg, J.M. BlakelyEizenberg, “Carbon monolayer phase condensation on Ni(111)”, Surf. Sci., 1970, 82, 228-236. 18.Xuesong Li, Weiwei Cai, Jinho An, Seyoung Kim, Junghyo Nah, Dongxing Yang, Richard Piner, Aruna Velamakanni, Inhwa Jung, Emanuel Tutuc, Sanjay K. Banerjee, Luigi Colombo, Rodney S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils”, Science 324, 1312-1314. 19.C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, W. A. de Heer, “Ultrathin epitaxial graphite:  2D electron gas properties and a route toward graphene-based nanoelectronics”, J. Phys. Chem. B, 2004, 108, 19912-19916. 20.L. Staudenmaier, “Verfahren zur darstellung der graphitsaure”, Ber. Dtsch. Chem. Ges., 1898, 31, 1481-1487. 21.Hummers, W. S., Offeman, “Preparation of graphitic oxide”, R. E. J. Am. Chem. Soc. 1958, 80, 1339. 22.M. Terrones, ”Sharpening the chemical scissors to unzip carbon nanotubes : crystalline graphene nanoribbons”, ACS Nano, 2010, 4, 1775-1781. 23.H. He, J. Klinowski, M. Forster, A. Lerf, “A new structural model for graphite oxide”, Chem. Phys. Lett., 1998, 287, 53-56. 24.A. Lerf, H. He, M. Forster, J. Klinowski, “Structure of graphite oxide revisited” , J. Phys. Chem. B, 1998,102, 4477-4482. 25.L. J. Cote, F. Kim, J. Huang,“Langmuir−blodgett assembly of graphite oxide single layers”, J. Am. Chem. Soc., 2009, 131, 1043. 26.B. C. Brodie, “On the atomic weight of graphite”, Philos. Trans. R. Soc. London, 1859, 149, 249-259. 27.K. R. Koch and P. F. Krause, “Oxidation by Mnz07: An impressive demonstration of the powerful oxidizing property of dimanganeseheptoxide”, J. Chem. Ed., 1982, 59, 973–974. 28.A. Lerf, H. He, T. Riedl, M. Forster and J. Klinowski, “13C and 1H MAS NMR studies of graphite oxide and its chemically modified derivatives, 1997, 101–103, 857–862. 29.D. R. Dreyer, S. Park, C. W. Bielawski ,R. S. Ruoff, “The chemistry of graphene oxide”, Chem. Soc. Rev., 2010, 39, 228–240. 30.S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide”, Carbon, 2007, 45, 1558-1565. 31.S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, “Graphene-based composite materials”, Nature, 2006, 422, 282-286. 32.P.G. Ren, D. X. Yan, X. Ji, T. Chen. Z. M. Li, “Temperature dependence of graphene oxide reduced by hydrazine hydrate”, Nanotechnology, 2011, 22, 055705. 33.L. Jiao, L. Zhang, X. Wang, G. Diankov, H. Dai, “Narrow graphene nanoribbons from carbon nanotubes”, Nature, 2009, 458, 877-780. 34.D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, J. M. Tour, “Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons”, Nature, 2009, 458, 872-877. 35.A. G. Cano-Ma’rquez, F. J. Rodriguez-Macı’as, J. Campos-Delgado, C. G. Espinosa-Gonza’lez, F. Trista’n-Lo’ pez, D. Ramirez-Gonza’lez, D. A. Cullen, D. J. Smith, M. Terrones, Y. I. Vega-Cantu’, “Ex-MWNTs Graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes”, Nano Lett., 2009, 9, 1527–1533. 36.M. Fischer, F. Vogtle, “Dendrimers: from design to application-a progress report”, Angew. Chem. Int. Ed., 1999, 38, 884 – 905. 37.D. A.Tomalia, H. Baker, J. Dewald, M. Hall, G. Kallos, S.Martin, J. Roeck, J. Ryder, P. Smith, “A new class of polymer : Starburst-dendritic macromolecules” Polym. J. ,1985, 17, 117-132. 38.J. M. J. Frechet, “Dendrimers and other dendritic macromolecules: From building blocks to functional assemblies in nanoscience and nanotechnology”, J. Polym. Sci. Part A: Pplym. Chem., 2003, 41, 3713-3725. 39.E. Buhleier, W. Wehner, F. Vogtle, “"Cascade"- and "nonskid-chain-like" syntheses of molecular cavity topologies”, Synthesis, 1978, ,2,155-158. 40.Craig J. Hawker , Jean M. J. Frechet, “Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules”, J. Am. Chem. Soc., 1990, 112, 7638–7647. 41.P. E. Froehling, “Dendrimers and dyes – a review ”, Dyes and Pigments, 2001, 48, 187-195. 42.G. R. Newkome, Z. Yao , G. R. Baker, V. K. Gupta, “Micelles. Part 1. Cascade molecules: a new approach to micelles. A [27]-arborol”, J. Org. Chem., 1985, 50, 2003–2004. 43.D. A. Tomalia, “The dendritic state”, Materials Today, 2005, 8, 34-46. 44.D. A. Tomalia, “Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry”, Prog. Polym. Sci., 2005, 30, 294–324. 45.R. Esfand, D. A. Tomalia, “Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications”, Drug Discovery Today, 2001, 6, 427-436. 46.C. L. Jackson, H. D. Chanzy, F. P. Booy, B. J. Drake, D. A. Tomalia, B. J. Bauer, E. J. Amis, “Visualization of dendrimer molecules by transmission electron (TEM):staining methods and cryo-tem of vitrified solutions”, Macromolecules, 1998, 31, 6259-6265. 47.J. M. J. Frechet, D. A. Tomalia, “Dendrimers and other dendritic polymers”, Wiley Series in Polymer Science, 2001,p.33 48.B.I. Voit, “Dendritic polymers: from aesthetic macromolecules to commercially interesting materials”, Acta Polymer, 1995, 46, 87-99. 49.K. L. Wooley, J. M. J. Frechet, “Influence of shape on the reactivity and properties of dendritic, hyperbranched and linear aromatic polyesters”, Polymer, 1994, 35, 4489-4495. 50.T. H. Mourey , S. R. Turner , M. Rubinstein , J. M. J. Frechet , C. J. Hawker , K. L. Wooley, “Unique behavior of dendritic macromolecules: intrinsic viscosity of polyether dendrimers”, Macromolecules, 1992, 25, 2401–2406. 51.J. M. J. Frechet, “Functional polymers and dendrimers: reactivity, molecular architecture, and interfacial energy”, Science, 1994, 263, 1710-1715. 52.J. M. J. Frechet, D. A. Tomalia, “Dendrimers and other dendritic polymers”, Wiley Series in Polymer Science, 2001,p.34 53.J. M. J. Frechet, D. A. Tomalia, “Dendrimers and other dendritic polymers”, Wiley Series in Polymer Science, 2001,p.35 54.M. Han, P. Chen, X. Yang, “Molecular dynamics simulation of PAMAM dendrimer in aqueous solution”, Polymer, 2005, 46, 3481–3488. 55.V. V. Tsukruk, “Dendritic macromolecules at interfaces”, Adv. Mater. 1998, 10, 253-257. 56.A. W. Bosman, H. M. Janssen, E. W. Meijer, “About dendrimers: structure, physical properties, and applications”, Chem. Rev. 1999, 99, 1665-1688. 57.J. F. G. A. Jansen, E. W. Meijer, “Encapsulation of guest molecules into a dendritic box”, Science, 1994, 266, 1226-1229. 58.G. R. Newkome , B. D. Woosley, E. He, C. N. Moorefield, R. Guther, G. R. Baker, G. H. Escamilla, J. Merrill, H. Luftmann, “Supramolecular chemistry of flexible,dendritic-based structures employing molecular recognition”, Chem. Commun., 1996, 24, 2737-2738. 59.G. R. Newkome, C. N. Moorefield, G. R. Baker, M. J. Saunders, S. H. Grossman, “Unimolecular micelles”, Angen. Chem. lnr. Ed. Engl., 1991, 30, 1178-1180. 60.D. A. Tomalia, P. R. Dvornic, “What promise for dendrimers” , Nature, 1994, 372, 617-618. 61.N. Toshima, T. Yonezawa, “Bimetallic nanoparticles-novel materials for chemical and physical applications”, New J. Chem., 1998, 22, 1179-1201. 62.L.K. Kurihara, G.M. Chow, P.E. Schoen, “Nanocrystalline metallic powders and films produced by the polyol method”, Nanostructured Materials, 5, 1995, 607-613. 63.T. Teranishi, M. Hosoe, T. Tanaka, M. Miyake, “Size control of monodispersed Pt nanoparticles and their 2D organization by electrophoretic deposition”, J. Phys. Chem. B, 1999, 103, 3818-3827. 64.F. Bonet, V. Delmas, S. Grugeon, R. Herrera Urbina, P-Y. Silvert, K. Tekaia- Elhsissen, “Synthesis of monodisperse Au, Pt, Pd, Ru and Ir nanoparticles in ethylene glycol”, Nanostructured Materials, 1999, 11, 1277-1284. 65.K. Tekaia-Elhsissen, F. Bonet, P.-Y. Silvert, R. Herrera-Urbina, “Finely divided platinum–gold alloy powders prepared in ethylene glycol”, Journal of Alloys and Compounds, 1999, 292, 96–99. 66.E. Antolini, F. Cardellini, “Formation of carbon supported PtRu alloys: an XRD analysis”, Journal of Alloys and Compounds,2001, 315, 118–122. 67.Y. Li, W. i Gao, L. Ci, C. Wang, P. M. Ajayan, “Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation”, Carbon, 2010, 48, 1124-1130. 68.R. Gedye, F. Smith, K.Westaway, H. Ali, L. Baldisera, L. Laberge, J. Rousell, “The use of microwave ovens for rapid organic synthesis”, Tetrahedron Letters, 1986, 27, 279-282. 69.B. L. Hayes, “Microwave synthesis chemistry at speed of light”, 2002, CEM Publishing. 70.劉怡彣、王智永,微波在材料處理之應用技術專題,2011,工業材料雜誌289期 71.A. G. Whittaker, D. M. P. Mingos, “Synthetic reactions using metal powders under microwave irradiation”, J. Chem. Soc., Dalton Trans., 2002, 21, 3967–3970. 72.M. A. Hassan, V. Abdelsayed, Abd El Rahman S. Khder, Khaled M. AbouZeid, J. Terner, M. Samy El-Shall, Saud I. Al-Resayes, Adel A. El-Azhary, “Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media”, J. Mater. Chem., 2009, 19, 3832–3837. 73.C. M. Chen, M. Chen, H. W.Yu, S. C. Lu, C. F. Chen, “Rapid and homogeneous dispersion of Pt catalyst particles on multi-walled carbon nanotubes by temperature-controlled microwave polyol method”, Jpn. J. Appl. Phys., 2008, 47, 2324-2329. 74.Y. Lin, D. W. Baggett, J.W. Kim,†E. J. Siochi, J. W. Connell, “Instantaneous formation of metal and metal oxide nanoparticles on carbon nanotubes and graphene via solvent-free microwave heating”, ACS Appl. Mater. Interfaces, 2011, 3, 1652–1664. 75.P. Kundu, C. Nethravathi, P. A. Deshpande, M. Rajamathi, G. Madras, N. Ravishankar, “Ultrafast microwave-assisted route to surfactant-free ultrafine Pt Nanoparticles on Graphene: Synergistic Co-reduction Mechanism and High Catalytic Activity”, Chem. Mater. 2011, 23, 2772–2780. 76.K. Esumi, A. Suzuki, A. Yamahira, K. Torigoe, “Role of poly(amidoamine) dendrimers for preparing nanoparticles of gold, platinum, and silver”, Langmuir, 2000, 16, 2604-2608. 77.R. M. Crooks , M. Zhao , L. Sun , V. Chechik , L. K. Yeung, “Dendrimer- encapsulated metal nanoparticles:  synthesis, characterization, and applications to catalysis” Acc. Chem. Res., 2001, 34, 181–190. 78.X. Sun , Y. Luo, “Size-controlled synthesis of dendrimer-protected gold nanoparticles by microwave radiation”, Materials Letters , 2005, 59, 4048 – 4050. 79.F. Grohn, B. J. Bauer, Y. A. Akpalu, C. L. Jackson, E. J. Amis, “Dendrimer templates for the formation of gold nanoclusters”, Macromolecules, 2000, 33, 6042-6050. 80.T. Vassilieff, A. Sutton, A. K. Kakkar, “Shape control in silver metal nanoparticle construction using dumb-bell dendrimers”, J. Mater. Chem., 2008, 18, 4031–4033. 81.A. Castonguay, A. K. Kakkar, “Dendrimer templated construction of silver nanoparticles”, Advances in Colloid and Interface Science, 2010, 160, 76–87. 82.D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I. Jung, D. A. Field, C. A. Ventrice Jr., R.S. Ruoff, “Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy”, Carbon, 2009,47,145-152. 83.S. Park, J. An, J. R. Potts, A. Velamakanni, S. Murali ,Rodney S. Ruoff , “Hydrazine-reduction of graphite- and graphene oxide”, Carbon, 2011, 49, 3019-3023. 84.K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud’homme, I. A. Aksay, R. Car, “Raman spectra of graphite oxide and functionalized graphene Sheets”,Nano Latt., 2008, 8, 36-41. 85.T.V. Khai, H. G. Na, D. S. Kwak, Y. J. Kwon, H. Ham ,K. B. Shim, H. W. Kim, “Influence of N-doping on the structural and photoluminescence properties of graphene oxide films”, Crabon, 2012, 50, 3799-3806. 86.R. Rajesh, R. Venkatesan, “Encapsulation of silver nanoparticles into graphite grafted with hyperbranched poly(amidoamine) dendrimer and their catalytic activity towards reduction of nitro aromatics”, Journal of Molecular Catalysis A: Chemical, 2012, 359, 88-96. 87.X. Liu, L. Yi, X. Wang, J. Su, Y. Song, J.Liu, “Graphene supported platinum nanoparticles as anode electrocatalyst for direct borohydride fuel cell”, International Journal of Hydrogen Energy, 2012, 37, 17984-17991. 88.H.J. Wang, H. Yu, F. Peng , P. Lv, “Methanol electrocatalytic oxidation on highly dispersed Pt/sulfonated-carbon nanotubes catalysts”, Electrochemistry Communications, 2006, 8, 499-504. 89.J. D. Qiu, G. C. Wang, R. P. Liang, X. H. Xia, H. W. Yu, “Controllable Deposition of Platinum Nanoparticles on Graphene As an Electrocatalyst for Direct Methanol Fuel Cells”, J. Phys. Chem. C, 2011, 115, 15639-15645.
摘要: 本研究將以化學法和縱切奈米碳管兩種方式製備薄片狀和長帶狀兩種不同形貌之石墨烯,再結合聚醯胺-胺樹枝狀高分子作為石墨烯的表面修飾,製備出新穎的高分子奈米複合材料,並以微波製程將白金顆粒還原於奈米複合材料上,探討兩石墨烯系統下其電化學活性特性。 本研究首先利用改良式Hummers法製備氧化石墨,經由聯氨將氧化石墨烯於不同溫度下還原成石墨烯,並以FT-IR、TGA、Raman、XRD、XPS等分析鑑定,結果顯示隨著還原溫度提高,還原石墨烯之熱穩定性及導電性均有提升,以95℃下獲得之還原石墨烯具較佳的熱穩定性及導電性。另一方面,以硫酸和過錳酸鉀對少壁奈米碳管做軸向切割,製備出長帶狀之石墨烯。並由FT-IR、TGA分析顯示已成功將不同代數樹枝狀高分子接枝於石墨烯上。最後,以乙二醇為溶劑經微波加熱反應來還原白金奈米顆粒,在還原石墨烯系統中,二代數樹枝狀高分子/石墨烯所承載之白金顆粒大小約3.34nm,三代數和四代數樹枝狀高分子/石墨烯所承載之白金顆粒大小明顯變小,分別為2.45nm和2.63nm,可獲得尺寸均一、分散良好之白金顆粒,其顆粒分散型態優於帶狀石墨烯系統,而帶狀石墨烯系統中,二代數、三代數和四代數樹枝狀高分子/帶狀石墨烯所承載之白金奈米顆粒分別為2.9nm、2.58nm、2.39nm,並以循環伏安法量測電化學活性,其結果顯示電化學活性表現以及長時間穩定性於兩石墨烯系統中均以四代數最佳,高於三代數,而三代數高於二代數。樹枝狀高分子/還原石墨烯所承載之白金顆粒,其電化學活性優於樹枝狀高分子/帶狀石墨烯所承載之白金顆粒;而抗毒化能力則以樹枝狀高分子/帶狀石墨烯所承載之白金顆粒較佳。
The goal of this study is to design and develop a novel polymer nanocomposites. Graphene nanosheets and graphene oxide nanoribbons (GONRs) were successfully prepared by chemical method and longitudinal unzipping of carbon nanotubes (CNTs). Different generations of polyamidoamine (PAMAM) dendrimer have been grafted on the modified graphene and Pt nanoparticles were synthesized within the graphene grafted PAMAM dendrimer templates by microwave radiation. Graphite oxide (GO) was first prepared by modified Hummers method. The reduction of GO with hydrazine hydrate at different temperatures were characterized by FT-IR, TGA, Raman, XRD and XPS. These results showed that the reduction of GO mainly depended on the treated temperatures, and reduced at 95℃could obtain better thermal stability and conductivity. GONRs were obtained by suspending CNTs in concentrated sulphuric acid followed by the treatment with KMnO4.These results of FT-IR and TGA revealed that PAMAM dendrimer was covalently attached onto the surface of graphene. Using microwave radiation to prepare the Pt nanoparticles on the surface of dendrimer/graphene nanocomposites. The size of Pt nanoparticles on rGO-dendrimer composites with the generation 2, 3 and 4 is about 3.34 nm, 2.45 nm and 2.63 nm, respectively. The fabricated Pt nanoparticles were uniformly distributed and almost mondispersed. The dispersion of Pt nanoparticle on rGO-dendrimer was much uniform than that on GONRs-dendrimer. The size of Pt nanoparticles on GONRs- dendrimer composites with the generation 2, 3 and 4 is about 2.9 nm, 2.58 nm and 2.39 nm, respectively. The electrochemical performances in three-electrode electrochemical cells were obtained by a cyclic voltammetry method. The results showed that both rGO and GONRs grafted with G4 PAMAM dendrimer had high electrocatalytic activity and long-term stability. The rGO/PAMAM/Pt hybrid showed better electrocatalytic activity than GONRs/PAMAM/Pt catalyst. However, the GONRs/PAMAM /Pt catalyst showed better tolerance to CO for electro-oxidation of methanol compared to that of rGO/PAMAM/Pt composites.
URI: http://hdl.handle.net/11455/11399
其他識別: U0005-0508201314345900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0508201314345900
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.