Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11399
DC FieldValueLanguage
dc.contributor吳宗明zh_TW
dc.contributor.author廖婉伶zh_TW
dc.contributor.authorLiao, Wan-Lingen_US
dc.contributor.other材料科學與工程學系所zh_TW
dc.date2013en_US
dc.date.accessioned2014-06-06T06:47:34Z-
dc.date.available2014-06-06T06:47:34Z-
dc.identifierU0005-0508201314345900en_US
dc.identifier.citation1.馬遠榮,奈米科技,2002,商周出版。 2.王孟傑、葉仰哲、黃彥臻、李雯雯、劉致中,奈米技術在新興材料領域應用展望,2008,p2-4,工業研究技術院。 3.黃淑娟、江偉宏、郭信良、陳燕芳、陳志勇,石墨烯材料/太陽光電技術專題,2012,工業材料雜誌304期。 4.郭清癸, 黃俊傑, 牟中原,金屬奈米粒子的製造 ,2001,物理雙月刊(23卷6期) 5.E.Fitzer, K. H. Kochling, H. P. Boehm, H. Marsh., “Recommended terminology for the description of carbon as a solid” Pure Appl. Chem., 1955, 67, 473-506. 6.A. K. Geim, K. S. Novoselov, “The rise of grapheme” , Nature, 2007, 6, 183-191. 7.Peierls, R. E., “Quelques proprietes typiques des corpses solides”, Ann. I. H. Poincare, 1935, 5, 177–222. 8.L. D. Landau, “Zur Th eorie der phasenumwandlungen II”, Phys. Z. Sowjetunion, 1937, 11, 26–35. 9.L. D. Landau, E. M. Lifshitz, “Statistical physics part I”, Pergamon : Oxford, 1980, Sections 137 and 138 10.K. S. Novoselov, A. K. Geim,S. V. Morozov, “Electric field effect in atomically thin carbon films”, Science, 2004, 306, 666–6693. 11.Lee, C., Wei, X., Kysar, J. W. & Hone, J., “Measurement of the elastic properties and intrinsic strength of monolayer grapheme”, Science, 2008, 321, 385–388. 12.A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, “Superior thermal conductivity of single-layer graphene”, Nano Lett., 2008, 8, 902 –907. 13.K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. L. Stormer, “Ultrahigh electron mobility in suspended grapheme”, Solid State Commun., 2008, 146, 351–355. 14.Stoller, M. D., Park, S., Zhu, Y., An, J. & Ruoff, R. S. “Graphene-based ultracapacitors”, Nano Lett., 2008, 8, 3498–3502. 15. M. S. Dresselhaus, G. Dresselhaus, “Intercalation compounds of graphite”, Adv. Phys., 2002, 51, 1-186. 16.K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, A. K. Geim, “Two-dimensional atomic crystals”, PNAS, 2005, 102, 10451–10453. 17.M. Eizenberg, J.M. BlakelyEizenberg, “Carbon monolayer phase condensation on Ni(111)”, Surf. Sci., 1970, 82, 228-236. 18.Xuesong Li, Weiwei Cai, Jinho An, Seyoung Kim, Junghyo Nah, Dongxing Yang, Richard Piner, Aruna Velamakanni, Inhwa Jung, Emanuel Tutuc, Sanjay K. Banerjee, Luigi Colombo, Rodney S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils”, Science 324, 1312-1314. 19.C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, W. A. de Heer, “Ultrathin epitaxial graphite:  2D electron gas properties and a route toward graphene-based nanoelectronics”, J. Phys. Chem. B, 2004, 108, 19912-19916. 20.L. Staudenmaier, “Verfahren zur darstellung der graphitsaure”, Ber. Dtsch. Chem. Ges., 1898, 31, 1481-1487. 21.Hummers, W. S., Offeman, “Preparation of graphitic oxide”, R. E. J. Am. Chem. Soc. 1958, 80, 1339. 22.M. Terrones, ”Sharpening the chemical scissors to unzip carbon nanotubes : crystalline graphene nanoribbons”, ACS Nano, 2010, 4, 1775-1781. 23.H. He, J. Klinowski, M. Forster, A. Lerf, “A new structural model for graphite oxide”, Chem. Phys. Lett., 1998, 287, 53-56. 24.A. Lerf, H. He, M. Forster, J. Klinowski, “Structure of graphite oxide revisited” , J. Phys. Chem. B, 1998,102, 4477-4482. 25.L. J. Cote, F. Kim, J. Huang,“Langmuir−blodgett assembly of graphite oxide single layers”, J. Am. Chem. Soc., 2009, 131, 1043. 26.B. C. Brodie, “On the atomic weight of graphite”, Philos. Trans. R. Soc. London, 1859, 149, 249-259. 27.K. R. Koch and P. F. Krause, “Oxidation by Mnz07: An impressive demonstration of the powerful oxidizing property of dimanganeseheptoxide”, J. Chem. Ed., 1982, 59, 973–974. 28.A. Lerf, H. He, T. Riedl, M. Forster and J. Klinowski, “13C and 1H MAS NMR studies of graphite oxide and its chemically modified derivatives, 1997, 101–103, 857–862. 29.D. R. Dreyer, S. Park, C. W. Bielawski ,R. S. Ruoff, “The chemistry of graphene oxide”, Chem. Soc. Rev., 2010, 39, 228–240. 30.S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide”, Carbon, 2007, 45, 1558-1565. 31.S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, “Graphene-based composite materials”, Nature, 2006, 422, 282-286. 32.P.G. Ren, D. X. Yan, X. Ji, T. Chen. Z. M. Li, “Temperature dependence of graphene oxide reduced by hydrazine hydrate”, Nanotechnology, 2011, 22, 055705. 33.L. Jiao, L. Zhang, X. Wang, G. Diankov, H. Dai, “Narrow graphene nanoribbons from carbon nanotubes”, Nature, 2009, 458, 877-780. 34.D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, J. M. Tour, “Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons”, Nature, 2009, 458, 872-877. 35.A. G. Cano-Ma’rquez, F. J. Rodriguez-Macı’as, J. Campos-Delgado, C. G. Espinosa-Gonza’lez, F. Trista’n-Lo’ pez, D. Ramirez-Gonza’lez, D. A. Cullen, D. J. Smith, M. Terrones, Y. I. Vega-Cantu’, “Ex-MWNTs Graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes”, Nano Lett., 2009, 9, 1527–1533. 36.M. Fischer, F. Vogtle, “Dendrimers: from design to application-a progress report”, Angew. Chem. Int. Ed., 1999, 38, 884 – 905. 37.D. A.Tomalia, H. Baker, J. Dewald, M. Hall, G. Kallos, S.Martin, J. Roeck, J. Ryder, P. Smith, “A new class of polymer : Starburst-dendritic macromolecules” Polym. J. ,1985, 17, 117-132. 38.J. M. J. Frechet, “Dendrimers and other dendritic macromolecules: From building blocks to functional assemblies in nanoscience and nanotechnology”, J. Polym. Sci. Part A: Pplym. Chem., 2003, 41, 3713-3725. 39.E. Buhleier, W. Wehner, F. Vogtle, “"Cascade"- and "nonskid-chain-like" syntheses of molecular cavity topologies”, Synthesis, 1978, ,2,155-158. 40.Craig J. Hawker , Jean M. J. Frechet, “Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules”, J. Am. Chem. Soc., 1990, 112, 7638–7647. 41.P. E. Froehling, “Dendrimers and dyes – a review ”, Dyes and Pigments, 2001, 48, 187-195. 42.G. R. Newkome, Z. Yao , G. R. Baker, V. K. Gupta, “Micelles. Part 1. Cascade molecules: a new approach to micelles. A [27]-arborol”, J. Org. Chem., 1985, 50, 2003–2004. 43.D. A. Tomalia, “The dendritic state”, Materials Today, 2005, 8, 34-46. 44.D. A. Tomalia, “Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry”, Prog. Polym. Sci., 2005, 30, 294–324. 45.R. Esfand, D. A. Tomalia, “Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications”, Drug Discovery Today, 2001, 6, 427-436. 46.C. L. Jackson, H. D. Chanzy, F. P. Booy, B. J. Drake, D. A. Tomalia, B. J. Bauer, E. J. Amis, “Visualization of dendrimer molecules by transmission electron (TEM):staining methods and cryo-tem of vitrified solutions”, Macromolecules, 1998, 31, 6259-6265. 47.J. M. J. Frechet, D. A. Tomalia, “Dendrimers and other dendritic polymers”, Wiley Series in Polymer Science, 2001,p.33 48.B.I. Voit, “Dendritic polymers: from aesthetic macromolecules to commercially interesting materials”, Acta Polymer, 1995, 46, 87-99. 49.K. L. Wooley, J. M. J. Frechet, “Influence of shape on the reactivity and properties of dendritic, hyperbranched and linear aromatic polyesters”, Polymer, 1994, 35, 4489-4495. 50.T. H. Mourey , S. R. Turner , M. Rubinstein , J. M. J. Frechet , C. J. Hawker , K. L. Wooley, “Unique behavior of dendritic macromolecules: intrinsic viscosity of polyether dendrimers”, Macromolecules, 1992, 25, 2401–2406. 51.J. M. J. Frechet, “Functional polymers and dendrimers: reactivity, molecular architecture, and interfacial energy”, Science, 1994, 263, 1710-1715. 52.J. M. J. Frechet, D. A. Tomalia, “Dendrimers and other dendritic polymers”, Wiley Series in Polymer Science, 2001,p.34 53.J. M. J. Frechet, D. A. Tomalia, “Dendrimers and other dendritic polymers”, Wiley Series in Polymer Science, 2001,p.35 54.M. Han, P. Chen, X. Yang, “Molecular dynamics simulation of PAMAM dendrimer in aqueous solution”, Polymer, 2005, 46, 3481–3488. 55.V. V. Tsukruk, “Dendritic macromolecules at interfaces”, Adv. Mater. 1998, 10, 253-257. 56.A. W. Bosman, H. M. Janssen, E. W. Meijer, “About dendrimers: structure, physical properties, and applications”, Chem. Rev. 1999, 99, 1665-1688. 57.J. F. G. A. Jansen, E. W. Meijer, “Encapsulation of guest molecules into a dendritic box”, Science, 1994, 266, 1226-1229. 58.G. R. Newkome , B. D. Woosley, E. He, C. N. Moorefield, R. Guther, G. R. Baker, G. H. Escamilla, J. Merrill, H. Luftmann, “Supramolecular chemistry of flexible,dendritic-based structures employing molecular recognition”, Chem. Commun., 1996, 24, 2737-2738. 59.G. R. Newkome, C. N. Moorefield, G. R. Baker, M. J. Saunders, S. H. Grossman, “Unimolecular micelles”, Angen. Chem. lnr. Ed. Engl., 1991, 30, 1178-1180. 60.D. A. Tomalia, P. R. Dvornic, “What promise for dendrimers” , Nature, 1994, 372, 617-618. 61.N. Toshima, T. Yonezawa, “Bimetallic nanoparticles-novel materials for chemical and physical applications”, New J. Chem., 1998, 22, 1179-1201. 62.L.K. Kurihara, G.M. Chow, P.E. Schoen, “Nanocrystalline metallic powders and films produced by the polyol method”, Nanostructured Materials, 5, 1995, 607-613. 63.T. Teranishi, M. Hosoe, T. Tanaka, M. Miyake, “Size control of monodispersed Pt nanoparticles and their 2D organization by electrophoretic deposition”, J. Phys. Chem. B, 1999, 103, 3818-3827. 64.F. Bonet, V. Delmas, S. Grugeon, R. Herrera Urbina, P-Y. Silvert, K. Tekaia- Elhsissen, “Synthesis of monodisperse Au, Pt, Pd, Ru and Ir nanoparticles in ethylene glycol”, Nanostructured Materials, 1999, 11, 1277-1284. 65.K. Tekaia-Elhsissen, F. Bonet, P.-Y. Silvert, R. Herrera-Urbina, “Finely divided platinum–gold alloy powders prepared in ethylene glycol”, Journal of Alloys and Compounds, 1999, 292, 96–99. 66.E. Antolini, F. Cardellini, “Formation of carbon supported PtRu alloys: an XRD analysis”, Journal of Alloys and Compounds,2001, 315, 118–122. 67.Y. Li, W. i Gao, L. Ci, C. Wang, P. M. Ajayan, “Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation”, Carbon, 2010, 48, 1124-1130. 68.R. Gedye, F. Smith, K.Westaway, H. Ali, L. Baldisera, L. Laberge, J. Rousell, “The use of microwave ovens for rapid organic synthesis”, Tetrahedron Letters, 1986, 27, 279-282. 69.B. L. Hayes, “Microwave synthesis chemistry at speed of light”, 2002, CEM Publishing. 70.劉怡彣、王智永,微波在材料處理之應用技術專題,2011,工業材料雜誌289期 71.A. G. Whittaker, D. M. P. Mingos, “Synthetic reactions using metal powders under microwave irradiation”, J. Chem. Soc., Dalton Trans., 2002, 21, 3967–3970. 72.M. A. Hassan, V. Abdelsayed, Abd El Rahman S. Khder, Khaled M. AbouZeid, J. Terner, M. Samy El-Shall, Saud I. Al-Resayes, Adel A. El-Azhary, “Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media”, J. Mater. Chem., 2009, 19, 3832–3837. 73.C. M. Chen, M. Chen, H. W.Yu, S. C. Lu, C. F. Chen, “Rapid and homogeneous dispersion of Pt catalyst particles on multi-walled carbon nanotubes by temperature-controlled microwave polyol method”, Jpn. J. Appl. Phys., 2008, 47, 2324-2329. 74.Y. Lin, D. W. Baggett, J.W. Kim,†E. J. Siochi, J. W. Connell, “Instantaneous formation of metal and metal oxide nanoparticles on carbon nanotubes and graphene via solvent-free microwave heating”, ACS Appl. Mater. Interfaces, 2011, 3, 1652–1664. 75.P. Kundu, C. Nethravathi, P. A. Deshpande, M. Rajamathi, G. Madras, N. Ravishankar, “Ultrafast microwave-assisted route to surfactant-free ultrafine Pt Nanoparticles on Graphene: Synergistic Co-reduction Mechanism and High Catalytic Activity”, Chem. Mater. 2011, 23, 2772–2780. 76.K. Esumi, A. Suzuki, A. Yamahira, K. Torigoe, “Role of poly(amidoamine) dendrimers for preparing nanoparticles of gold, platinum, and silver”, Langmuir, 2000, 16, 2604-2608. 77.R. M. Crooks , M. Zhao , L. Sun , V. Chechik , L. K. Yeung, “Dendrimer- encapsulated metal nanoparticles:  synthesis, characterization, and applications to catalysis” Acc. Chem. Res., 2001, 34, 181–190. 78.X. Sun , Y. Luo, “Size-controlled synthesis of dendrimer-protected gold nanoparticles by microwave radiation”, Materials Letters , 2005, 59, 4048 – 4050. 79.F. Grohn, B. J. Bauer, Y. A. Akpalu, C. L. Jackson, E. J. Amis, “Dendrimer templates for the formation of gold nanoclusters”, Macromolecules, 2000, 33, 6042-6050. 80.T. Vassilieff, A. Sutton, A. K. Kakkar, “Shape control in silver metal nanoparticle construction using dumb-bell dendrimers”, J. Mater. Chem., 2008, 18, 4031–4033. 81.A. Castonguay, A. K. Kakkar, “Dendrimer templated construction of silver nanoparticles”, Advances in Colloid and Interface Science, 2010, 160, 76–87. 82.D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I. Jung, D. A. Field, C. A. Ventrice Jr., R.S. Ruoff, “Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy”, Carbon, 2009,47,145-152. 83.S. Park, J. An, J. R. Potts, A. Velamakanni, S. Murali ,Rodney S. Ruoff , “Hydrazine-reduction of graphite- and graphene oxide”, Carbon, 2011, 49, 3019-3023. 84.K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud’homme, I. A. Aksay, R. Car, “Raman spectra of graphite oxide and functionalized graphene Sheets”,Nano Latt., 2008, 8, 36-41. 85.T.V. Khai, H. G. Na, D. S. Kwak, Y. J. Kwon, H. Ham ,K. B. Shim, H. W. Kim, “Influence of N-doping on the structural and photoluminescence properties of graphene oxide films”, Crabon, 2012, 50, 3799-3806. 86.R. Rajesh, R. Venkatesan, “Encapsulation of silver nanoparticles into graphite grafted with hyperbranched poly(amidoamine) dendrimer and their catalytic activity towards reduction of nitro aromatics”, Journal of Molecular Catalysis A: Chemical, 2012, 359, 88-96. 87.X. Liu, L. Yi, X. Wang, J. Su, Y. Song, J.Liu, “Graphene supported platinum nanoparticles as anode electrocatalyst for direct borohydride fuel cell”, International Journal of Hydrogen Energy, 2012, 37, 17984-17991. 88.H.J. Wang, H. Yu, F. Peng , P. Lv, “Methanol electrocatalytic oxidation on highly dispersed Pt/sulfonated-carbon nanotubes catalysts”, Electrochemistry Communications, 2006, 8, 499-504. 89.J. D. Qiu, G. C. Wang, R. P. Liang, X. H. Xia, H. W. Yu, “Controllable Deposition of Platinum Nanoparticles on Graphene As an Electrocatalyst for Direct Methanol Fuel Cells”, J. Phys. Chem. C, 2011, 115, 15639-15645.en_US
dc.identifier.urihttp://hdl.handle.net/11455/11399-
dc.description.abstract本研究將以化學法和縱切奈米碳管兩種方式製備薄片狀和長帶狀兩種不同形貌之石墨烯,再結合聚醯胺-胺樹枝狀高分子作為石墨烯的表面修飾,製備出新穎的高分子奈米複合材料,並以微波製程將白金顆粒還原於奈米複合材料上,探討兩石墨烯系統下其電化學活性特性。 本研究首先利用改良式Hummers法製備氧化石墨,經由聯氨將氧化石墨烯於不同溫度下還原成石墨烯,並以FT-IR、TGA、Raman、XRD、XPS等分析鑑定,結果顯示隨著還原溫度提高,還原石墨烯之熱穩定性及導電性均有提升,以95℃下獲得之還原石墨烯具較佳的熱穩定性及導電性。另一方面,以硫酸和過錳酸鉀對少壁奈米碳管做軸向切割,製備出長帶狀之石墨烯。並由FT-IR、TGA分析顯示已成功將不同代數樹枝狀高分子接枝於石墨烯上。最後,以乙二醇為溶劑經微波加熱反應來還原白金奈米顆粒,在還原石墨烯系統中,二代數樹枝狀高分子/石墨烯所承載之白金顆粒大小約3.34nm,三代數和四代數樹枝狀高分子/石墨烯所承載之白金顆粒大小明顯變小,分別為2.45nm和2.63nm,可獲得尺寸均一、分散良好之白金顆粒,其顆粒分散型態優於帶狀石墨烯系統,而帶狀石墨烯系統中,二代數、三代數和四代數樹枝狀高分子/帶狀石墨烯所承載之白金奈米顆粒分別為2.9nm、2.58nm、2.39nm,並以循環伏安法量測電化學活性,其結果顯示電化學活性表現以及長時間穩定性於兩石墨烯系統中均以四代數最佳,高於三代數,而三代數高於二代數。樹枝狀高分子/還原石墨烯所承載之白金顆粒,其電化學活性優於樹枝狀高分子/帶狀石墨烯所承載之白金顆粒;而抗毒化能力則以樹枝狀高分子/帶狀石墨烯所承載之白金顆粒較佳。zh_TW
dc.description.abstractThe goal of this study is to design and develop a novel polymer nanocomposites. Graphene nanosheets and graphene oxide nanoribbons (GONRs) were successfully prepared by chemical method and longitudinal unzipping of carbon nanotubes (CNTs). Different generations of polyamidoamine (PAMAM) dendrimer have been grafted on the modified graphene and Pt nanoparticles were synthesized within the graphene grafted PAMAM dendrimer templates by microwave radiation. Graphite oxide (GO) was first prepared by modified Hummers method. The reduction of GO with hydrazine hydrate at different temperatures were characterized by FT-IR, TGA, Raman, XRD and XPS. These results showed that the reduction of GO mainly depended on the treated temperatures, and reduced at 95℃could obtain better thermal stability and conductivity. GONRs were obtained by suspending CNTs in concentrated sulphuric acid followed by the treatment with KMnO4.These results of FT-IR and TGA revealed that PAMAM dendrimer was covalently attached onto the surface of graphene. Using microwave radiation to prepare the Pt nanoparticles on the surface of dendrimer/graphene nanocomposites. The size of Pt nanoparticles on rGO-dendrimer composites with the generation 2, 3 and 4 is about 3.34 nm, 2.45 nm and 2.63 nm, respectively. The fabricated Pt nanoparticles were uniformly distributed and almost mondispersed. The dispersion of Pt nanoparticle on rGO-dendrimer was much uniform than that on GONRs-dendrimer. The size of Pt nanoparticles on GONRs- dendrimer composites with the generation 2, 3 and 4 is about 2.9 nm, 2.58 nm and 2.39 nm, respectively. The electrochemical performances in three-electrode electrochemical cells were obtained by a cyclic voltammetry method. The results showed that both rGO and GONRs grafted with G4 PAMAM dendrimer had high electrocatalytic activity and long-term stability. The rGO/PAMAM/Pt hybrid showed better electrocatalytic activity than GONRs/PAMAM/Pt catalyst. However, the GONRs/PAMAM /Pt catalyst showed better tolerance to CO for electro-oxidation of methanol compared to that of rGO/PAMAM/Pt composites.en_US
dc.description.tableofcontents總目次 摘要………………………………………………………………………I Abstract ………………………………………………………………II 總目次…………………………………………………………………III 圖目次……………………………………………………………… V 表目次………………………………………………………………… X 第一章 緒論…………………………………………………………1 1-1 前言 ………………………………………………………………1 1-2 研究動機與目的……………………………………………………3 1-3 研究方向 …………………………………………………4 第二章 基礎理論與文獻回顧…………………………………………5 2-1 石墨烯……………………………………………………………5 2-1-1石墨烯之製備……………………………………………………7 2-1-2化學法製備石墨烯………………………………………………10 2-1-3單(多)壁奈米碳管製備石墨烯…………………………………13 2-2 樹枝狀高分子………………………………………………………15 2-2-1 Dendrimer之代數………………………………………………17 2-2-2 Dendrimer之性質………………………………………………19 2-2-3 Dendrimer之優勢與應用………………………………………23 2-3 金屬奈米粒子的合成………………………………………………24 2-3-1 醇還原法製備金屬奈米粒子……………………………………25 2-3-2 微波輔助合成金屬奈米粒子……………………………………28 2-3-3 樹枝狀高分子承載金屬奈米粒子………………………………33 第三章 實驗方法與步驟………………………………………………36 3-1 實驗架構……………………………………………………………36 3-2 實驗材料……………………………………………………………37 3-3 實驗儀器……………………………………………………………39 3-4 實驗步驟……………………………………………………………40 3-4-1 氧化石墨之製備…………………………………………………40 3-4-2 還原氧化石墨烯之製備…………………………………………41 3-4-3 帶狀氧化石墨之製備……………………………………………42 3-4-4 樹狀高分子/石墨烯複合材料之製備…………………………43 3-4-5 白金奈米顆粒還原………………………………………………44 3-5 實驗儀器分析原理…………………………………………………45 第四章 結果與討論……………………………………………………48 4-1 化學法製備石墨烯…………………………………………………48 4-1-1 氧化石墨性質分析………………………………………………48 4-1-2 不同還原溫度之還原石墨烯性質分析…………………………53 4-2 樹狀高分子/還原石墨烯之製備…………………………………60 4-2-1 樹枝狀高分子/還原石墨烯承載白金奈米顆粒之尺寸控制…64 4-2-2 不同代數PAMAM樹枝狀高分子/rGO/Pt複材之甲醇氧化電活性探討…………………………………………………………………………72 4-3 帶狀氧化石墨性質分析……………………………………………79 4-4 樹枝狀高分子/帶狀石墨烯之製備………………………………82 4-4-1 樹枝狀高分子/帶狀石墨烯承載白金奈米顆粒之尺寸控制…84 4-4-2 不同代數PAMAM樹枝狀高分子/GONR/Pt複材之甲醇氧化電活性探討………………………………………………………………………92 4-5 rGO/PAMAM/Pt和GONR/PAMAM/Pt複材之甲醇氧化電活性比較…97 第五章 結論……………………………………………………………99 參考文獻………………………………………………………………101 圖目次 圖2-1 石墨烯的平面二維結構…………………………………………6 圖2-2 石墨烯的衍生物質-富勒烯、奈米碳管和石墨…………………6 圖2-3 石墨層間化合物示意圖…………………………………………8 圖2-4 利用3M膠帶以機械剝離法製備之石墨烯片,由圖比例尺為1um…………………………………………………………………………8 圖2-5 利用CVD生成之石墨烯,A為成長於銅箔之SEM影像;B為銅膜的晶粒與層狀階梯及石墨烯的皺摺;C、D分別為石墨烯轉移於SiO2與玻璃基板上………………………………………………………………9 圖2-6 幾種不同切割奈米碳管製備石墨烯之方法,a)濕式化學法,;b)插層剝離法;c)催化法;d)物理化學法;e)導入電流法;f)帶狀石墨烯;g)石墨烯…………………………………………………………9 圖2-7 氧化石墨之結構示意圖…………………………………………11 圖2-8 氧化石墨之含氧官能基團於水中和水形成氫鍵之示意圖……11 圖2-9 聯氨還原時間和溫度對含氧官能基含量之關係圖……………12 圖2-10 以聯氨還原氧化石墨烯之反應機構圖………………………12 圖2-11 (a)多壁奈米碳管 (b)碳管置於矽薄膜基板並旋轉塗布上PMMA 聚合物 (c)移去矽基質並以氬氣電漿蝕刻 (d)~(g)不同層數的奈米碳管與不同的蝕刻時間可以得到層數不同的石墨烯奈米帶(GNR)。時間越長,被侵蝕掉的碳管結構就越多,石墨烯奈米帶層數就越少 (h)利用丙酮移去PMMA 基質,得到石墨烯奈米帶…………13 圖2-12 利用氧化法將多壁奈米碳縱切成長帶狀石墨烯,(a)縱切奈米碳管示意圖(b)以過錳酸鉀與硫酸切割多壁奈米碳管之反應機構圖 (c)多壁奈米碳管切割前後之TEM影像…………………………………14 圖2-13 樹枝狀高分子結構增長圖……………………………………16 圖2-14 樹枝狀高分子結構示意圖……………………………………16 圖2-15 發散方式與收斂方是合成樹枝狀高分子示意圖……………16 圖2-16 Dendrimer代數計算示意圖……………………………………17 圖2-17 不同代數PAMAM樹枝狀高分子TEM影像,其比例尺為50nm (a)G10 (b)G9 (c)G8 (d)G7 (e)G6 (f)G5………………………………18 圖2-18 線性高分子與樹狀高分子之性質比較………………………20 圖2-19 各型態高分子間分子量與黏度之關係圖(A)線性高分子(B)高度分歧高分子(C)樹枝狀球形高分子(D)樹枝狀接枝高分子…………20 圖2-20 對稱與非對稱型樹狀高分子代數與密度之關係圖…………21 圖2-21 樹枝狀高分子代數與幾何結構之關係圖……………………22 圖2-22 PAMAM樹枝狀高分子零代數至十代數之及何結構示意圖……22 圖2-23 樹枝狀高分子幾何構形及分子量對吸附性質之關係圖……22 圖2-23 金屬奈米粒子之製備方式示意圖……………………………24 圖2-24 以醇還原法製備之白金奈米顆粒……………………………26 圖2-25 以醇還原含浸法經不同熱處理溫度之XRD圖…………………26 圖2-26 利用乙二醇將白金顆粒還原在石墨烯及多壁奈米碳管之TEM影像…………………………………………………………………………27 圖2-27 電磁波光譜圖…………………………………………………29 圖2-28 傳統加熱與微波加熱示意圖…………………………………29 圖2-29 傳統加熱碳化與微波碳化差異………………………………29 圖2-30 微波輔助合成金屬奈米粒子於石墨烯上(a)~(c)金屬顆粒與氧化石墨烯個別還原後以物力性方式混合 (d)~(e)親屬前驅鹽與氧化石墨烯均於混合後同時還原………………………………………………30 圖2-31 不同溫度下以微波製程所還原之白金奈米粒子(a)80℃(b)100℃(c)120℃(d)140℃(e)160℃(f)180℃…………………………31 圖2-32 以微波製程還原之白金奈米粒子之荷載量與尺寸分佈………………………………………………………………………31 圖2-33 微波輔助乙二醇法共還原氧化石墨烯與白金顆粒示意圖………………………………………………………………………32 圖2-34 PPI G3樹枝狀高分子與金前驅鹽莫耳比(A) 1: 16, (B) 1: 4, and (C) 1:1之金奈米顆粒(比例尺為20 nm)……………………34 圖2-35 以樹枝狀高分子為模板製備金奈米粒子之示意圖…………35 圖2-36 不同代數樹枝狀高分子還原銀粒子之TEM影像………………35 圖2-37 樹枝狀高分子承載金屬奈米粒子示意圖……………………35 圖3-1 實驗流程架構圖…………………………………………………36 圖3-2 氧化石墨之製備流程圖…………………………………………40 圖3-3 還原氧化石墨烯之製備流程圖…………………………………41 圖3-4 帶狀氧化石墨之製程圖…………………………………………42 圖3-5 樹狀高分子/石墨烯複合材料之製備流程圖…………………43 圖3-6 白金奈米顆粒還原流程圖………………………………………44 圖4-1 以化學法製備石墨烯之示意圖…………………………………48 圖4-2 石墨與氧化石墨之FTIR光譜圖…………………………………50 圖4-3 石墨與氧化石墨之Raman光譜圖………………………………50 圖4-4 石墨與氧化石墨之熱重損失曲線………………………………51 圖4-5 石墨與氧化石墨之XRD圖………………………………………51 圖4-6 氧化石墨烯之AFM圖……………………………………………52 圖4-7 原始石墨、氧化石墨與不同溫度下所還原石墨烯之FTIR光譜圖………………………………………………………………………55 圖4-8 原始石墨、氧化石墨與不同溫度下所還原石墨烯之Raman光譜圖………………………………………………………………………55 圖4-9 氧化石墨與不同溫度下所還原石墨烯之XPS光譜圖…………56 圖4-10 氧化石墨與不同溫度下所還原石墨烯之XPS光譜C1s峰 (a)GO (b)rGO 50℃ (c)rGO 70℃ (d)rGO 95℃……………………………57 圖4-11 原始石墨、氧化石墨與不同下所溫度還原石墨烯之熱重損失曲線……………………………………………………………………58 圖4-12 石墨烯醯化與胺基團接枝反應示意圖………………………61 圖4-13 不同代數之PAMAM樹枝狀高分子熱重損失曲線………………61 圖4-14 接枝不同代數的樹枝狀高分子之石墨烯與還原石墨烯之FTIR光譜圖………………………………………………………………… 62 圖4-15 接枝不同代數的樹枝狀高分子之石墨烯與還原石墨烯之FTIR區間放大圖……………………………………………………………62 圖4-16 接枝不同代數的樹枝狀高分子之石墨烯與還原石墨烯之熱重損失曲線 ………………………………………………………………63 圖4-17 還原石墨烯以及不同代數樹枝狀高分子/還原石墨烯為載體還原白金奈米顆粒之XRD圖………………………………………………66 圖4-18 還原石墨烯以及不同代數樹枝狀高分子/還原石墨烯為載體還原白金奈米顆粒之熱重損失曲線………………………………………67 圖4-19 (a)二代數樹枝狀高分子/還原石墨烯承載白金奈米顆粒之TEM圖 (b)區域放大圖,比例尺為10nm……………………………………68 圖4-20 二代數樹枝狀高分子/還原石墨烯承載白金奈米顆粒之尺寸分佈圖………………………………………………………………………68 圖4-21 (a)三代數樹枝狀高分子/還原石墨烯承載白金奈米顆粒之TEM圖 (b)區域放大圖,比例尺為10nm……………………………………69 圖4-22 三代數樹枝狀高分子/還原石墨烯承載白金奈米顆粒之尺寸分佈圖………………………………………………………………………69 圖4-23 (a)四代數樹枝狀高分子/還原石墨烯承載白金奈米顆粒之TEM圖 (b)區域放大圖,比例尺為10nm……………………………………70 圖4-24 四代數樹枝狀高分子/還原石墨烯承載白金奈米顆粒之尺寸分佈圖………………………………………………………………………70 圖4-25 G2、G3、G4樹枝狀高分子/還原石墨烯承載白金奈米顆粒之TEM圖以及尺寸分佈圖…………………………………………………71 圖4-26 以不同代數樹枝狀高分子/還原石墨烯承載白金奈米顆粒掃描3圈、5圈、10圈、50圈、100圈之循環伏安圖………………………………………………………………………74 圖4-27 不同代數樹枝狀高分子/還原石墨烯承載白金奈米顆粒掃描100圈,甲醇氧化電活性長時間測試曲線圖(a)正向掃描電流峰值(b)負向掃描電流峰值……………………………………………………75 圖4-28 以不同代數樹枝狀高分子/還原石墨烯承載白金奈米顆粒掃描3圈、5圈、10圈、50圈、100圈之循環伏安圖(電流密度)…………………………………………………………………………76 圖4-29 不同代數樹枝狀高分子/還原石墨烯承載白金奈米顆粒掃描100圈,甲醇氧化電活性長時間測試(電流密度)曲線圖(a)正向掃描電流峰值(b)負向掃描電流………………………………………………77 圖4-30 (a)少壁奈米碳管 (b)少壁奈米碳管較大倍率(c)帶狀石墨烯之TEM圖 ………………………………………………………………81 圖4-31 少壁奈米碳管與帶狀石墨烯之Raman光譜圖…………………81 圖4-32 少壁奈米碳管與帶狀石墨烯之熱重損失曲線圖……………82 圖4-33 帶狀石墨烯與接枝不同代數樹枝狀高分子之帶狀石墨烯FTIR光譜圖…………………………………………………………………83 圖4-34 帶狀石墨烯與接枝不同代數樹枝狀高分子之帶狀石墨烯FTIR區間放大圖………………………………………………………………83 圖4-35 不同代數樹枝狀高分子/帶狀石墨烯為載體還原白金奈米顆粒之XRD圖…………………………………………………………………86 圖4-36 不同代數樹枝狀高分子/帶狀石墨烯為載體還原白金奈米顆粒之熱重損失曲線………………………………………………………86 圖4-37 不同代數樹枝狀高分子/帶狀石墨烯為載體還原白金奈米顆粒之熱重損失曲線區間放大圖……………………………………………87 圖4-38 (a)二代數樹枝狀高分子/帶狀石墨烯承載白金奈米顆粒之TEM圖 (b)區域放大圖………………………………………………………88 圖4-39 二代數樹枝狀高分子/帶狀石墨烯承載白金奈米顆粒之尺寸分佈圖………………………………………………………………………88 圖4-40 (a)三代數樹枝狀高分子/帶狀石墨烯承載白金奈米顆粒之TEM圖 (b)區域放大圖………………………………………………………89 圖4-41 三代數樹枝狀高分子/帶狀石墨烯承載白金奈米顆粒之尺寸分佈圖………………………………………………………………… 89 圖4-42 (a)四代數樹枝狀高分子/帶狀石墨烯承載白金奈米顆粒之TEM圖 (b)區域放大圖………………………………………………………90 圖4-43 四代數樹枝狀高分子/帶狀石墨烯承載白金奈米顆粒之尺寸分佈圖………………………………………………………………………90 圖4-44 G2、G3、G4樹枝狀高分子/帶狀石墨烯承載白金奈米顆粒之TEM圖以及尺寸分佈圖…………………………………………………91 圖4-45 以不同代數樹枝狀高分子/帶狀石墨烯承載白金奈米顆粒掃描3圈、10圈、20圈、50圈、100圈之循環伏安圖………………………93 圖4-46 不同代數樹枝狀高分子/帶狀石墨烯承載白金奈米顆粒掃描100圈,甲醇氧化電活性長時間測試曲線圖(a)正向掃描電流峰值(b)負向掃描電流峰值………………………………………………………94 圖4-47 以不同代數樹枝狀高分子/帶狀石墨烯承載白金奈米顆粒掃描3圈、10圈、20圈、50圈、100圈之循環伏安圖(電流密度)…………95 圖4-48 不同代數樹枝狀高分子/帶狀石墨烯承載白金奈米顆粒掃描100圈,甲醇氧化電活性長時間測試曲線圖(電流密度)(a)正向掃描電流峰值(b)負向掃描電流峰值…………………………………………96 圖4-49 循環伏安曲線圖(a)rGO/PAMAM/Pt (b)GONR/PAMAM/Pt……98 表目次 表2-1 不同還原條件下還原石墨烯之C/O比值………………………12 表2-2 PAMAM樹枝狀高分子不同代數之特性…………………………18 表2-3 不同代數PAMAM樹枝狀高分子之粒徑量測……………………18 表2-4 白金奈米粒子還原於改質石墨烯與多壁奈米碳管之比較……27 表4-1 原始石墨、氧化石墨與不同溫度還原石墨烯之拉曼波峰位置及ID/IG 比值 …………………………………………………56 表4-2 氧化石墨與不同溫度下所還原石墨烯之碳/氧原子比………57 表4-3 原始石墨、氧化石墨與不同溫度下所還原石墨烯之熱重殘餘量………………………………………………………………………58 表4-4 原始石墨、氧化石墨與不同溫度下所還原石墨烯之導電度…59 表4-5 以還原石墨烯以及不同代數樹枝狀高分子/還原石墨烯為載體還原白金奈米顆粒之熱重殘餘量………………………………………67 表4-6 不同代數樹枝狀高分子/還原石墨烯承載白金奈米顆粒於不同掃瞄圈數下之If/Ib值…………………………………………………76 表4-7 所接枝的不同代數樹枝狀高分子末端NH2總個數對照所承載白金顆粒之重量百分比,[ ]表示比例關係……………………………78 表4-8 少壁奈米碳管與帶狀石墨烯之拉曼波峰位置及ID/IG 比值…………………………………………………………………………82 表4-9 以不同代數樹枝狀高分子/帶狀石墨烯為載體還原白金奈米顆粒之熱重殘餘量…………………………………………………………87 表4-10 不同代數樹枝狀高分子接枝還原石墨烯與帶狀石墨烯承載白金奈米顆粒於不同掃瞄圈數下之If/Ib值比較………………………98zh_TW
dc.language.isozh_TWen_US
dc.publisher材料科學與工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0508201314345900en_US
dc.subject石墨烯zh_TW
dc.subjectgrapheneen_US
dc.subject樹枝狀高分子zh_TW
dc.subject白金奈米顆粒zh_TW
dc.subjectdendrimeren_US
dc.subjectPt nanoparticleen_US
dc.title樹枝狀高分子/石墨烯複合材料上承載白金奈米顆粒之製備與特性研究zh_TW
dc.titlePreparation and Characterization of Dendrimer/Graphene Nanocomposites Supporting Platinum Nanoparticleen_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:材料科學與工程學系
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.