Please use this identifier to cite or link to this item:
標題: 氣相傳輸法合成鍺-銻奈米線與三元合金觸媒之VLS成長機制
Synthesis of Ge-Sb nanowires by vapor transport process and VLS growth mechanism from ternary alloy
作者: 樊孚
Fan, Fu
關鍵字: 氣象-液相-固相法
VLS mechanism
Ternary system
Vapor transport
出版社: 材料科學與工程學系所
引用: 1.Jung, Y., et al., <Synthesis and Characterization of Ge2Sb2Te5 Nanowires with Memory Switching Effect.> Journal of the American Chemical Society, 2006. 128(43): p. 14026-14027. 2.Gao, P.X., Y. Ding, and Z.L. Wang, <Crystallographic Orientation-Aligned ZnO Nanorods Grown by a Tin Catalyst.> Nano Lett, 2003. 3(9): p. 1315-1320. 3.Sun, S.H., et al., <Large-scale synthesis of SnO2 nanobelts.> Applied Physics A: Materials Science & Processing, 2003. 76(2): p. 287-289. 4.Jung, Y., R. Agarwal, and C.Y. Yang, <Chalcogenide phase- change memory nanotubes for lower writing current operation.> Nanotechnology, 2011. 22(25): p. 254012. 5.Xia, Y., et al., <One-Dimensional Nanostructures: Synthesis, Characterization, and Applications.> Advanced Materials, 2003. 15(5): p. 353-389. 6.Lu, X., et al., <Growth of Single Crystal Silicon Nanowires in Supercritical Solution from Tethered Gold Particles on a Silicon Substrate.> Nano Lett, 2002. 3(1): p. 93-99. 7.Schiotz, J., F.D. Di Tolla, and K.W. Jacobsen, <Softening of nanocrystalline metals at very small grain sizes.> Nature, 1998. 391(6667): p. 561-563. 8.Wong, E.W., P.E. Sheehan, and C.M. Lieber, <Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes.> Science, 1997. 277(5334): p. 1971-1975. 9.Yeonwoong Jung, S.-H.L., Dong-Kyun Ko, and Ritesh Agarwal, <Synthesis and Characterization of Ge2Sb2Te5 Nanowires with Memory Switching Effect.>. J. AM. CHEM. SOC., 2006. 128(43). 10.Y Zhang, G.L., Y Wu, B Zhang, W Song, L Zhang, <Antimony Nanowires Array Fabricated by Pulsed Electrodeposition in Anodic Alumina Membrnes. >. Advanced Materials, 2002, 14, No.7, September 3. 11.Ye Wu Wang, B.H.H., † Ju Young Lee,† Jeong-Sun Kim,‡ Geun Hong Kim,‡ and and Kwang S. Kim*, <Antimony Nanowires Self-Assembled from Sb Nanoparticles. >. J. Phys. Chem, ReceiVed: June 17, 2004; In Final Form: August 20, 2004. B 2004, 108, 16723-16726. 12.Morales, A.M., <A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires.>Science, 1998. 279(5348): p. 208-211. 13.Yang, Y.W.a.P., <Direct Observation of Vapor-Liquid- Solid Nanowire growth.>. J. Am. Chem. Soc., 2001. 123 (13). 14.Lieber, X.D.a.C.M., <General Synthesis of Compound Semiconductor nanowire. >. Adv Mater, 2000. 12(4). 15.Stefan Meister, H.P., † Kevin McIlwrath,‡ Konrad Jarausch,‡ and a.Y.C. Xiao Feng Zhang, †, <Synthesis and Characterization of Phase-Change Nanowires.>. Nano Lett, 2006. 6(7). 16.Lieber, P.Y.a.C.M., <Nanostructured high-temperature superconductors creation of strong pinning columnar defects in nanorod superconductor composites.>. J. Mater. Res, 1997. 12(11). 17.Zhao, L.X., et al., <Large-scale synthesis of GaN nanorods and their photoluminescence.> Applied Physics A: Materials Science & Processing, 2002. 74(4): p. 587- 590. 18.Zhang, J. and L. Zhang, <Graphite/hydrogen reduction route to Ga2O3 nanobelts.> Solid State Communications, 2002. 122(9): p. 493-496. 19.Fan, H.J., et al., <Local luminescence of ZnO nanowire- covered surface: A cathodoluminescence microscopy study.>Applied Physics Letters, 2005. 86(2): p. 023113-3. 20.Windmiller, L., <de Haas-van Alphen Effect and Fermi Surface in Antimony.> Physical Review, 1966. 149(2): p. 472-484. 21.T. C. Hasenberg, R.H.M., A. R. Kost, and L. West, <Recent Advances in Sb-Based Midwave infrared laser.>. JOURNAL OF QUANTUM ELECTRONICS, 1997. VOL. 33(NO. 8). 22.Boos, J.B., et al., <High mobility p-channel HFETs using strained Sb-based materials.>Electronics Letters, 2007. 43(15): p. 834. 23.A. Ouvrard, A.G., L. Cerutti, F. Genty, and D. Romanini, <Single-Frequency Tunable Sb-Based VCSELs Emitting at 2.3um.>. PHOTONICS TECHNOLOGY LETTERS, 2005. VOL. 17(NO. 10). 24.B. .F. Variano, D.M.H., C. J. Sandroff, P. Wiltzius,T. W. Jing, and N. P. Ong, <Quantum Effects In Anisotropic Semiconductor Clusters Colloidal Suspensions of Bi2S3 and Sb2S3. >American Chemical Society, 1987. Vol. 91(No. 26). 25.Heremans, J., et al., <Thermoelectric Power of Bismuth Nanocomposites. > Physical Review Letters, 2002. 88(21). 26.Yang, F.Y., <Large Magnetoresistance of Electrodeposited Single-Crystal Bismuth Thin Films.>Science, 1999. 284 (5418): p. 1335-1337. 27.Heremans, J., et al., <Transport properties of antimony nanowires.> Physical Review B, 2001. 63(8). 28.M Barati1, J.C.L.C., P K Ummat and W R Datars2, <Temperature dependence of the resistance of antimony nanowire arrays. >. JOURNAL OF PHYSICS: CONDENSED MATTER, 2001. 13: p. 2955–2962. 29.Peng Liu, * Kuan Zhong,† Chaolun Liang,‡ Qiqin Yang,† Yexiang Tong,†,* Gaoren Li,† and a.G.A. Hope§, <Self- Assembly of Three-Dimensional Nanostructured Antimony. >. American Chemical Society, 2008. 20(24): p. 7532- 75738. 30.Amy L. Prieto, † Marisol Martı’n-Gonza’ lez,‡ Jennifer Keyani, Ronald Gronsky, Timothy Sands,§ and Angelica M. Stacy, <The Electrodeposition of High-Density, Ordered Arrays of Bi1-xSbx Nanowires. >. American Chemical Society, Received November 18, 2002. VOL. 125(NO. 9): p. 2388-2389. 31.Wang, X.S., et al., <Self-assembly of antimony nanowires on graphite.> Applied Physics Letters, 2006. 88(23): p. 233105. 32.Philipose, U., et al., <Influence of growth temperature on the stoichiometry of InSb nanowires grown by vapor phase transport.> Semiconductor Science and Technology, 2010. 25(7): p. 075004. 33.Singh, S., P. Srivastava, and A. Mishra,< Structural stability and electronic properties of GaSb nanowires. >Physica E: Low-dimensional Systems and Nanostructures, 2009. 42(1): p. 46-50. 34.Lin, Y.-M., et al., <Semimetal–semiconductor transition in Bi[sub 1−x]Sb[sub x] alloy nanowires and their thermoelectric properties.>Applied Physics Letters, 2002. 81(13): p. 2403. 35.Chuangui Jin, ‡,§ Genqiang Zhang,†,‡ Tian Qian,†,‡ Xiaoguang Li,*,†,‡ and Zhen Yao|, <Large-Area Sb2Te3 Nanowire Arrays. >. American Chemical Society, 2005. 109 (4). 36.Jung, Y., et al., <Phase-change Ge-Sb nanowires: synthesis, memory switching, and phase-instability.> Nano Lett, 2009. 9(5): p. 2103-8. 37.Jung, S.-W., et al., <Antimony Selenide Phase-Change Nanowires for Memory Application.> Journal of Nanoscience and Nanotechnology, 2011. 11(2): p. 1569- 1572. 38.Saraswat, K., et al., <High performance germanium MOSFETs.> Materials Science and Engineering: B, 2006. 135 (3): p. 242-249. 39.Krishnamohan, T., et al., <High-mobility low band-to- band-tunneling strained-Germanium double-gate heterostructure FETs: Simulations.>IEEE TRANSACTIONS ON ELECTRON DEVICES, 2006. 53(5): p. 1000-1009. 40.Yu, B., et al., <One-dimensional Germanium Nanowires for Future Electronics.> Journal of Cluster Science, 2006. 17 (4): p. 579-597. 41.Pan, Z.W., et al., <Germanium-Catalyzed Growth of Zinc Oxide Nanowires: A Semiconductor Catalyst for Nanowire Synthesis.> Angewandte Chemie, 2005. 117(2): p. 278-282. 42.Gu, Z., et al., <Germanium-catalyzed hierarchical Al2O3 and SiO2 nanowire bunch arrays.> Nanoscale, 2009. 1(3): p. 347-54. 43.Kim, H.W., et al., <Temperature-controlled synthesis of Zn2GeO4 nanowires in a vapor–liquid–solid mode and their photoluminescence properties.> Chemical Engineering Journal, 2011. 171(3): p. 1439-1445. 44.Kim, S.S., et al., <Temperature-induced evolution of novel mixture-phased particles at the tips of SnO2 whiskers.> Chemical Engineering Journal, 2012. 179: p. 381-387. 45.Yang, Y.W.a.P., <Germanium Nanowire Growth via Simple Vapot transport. >. Chem. Mater., 2000. Vol. 12,(No. 3). 46.Polyakov, B., et al., <High-Density Arrays of Germanium Nanowire Photoresistors.> Advanced Materials, 2006. 18 (14): p. 1812-1816. 47.Donats Erts, ‡ Boris Polyakov,§ Brian Daly,†,‡ Michael A. Morris,†,‡ Susan Ellingboe,‡,| and a.J.D.H. John Boland, †,‡, <High Density Germanium Nanowire Assemblies Contact Challenges and Electrical characterization. >. J. Phys. Chem., 2006. 110(2). 48.James R. Heath, F.K.L., <A liquid solution synthesis of single crystal germanium quantum wires.> Chemical Physics Letters, 1993. 208(3-4). 49.Wu, J., et al., <Fabrication and Optical Properties of Erbium-Doped Germanium Nanowires.> Advanced Materials, 2004. 16(16): p. 1444-1448. 50.Tutuc, E., et al., <Realization of a Linear Germanium Nanowire p−n Junction.> Nano Lett, 2006. 6(9): p. 2070- 2074. 51.Beeman, J.W., et al., <High performance antimony-doped germanium photoconductors.> Infrared Physics & Technology, 1996. 37(7): p. 715-721. 52.Nagasaka, K. and S. Narita, <Two types of far-infrared photoconductivity in antimony-doped germanium.> Solid State Communications, 1969. 7(5): p. 467-470. 53.Akao, T.M.a.F., <Hypersonic Attenuation in Antimony- Doped Germanium and Its Magnetic Field Dependence.> J. Phys. Soc. Jpn, 1976. 41. 54.Ootuka, Y., et al., <Anomalous magnetoresistance in heavily antimony doped germanium.> Solid State Communications, 1979. 30(3): p. 169-172. 55.Fritzsche, H., <Resistivity and hall coefficient of antimony-doped germanium at low temperatures.> Journal of Physics and Chemistry of Solids, 1958. 6(1): p. 69-80. 56.Van Pieterson, L., et al., <Phase-change recording materials with a growth-dominated crystallization mechanism: A materials overview.> Journal of Applied Physics, 2005. 97(8): p. 083520. 57.Raoux, S., et al., <Phase transitions in Ge–Sb phase change materials.> Journal of Applied Physics, 2009. 105 (6): p. 064918. 58.C. C. Huang, B.G., K. Knight, J. Y. Ou, and D. W. Hewak, <Deposition and Characterization of CVD-Grown Ge-Sb Thin Film Device for Phase-Change Memory Application.> Advances in OptoElectronics, 2012. 2012 (2012). 59.T.F. Young a, J.F. Chang b, H.Y. Ueng b, <Study on annealing effects of Au thin films on Si.>. Thin Solid Films, Received 8 May 1997; accepted 1 October 1997. 322: p. 319–322. 60.X.H. Fan, L.X., C.P. Li, Y.F. Zheng, C.S. Lee, S.T. Lee *, <Effects of ambient pressure on silicon nanowire growth.>. Chemical Physics Letters, Received 25 September 2000; in Rnal form 9 November 2000. 334 (2001) 229±232. 61.Xuhui Sun, B.Y., Fellow, IEEE, Garrick Ng, M. Meyyappan, Fellow, IEEE, Sanghyun Ju, and David B. Janes, <Germanium Antimonide Phase-Change Nanowires for Memory Applications.>. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2008. VOL. 55(NO. 11). 62.Xiang, X., et al., <A simple method to synthesize gallium oxide nanosheets and nanobelts.> Chemical Physics Letters, 2003. 378(5-6): p. 660-664. 63.Pung, S.-Y., K.-L. Choy, and X. Hou, <Tip-growth mode and base-growth mode of Au-catalyzed zinc oxide nanowires using chemical vapor deposition technique.> Journal of Crystal Growth, 2010. 312(14): p. 2049-2055. 64.Kolasinski, K., <Catalytic growth of nanowires: Vapor– liquid–solid, vapor–solid–solid, solution–liquid– solid and solid–liquid–solid growth.> Current Opinion in Solid State and Materials Science, 2006. 10(3-4): p. 182-191. 65.Sutter, E. and P. Sutter, <Vapor–liquid–solid growth and Sb doping of Ge nanowires from a liquid Au-Sb-Ge ternary alloy.> Applied Physics A, 2009. 99(1): p. 217- 221. 66.Mohammad, S.N., <Analysis of the Vapor–Liquid–Solid Mechanism for Nanowire Growth and a Model for this Mechanism.>. Nano Lett, Received November 14, 2007; Revised Manuscript Received February 1, 2008. Vol. 8(No. 5). 67.Yeonwoong Jung, S.-H.L., Dong-Kyun Ko, and Ritesh Agarwal, <Synthesis and Characterization of Ge2Sb2Te5 Nanowires with Memory Switching Effect.>. American Chemical Society, 2006. VOL. 128(NO. 43).
摘要: 本實驗在三區加熱的水平爐管中利用氣相傳輸法合成鍺銻一維奈米結構,並藉由改變各項製程參數,探討參數對產物形貌的影響及原因。經實驗發現,金觸媒與鍺原料的添加是鍺摻雜銻一維奈米結構可否形成的關鍵因素,製程溫度與氣體流量嚴重影響到基板端的過飽合度,太高或太低皆不利於一維奈米結構的生成。此外,我們透過SEM、XRD、TEM與EDS分析產物的形貌、結構與成分,證實合成出之鍺摻雜銻一維奈米結構為單晶的銻斜方晶結構,線徑約50~150奈米(nm),線長約數十微米(μm),鍺的摻雜量約在6~8原子百分比(at%)。同時,我們透過中斷實驗搭配SEM、TEM、XRD與相圖探討鍺摻雜銻一維奈米結構的成長機制。結果證明鍺摻雜銻一維奈米結構是利用金鍺銻所形成的三元共晶合金做為觸媒,以VLS法成核成長為一維奈米結構。最後,我們在固定爐管溫度及壓力的設定下,改變銻原料粉末的擺放位置,成功合成出鍺摻雜銻、鍺銻合金、銻微量摻雜鍺、純鍺等不同組成的一維奈米結構,提共研究及應用更多元的選擇。
We have synthesized one-dimensional Ge-doped Sb nanowires by vapor transport method in a three-heating-zone horizontal tubular furnace. The process conditions were changed to explore the effects of each parameter on the morphologies of the resultant products. The diameter of the as-synthesized Ge-doped Sb nanowires were about 50~150 nm, and the length are tens micrometer. The crystal structure of the as-synthesized Ge-doped Sb nanowires were characterized by XRD and TEM. The results confirm that Ge-doped Sb nanowires are single crystalline and have a rhombohedral structure. From the experiment results, we found that the process temperature and carrier gas flow strongly affect the supply and supersatuation of source atoms on the substrate. Furthermore, we also investigate the growth mechanism of Ge- doped Sb nanowires by examining the structural evolution of the resultant products during the growth process. We conclude that Ge-doped Sb nanowires are grown from by a VLS mechanism catalyzed by Au-Ge-Sb ternary eutectic alloy instead of Au-Sb binary eutectic alloy. In addition, by tuning the position of Sb source powder in the horizontal tubular furnace, we can also control the compositions of the as-synthesized nanowires and obtain rhombohedral Ge-doped Sb, body center cubic GeSb, face center cibic Sb-doped Ge and cubic Ge nanowires.
其他識別: U0005-1007201215332800
Appears in Collections:材料科學與工程學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.