Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11418
標題: 濕式氧化蝕刻技術應用於氮化鎵光電元件
Wet oxidation and etching processes applied on GaN optoelectronic devices
作者: 江仁豪
Jiang, Ren-Hao
關鍵字: 氮化銦鎵
InGaN
光輔助電化學
發光二極體
Photoelectrochemical
Light-Emitting Diodes
出版社: 材料科學與工程學系所
引用: [1] S. Nakamura, "The Roles of Structural Imperfections in InGaN-Based Blue Light-Emitting Diodes and Laser Diodes," Science, vol. 281, no. 5379, 956, 1998. [2] S. Nakamura and G. Fasol, The Blue Laser Diode: The Complete Story, 2000. [3] M. A. Khan, J. N. Kuznia, A. R. Bhattarai, and D. T. Olson, "Metal semiconductor field effect transistor based on single crystal GaN," APPLIED PHYSICS LETTERS, vol. 62, 1786, 1993. [4] E. S. Fred, Cambridge, U.K.: Cambridge Univ.Press, 2003. [5] Daniel F. Feezell, James S. Speck, Steven P. DenBaars, and Shuji Nakamura, "Semipolar (2021) InGaN/GaN Light-Emitting Diodes for High-Efficiency Solid-State Lighting," IEEE JOURNAL OF DISPLAY TECHNOLOGY, vol. 9, no. 4, 190, 2013 [6] J. Bai, Y. Gong, K. Xing, X. Yu, and T. Wang, "Efficient reduction of defects in (1120) non-polar and (1122) semi-polar GaN grown on nanorod templates," APPLIED PHYSICS LETTERS, vol. 102, no. 10, 101906, 2013. [7] P. Vennegues, J. M. Chauveau, Z. Bougrioua, T. Zhu, D. Martin, and N. Grandjean, "On the origin of basal stacking faults in nonpolar wurtzite films epitaxially grown on sapphire substrates," JOURNAL OF APPLIED PHYSICS, vol. 112, no. 11, 113518, 2012 [8] Yik-Khoon Ee, Jeffrey M. Biser, Wanjun Cao, Helen M. Chan, Richard P. Vinci, and Nelson Tansu, "Metalorganic Vapor Phase Epitaxy of III-Nitride Light-Emitting Diodes on Nanopatterned AGOG Sapphire Substrate by Abbreviated Growth Mode," IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, vol. 15, no. 4, 1066, 2009. [9] Yik-Khoon Ee, Xiao-Hang Li, Jeff Biser, Wanjun Cao, Helen M. Chan, Richard P. Vinci, Nelson Tansu, "Abbreviated MOVPE nucleation of III-nitride light-emitting diodes on nano-patterned sapphire," Journal of Crystal Growth, vol. 312, no. 8, 1311, 2010 [10] C. F. Shen, S. J. Chang, T. K. Ko, C. T. Kuo, S. C. Shei, W. S. Chen, C. T. Lee, C. S. Chang, and Y. Z. Chiou, “Nitride-Based Light Emitting Diodes With Textured Sidewalls and Pillar Waveguides,” IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 18, no. 23, 2517, 2006. [11] C. S. Chang, S. J. Chang, Y. K. Su, C. T. Lee, Y. C. Lin, W. C. Lai, S. C. Shei, J. C. Ke, and H. M. Lo, “Nitride-Based LEDs With Textured Side Walls,” IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 16, no. 3, 750, 2004. [12] Hyunsoo Kim, Jaehee Cho, Jeong Wook Lee, Sukho Yoon, Hyungkun Kim, Cheolsoo Sone, and Yongjo Park, Tae-Yeon Seong, “Enhanced light extraction of GaN-based light-emitting diodes by using textured n-type GaN layers,” APPLIED PHYSICS LETTERS, vol. 90, no. 16, 161110, 2007 [13] J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, and M. G. Craford, J. R. Wendt and J. A. Simmons, M. M. Sigalas, “InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures,” APPLIED PHYSICS LETTERS, vol. 84, no. 19, 3885, 2004. [14] Ja-Yeon Kim, Min-Ki Kwon, Ki-Sung Lee, and Seong-Ju Park, Sang Hoon Kim and Ki-Dong Lee, “Enhanced light extraction from GaN-based green light-emitting diode with photonic crystal,” APPLIED PHYSICS LETTERS, vol. 91, no. 18, 181109, 2007. [15] Aurelien David, Brendan Moran, Kelly McGroddy, Elison Matioli, Evelyn L. Hu, Steven P. DenBaars, Shuji Nakamura, and Claude Weisbuch, “GaN/InGaN light emitting diodes with embedded photomic crystal obtained by laterl epitaxial overgrowth,” APPLIED PHYSICS LETTERS, vol. 92, no. 11, 113514, 2008. [16] K. C. Chen, Y. K. Su, Chun-Liang Lin, and H. C. Hsu, “Laser Scribing of Sapphire Substrate to Increase Side Light Extraction of GaN-Based Light Emitting Diodes,” JOURNAL OF LIGHTWAVE TECHNOLOGY, vol. 29, no. 13, 1907, 2011. [17] S. C. Shei, H. M. Lo, W. C. Lai, W. C. Lin, and S. J. Chang, “GaN-based LEDs with air voids prepared by laser scribing and chemical etching," IEEE Photonics Technology Letters, vol. 23, no. 16, 1172, 2011. [18] Wan-Chun Huang, Chia-Feng Lin, Tsung-Han Hsieh, Sin-Han Chen, Ming-Shiou Lin, Kuei-Ting Chen, Chun-Min Lin, Sy-Hann Chen, and Pin Han, “InGaN light emitting diodes with a laser-treated tapered GaN structure,” OPTICS EXPRESS, vol. 19, no. S5, A1126, 2011. [19] S. J. Chang, D. S. Kuo, K. T. Lam, K. H. Wen, T. K. Ko, and S. J. Hon, “GaN-based LEDs with sapphire debris removed by phosphoric etching,” IEEE TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY, vol. 2, no. 2, 349, 2012. [20] L. Dai, B. Zhang, J. Y. Lin, H. X. Jiang, “Comparison of optical transitions in InGaN quantum well structures and microdisks,” JOURNAL OF APPLIED PHYSICS, vol. 89, no. 9, 4951, 2001. [21] S. X. Jin, J. Li, J. Z. Li, J. Y. Lin, and H. X. Jiang, “GaN microdisk light emitting diodes,” APPLIED PHYSICS LETTERS, vol. 76, no. 5, 631, 2000. [22] D. J. Fu, T. W. Kang, Sh. U. Yuldashev, N. H. Kim, S. H. Park, and J. S. Yun, “Effect of photoelectrochemical oxidation on properties of GaN epilayers grown by molecular beam epitaxy,” APPLIED PHYSICS LETTERS, vol. 78, no. 9, 1309, 2001. [23] C. B. Vartuli, S. J. Pearton, C. R. Abernathy, J. D. MacKenzie, E. S. Lambers, and J. C. Zolper, “High temperature surface degradation of III–V nitrides,” Journal of Vacuum Science & Technology B, vol. 14, no. 6, 3523, 1996. [24] R. Khare, E. L. Hu, J. J. Brown, and M. A. Melendes, “Micromachining in III–V semiconductors using wet photoelectrochemical etching,” Journal of Vacuum Science & Technology B, vol. 11, no. 6, 2497, 1993. [25] M. S. Minsky, M. White, and E. L. Hu, “Room-temperature photoenhanced wet etching of GaN,” APPLIED PHYSICS LETTERS, vol. 68, no. 11, 1531, 1996. [26] C. Youtsey, I. Adesida, and G. Bulman, “Highly anisotropic photoenhanced wet etching of n-type GaN,” APPLIED PHYSICS LETTERS, vol. 71, no. 15, 2151, 1997. [27] C. Youtsey, L. T. Romano, and I. Adesida, “Smooth n-type GaN surfaces by photoenhanced wet etching,” APPLIED PHYSICS LETTERS, vol. 72, no. 5, 560, 1998. [28] J. E. Borton, C. Cai, M. I. Nathan, P. Chow, J. M. Van Hove, A. Wowchak, and H. Morkoc, “Bias-assisted photoelectrochemical etching of p-GaN at 300 K,” APPLIED PHYSICS LETTERS, vol. 77, no. 8, 1227, 2000. [29] H. M. Ng, N. G. Weimann, and A. Chowdhury, “GaN nanotip pyramids formed by anisotropic etching,” JOURNAL OF APPLIED PHYSICS, vol. 94, no. 1, 650, 2003. [30] Y. Gao, M. D. Craven, J. S. Speck, S. P. DenBaars, and E. L. Hu, “Dislocation- and crystallographic-dependent photoelectrochemical wet etching of gallium nitride,” APPLIED PHYSICS LETTERS, vol. 84, no. 17, 3322, 2004. [31] L. H. Peng, C. W. Chuang, J. K. Ho, C. N. Huang, and C. Y. Chen, “Deep ltraviolet enhanced wet chemical etching of gallium nitride,” APPLIED PHYSICS LETTERS, vol. 72, no. 8, 939, 1998. [32] J. A. Bardwell, J. B. Webb, H. Tang, J. Fraser, and S. Moisa, “Ultraviolet hotoenhanced wet etching of GaN in K2S2O8 solution,” JOURNAL OF APPLIED PHYSICS, vol. 89, no. 7, 4142, 2001. [33] Z. H. Hwang, J. M. Hwang, H. L. Hwang, and W. H. Hung, “Electrodeless wet etching of GaN assisted with chopped ultraviolet light,” APPLIED PHYSICS LETTERS, vol. 84, no. 19, 3759, 2004. [34] C. Youtsey, L. T. Romano, R. J. Molnar, and I. Adesida, “Rapid evaluation of dislocation densities in n-type GaN films using photoenhanced wet etching,” APPLIED PHYSICS LETTERS, vol. 74, no. 23, 3537, 1999. [35] P. Visconti, K. M. Jones, M. A. Reshchikov, R. Cingolani, H. Morkoc, and R. J. Molnar, “Dislocation density in GaN determined by photoelectrochemical and hot-wet etching,” APPLIED PHYSICS LETTERS, vol. 77, no. 22, 3532, 2000. [36] J. L. Weyher, F. D. Tichelaar, H. W. Zandbergen, L. Macht, and P. R. Hageman, “Selective photoetching and transmission electron microscopy studies of defects in heteroepitaxial GaN,” JOURNAL OF APPLIED PHYSICS, vol. 90, no. 12, 6105, 2001. [37] L. H. Peng, C. H. Liao, Y. C. Hsu, C. S. Jong, C. N. Huang, J. K. Ho, C. C. Chiu, and C. Y. Chen, “Photoenhanced wet oxidation of gallium nitride,” APPLIED PHYSICS LETTERS, vol.76, no. 4, 511, 2000. [38] J. W. Seo, C. S. Oh, H. S. Jeong, J. W. Yang, K. Y. Lim, C. J. Yoon, and H. J. Lee, “Bias-assisted photoelectrochemical oxidation of n-GaN in H2O,” APPLIED PHYSICS LETTERS, vol.81, no. 6, 1029, 2002. [39] T. Rotter, D. Mistele, J. Stemmer, F. Fedler, J. Aderhold, J. Graul, V. Schwegler, C. Kirchner, M. Kamp, and M. Heuken, “Photoinduced oxide film formation on n-type GaN surfaces using alkaline solutions,” APPLIED PHYSICS LETTERS, vol. 76, no. 26, 3923, 2000. [40] Y. Nakano, and T. Jimbo, “Interface properties of thermally oxidized n-GaN metal–oxide–semiconductor capacitors,” APPLIED PHYSICS LETTERS, vol. 82, no. 2, 218, 2003. [41] D. J. Fu, Y. H. Kwon, T. W. Kang, C. J. Park, K. H. Baek, H. Y. Cho, D. H. Shin, C. H. Lee, and K. S. Chung, “GaN metal–oxide–semiconductor structures using Ga-oxide dielectrics formed by photoelectrochemical oxidation,” APPLIED PHYSICS LETTERS, vol. 80, no. 3, 446, 2002. [42] Y. Nakano, T. Kachi, and T. Jimbo, “Electrical properties of thermally oxidized p-GaN metal–oxide–semiconductor diodes,” APPLIED PHYSICS LETTERS, vol. 82, no. 15, 2443, 2003. [43] C. T. Lee, H. W. Chen, and H. Y. Lee, “Metal–oxide–semiconductor devices using Ga2O3 dielectrics on n-type GaN,” APPLIED PHYSICS LETTERS, vol. 82, no. 24, 4304, 2003. [44] C. Bae, C. Krug, G. Lucovsky, A. Chakraborty, and U. Mishra, “Work-function difference between Al and n-GaN from Al-gated n-GaN/nitrided-thin-Ga2O3 /SiO2 metal oxide semiconductor structures,” APPLIED PHYSICS LETTERS, vol. 84, no. 26, 5413, 2004. [45] J. R. Mileham, S. J. Pearton, C. R. Abernathy, J. D. MacKenzie, R. J. Shul, and S. P. Kilcoyne, “Wet chemical etching of AlN,” APPLIED PHYSICS LETTERS, vol. 67, no. 8, 1119, 1995. [46] C. Youtsey, I. Adesida, and G. Bulman, “Broad-area photoelectrochemical etching of GaN,” ELECTRONICS LETTERS, vol. 33, no. 3, 245-246, 1997. [47] A. R. Stonas, T. Margalith, S. P. DenBaars, L. A. Coldren, and E. L. Hu, “Development of selective lateral photoelectrochemical etching of InGaN/GaN for lift-off applications,” APPLIED PHYSICS LETTERS, vol. 78, no. 13, 1945, 2001. [48] P. Visconti, M. A. Reshchikov, K. M. Jones, D. F. Wang, R. Cingolani, H. Morkoc, R. J. Molnar, and D. J. Smith, “Highly selective photoelectrochemical etching of nitride materials for defect investigation and device fabrication,” Journal of Vacuum Science & Technology B, vol. 19, no. 4, 1328, 2001. [49] E. D. Haberer, R. Sharma, A. R. Stonas, S. Nakamura, S. P. DenBaars, and E. L. Hu, “Removal of thick (>100 nm) InGaN layers for optical devices using bandgap-selective photoelectrochemical etching,” APPLIED PHYSICS LETTERS, vol. 85, no. 5, 762, 2004. [50] C. Youtsey, G. Bulman, and I. Adesida, “Dopant-selective photoenhanced wet etching of GaN,” Journal of Electronic Materials, vol. 27, no. 4, 282, 1998. [51] A. R. Stonas, P. Kozodoy, H. Marchand, P. Fini, S. P. DenBaars, U. K. Mishra, and E. L. Hu, “Backside-illuminated photoelectrochemical etching for the fabrication of deeply undercut GaN structures,” APPLIED PHYSICS LETTERS, vol. 77, no. 16, 2610, 2000. [52] R. Sharma, E. D. Haberer, C. Meier, E. L. Hu, and S. Nakamura, “Vertically oriented GaN-based air-gap distributed Bragg reflector structure fabricated using band-gap-selective photoelectrochemical etching,” APPLIED PHYSICS LETTERS, vol. 87, no. 5, 051107, 2005. [53] Joonmo Park, Kwang Min Song, Seong-Ran Jeon, Jong Hyeob Baek, and Sang-Wan Ryu, “Doping selective lateral electrochemical etching of GaN for chemical lift-off,” APPLIED PHYSICS LETTERS, vol. 94, no. 22, 221907, 2009. [54] Yu Zhang, Qian Sun, Benjamin Leung, John Simon, Minjoo Larry Lee, and Jung Han, “The fabrication of large-area, free-standing GaN by a novel nanoetching process,” Nanotechnology, vol. 22, no. 4, 045603, 2011. [55] Dae-Woo Jeon, Han-Su Cho, Jae-Woo Park, Lee-Woon Jang, Myoung Kim, Ju-Won Jeon, Jin-Woo Ju, Jong Hyeob Baek, In-Hwan Lee, “Separation of laterally overgrown GaN template by using selective electrochemical etching,” Journal of Alloys and Compounds, vol. 542, 59, 2012. [56] T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano, I. Akasaki, Y. Kaneko, S. Nakagawa, Y. Yamaoka, and N. Yamada, “Determination of piezoelectric fields in strained GaInN quantum wells using the quantum-confined Stark effect,” Applied Physics Letters, vol. 73, no. 12, 1691, 1998. [57] Y. D. Jho, J. S. Yahng, E. Oh, and D. S. Kim, “Measurement of piezoelectric field and tunneling times in strongly biased InGaN/GaN quantum wells,” Applied Physics Letters, vol. 79, no. 8, 1130, 2001. [58] C. Y. Lai, T. M. Hsu, W.-H. Chang, K.-U. Tseng, C.-M. Lee, C.-C. Chuo, and J.-I. Chyi, “Direct measurement of piezoelectric field in In0.23Ga0.77N/GaN multiple quantum wells by electrotransmission spectroscopy,” Journal of Applied Physics, vol. 91, no. 1, 531, 2002. [59] I. H. Brown, I. A. Pope, P. M. Smowton, P. Blood, J. D. Thomson, W. W. Chow, D. P. Bour, and M. Kneissl, “Determination of the piezoelectric field in InGaN quantum wells,” Applied Physics Letters, vol. 86, no. 13, 131108, 2005. [60] C.-F. Huang, C.-Y. Chen, C.-F. Lu, and C. C. Yang, “Reduced injection current induced blueshift in anInGaN/GaN quantum-well light-emitting diode of prestrained growth,” Applied Physics Letters, vol. 91, no. 5, 051121, 2007. [61] T. M. Hsu, C. Y. Lai, W.-H. Chang, C.-C. Pan, C.-C. Chuo, and J.-I. Chyi, “Electroreflectance study on the polarization field in InGaN/AlInGaN multiple quantum wells,” Applied Physics Letters, vol. 84, no. 7, 1114, 2004. [62] T. Onuma, H. Amaike, M. Kubota, K. Okamoto, H. Ohta, J. Ichihara, H. Takasu, and S. F. Chichibu, “Quantum-confined Stark effects in the m-plane In0.15Ga0.85N/GaN multiple quantum well blue light-emitting diode fabricated on low defect density freestanding GaN substrate,” Applied Physics Letters, vol. 91, no. 18, 181903, 2007. [63] T. Koyama, T. Onuma, H. Masui, A. Chakraborty, B. A. Haskell, S. Keller, U. K. Mishra, J. S. Speck, S. Nakamura, S. P. DenBaars et al., “Prospective emission efficiency and in-plane light polarization of nonpolar m-plane InxGa1−xN/GaN blue light emitting diodes fabricated on freestanding GaN substrates,” Applied Physics Letters, vol. 89, no. 9, 091906, 2006. [64] M. Feneberg, F. Lipski, R. Sauer, K. Thonke, T. Wunderer, B. Neubert, P. Bruckner, and F. Scholz, “Piezoelectric fields in GaInN/GaN quantum wells on different crystal facets,” Applied Physics Letters, vol. 89, no. 24, 242112, 2006. [65] C.-C. Yang, C.-F. Lin, R.-H. Jiang, H.-C. Liu, C.-M. Lin, C.-Y. Chang, D.-S. Wuu, H.-C. Kuo, and S.-C. Wang, “Wet Mesa Etching Process in InGaN-based Light Emitting Diodes,” Electrochemical and Solid-State Letters, vol. 11, no. 7, H169, 2008. [66] C.-T. Lee, H.-W. Chen, and H.-Y. Lee, “Metal–oxide–semiconductor devices using Ga2O3 dielectrics on n-type GaN,” Applied Physics Letters, vol. 82, no. 24, 4304, 2003. [67] Y. Gao, I. Ben-Yaacov, U. K. Mishra, and E. L. Hu, “Optimization of AlGaN∕GaN current aperture vertical electron transistor (CAVET) fabricated by photoelectrochemical wet etching,” Journal of Applied Physics, vol. 96, no. 11, 6925, 2004. [68] E. Yablonovitch, T. Gmitter, J. P. Harbison, and R. Bhat, “Extreme selectivity in the lift‐off of epitaxial GaAs films, Applied Physics Letters, vol. 51, no. 26, 2222, 1987. [69] F. Brunner, A. Knauer, T. Schenk, M. Weyers, and J. T. Zettler, “Quantitative analysis of in situ wafer bowing measurements for III-nitride growth on sapphire,” Journal of Crystal Growth, vol. 310, no. 10, 2432, 2008. [70] G. G. Stoney, “The Tension of Metallic Films Deposited by Electrolysis,” Proceedings of the Royal Society of London Series A, vol. 82, no. 553, 172, 1909. [71] Y. D. Jho, J. S. Yahung, E. Oh, and D. S. Kim, “Field-dependent carrier decay dynamics in strained InxGa1-xN/GaN quantum wells,” PHYSICAL REVIEW B, vol. 66, no. 3, 035334, 2002. [72] T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, “Quantum-Confined Stark Effect due to Piezoelectric Field in GaInN Strained Quantum Wells,” Japanese Journal of Applied Physics, Part 2, vol. 36, no. 4A, 382, 1997. [73] I. Vurgaftman and J. R. Meyer, “Band parameters for nitrogen-containing semiconductors,” Journal of Applied Physics, vol. 94, no. 6, 3675, 2003. [74] V. Tilak, A. Vertiatchikh, J. Jiang, N. Reeves, and S. Dasgupta, “Piezoresistive and piezoelectric effects in GaN,” physica status solidi (c), vol. 3, no. 6, 2307, 2006. [75] M. K. Kwon, J. Y. Kim, I. K. Park, K. S. Kim, G. Y. Jung, S. J. Park, J. W. Kim, and Y. C. Kim, “Enhanced emission efficiency of GaN/InGaN multiple quantum well light-emitting diode with an embedded photonic crystal,” Applied Physics Letters, vol. 92, no.25, 251110, 2008. [76] C. C. Yang, C. F. Lin, C. M. Lin, C. C. Chang, K. T. Chen, J. F. Chien, and C. Y. Chang, “Improving light output power of InGaN-based light emitting diodes with pattern-nanoporous p-type GaN:Mg surfaces,” Applied Physics Letters, vol. 93, no. 20, 203103, 2008. [77] C. F. Lin, C. M. Lin, K. T. Chen, J. J. Dai, and M. S. Lin, “InGaN Light-Emitting Diodes With the Inverted Cone-Shaped Pillar Structures,” IEEE Electron Device Letters, vol. 31, no. 5, 458, 2010. [78] M. Y. Hsieh, C. Y. Wang, L. Y. Chen, T. P. Lin, M. Y. Ke, Y. W. Cheng, Y. C. Yi, C. P. Chen, D. M. Yeh, C. F. Lu, C. F. Huang, C. C. Yang, and J. J. Huang, “Improvement of External Extraction Efficiency in GaN-Based LEDs by SiO2 Nanosphere Lithography,” IEEE Electron Device Letters, vol. 29, no. 7, 658, 2008. [79] Y. Gao, T. Fujii, R. Sharma, K. Fujito, S. P. Denbaars, S. Nakamura, and E. L. Hu, “Roughening Hexagonal Surface Morphology on Laser Lift-Off (LLO) N-Face GaN with Simple Photo-Enhanced Chemical Wet Etching,” Japanese Journal of Applied Physics, vol. 43, no. 5A, L637, 2004. [80] C. F. Lin, K. T. Chen, and K. P. Huang, “Blue Light-Emitting Diodes With an Embedded Native Gallium Oxide Pattern Structure,” IEEE Electron Device Letters. vol. 31, no. 12, 1431, 2010. [81] M. Kim, T. Fujita, S. Fukahori, T. Inazu, C. Pernot, Y. Nagasawa, A. Hirano, M. Ippommatsu, M. Iwaya, T. Takeuchi, S. Kamiyama, M. Yamaguchi, Y. Honda, H. Amano, and I. Akasaki, “AlGaN-Based Deep Ultraviolet Light-Emitting Diodes Fabricated on Patterned Sapphire Substrates,” Applied Physics Express, vol. 4, 092102, 2011. [82] C. F. Lin, J. J. Dai, M. S. Lin, K. T. Chen, W. C. Huang, C. M. Lin, R. H. Jiang, and Y. C. Huang, “An AlN Sacrificial Buffer Layer Inserted into the GaN/Patterned Sapphire Substrate for a Chemical Lift-Off Process,” Applied Physics Express, vol. 3, 031001, 2010. [83] S. E. Brinkley, C. Lalau Keraly, J. Sonoda, C. Weisbuch, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Optical and Electrical Properties of μ-Slice InGaN/GaN Light Emitting Diodes Shaped by Focused Ion Beam Process,” Applied Physics Express, vol. 4, 032104, 2011. [84] C. F. Lin, Z. J. Yang, B. H. Chin, J. H. Zheng, J. J. Dai, B. C. Shieh, and C. C. Chang, “Enhanced Light Output Power in InGaN Light-Emitting Diodes by Fabricating Inclined Undercut Structure,” Journal of The Electrochemical Society, vol. 153, no. 12, G1020, 2006. [85] J. T. Chen, W. C. Lai, Y. C. Chang, J. K. Sheu, and W. C. Sen, “GaN-based light emitting diodes with micro- and nano-patterned structures by femtosecond laser nonlinear decomposition,” Applied Physics Letters, vol. 101, no. 13, 131103, 2012. [86] Y. D. Wang, K. Y. Zang, S. J. Chua, S. Tripathy, H. L. Zhou, and C. G. Fonstad, “Improvement of microstructural and optical properties of GaN layer on sapphire by nanoscale lateral epitaxial overgrowth,” Applied Physics Letters, vol. 88, no. 21, 211908, 2006. [87] H. Hartono, C. B. Soh, S. Y. Chow, S. J. Chua, and E. A. Fitzgerald, “Reduction of threading dislocation density in GaN grown on strain relaxed nanoporous GaN template,” Applied Physics Letters, vol. 90, no. 17, 171917, 2007. [88] L. Li, J. P. C. Liu, L. Liu, D. Li, L. Wang, C. Wan, W. Chen, Z. Yang, Y. Xie, X. Hu, and G. Zhang, “Defect Reduction via Selective Lateral Epitaxy of GaN on an Innovative Masked Structure with Serpentine Channels,” Applied Physics Express, vol. 5, 051001, 2012. [89] J. Park, K. M. Song, S. R. Jeon, J. H. Baek, and S. W. Ryu, “Doping selective lateral electrochemical etching of GaN for chemical lift-off,” Applied Physics Letters, vol. 94, no. 22, 221907, 2009. [90] Y. Zhang, B. Leung, and J. Han, “A liftoff process of GaN layers and devices through nanoporous transformation,” Applied Physics Letters, vol. 100, no. 18, 181908, 2012. [91] T. H. Lee, L. Kim, W. J. Hwang, C. C. Lee, and M. W. Shin, "Thermal analysis of GaN-based LEDs using the finite element method and unit temperature profile approach," physica status solidi (b), vol. 241, no. 12, 2681, 2004. [92] X. Guo and E. F. Schubert, "Current crowding and optical saturation effects in GaInN/GaN light-emitting diodes grown on insulating substrates," Applied Physics Letters, vol. 78, no. 21, 3337, 2001. [93] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, "Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening," Applied Physics Letters, vol. 84, no. 6, 855, 2004. [94] J. S. Ha, S. W. Lee, H. J. Lee, H. J. Lee, S. H. Lee, H. Goto, T. Kato, K. Fujii, M. W. Cho, and T. Yao, "The Fabrication of Vertical Light-Emitting Diodes Using Chemical Lift-Off Process," IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 20, no. 3, 175, 2008. [95] D. J. Rogers, F. H. Teherani, A. Ougazzaden, S. Gautier, L. Divay, A. Lusson, O. Durand, F. Wyczisk, G. Garry, T. Monteiro, M. R. Correira, M. Peres, A. Neves, D. McGrouther, J. N. Chapman, and M. Razeghi, “Use of ZnO thin films as sacrificial templates for metal organic vapor phase epitaxy and chemical lift-off of GaN,” Applied Physics Letters, vol. 91, no. 7, 071120, 2007. [96] J. Park, K. M. Song, S. R. Jeon, J. H. Baek, and S. W. Ryu, "Doping selective lateral electrochemical etching of GaN for chemical lift-off," Applied Physics Letters, vol. 94, no. 22, 221907, 2009. [97] Chia-Feng Lin, Jing-Jie Dai, Guei-Miao Wang, and Ming-Shiou Lin, "Chemical Lift-Off Process for Blue Light-Emitting Diodes," Applied Physics Express, vol. 3, no. 9, 092101, 2010.
摘要: 本論文主要為將濕式氧化蝕刻技術應用於氮化鎵光電元件之研製並且分析其光電特性。首先,為利用濕式平台蝕刻製程技術取代傳統電漿乾式蝕刻製程用以製作氮化銦鎵發光二極體,此濕式平台蝕刻製程主要為利用光輔助電化學氧化法於p形氮化鎵、氮化銦鎵發光層及n型氮化鎵上進行氧化蝕刻反應,進而定義出平台區範圍。此外由於濕式平台蝕刻製程會於平台側壁p型氮化鎵下方發生側向蝕刻,此過程能夠降低氮化銦鎵量子井所受之應力。因此,我們將分為三個區塊來探討乾式平台蝕刻製程及濕式平台蝕刻製程發光二極體之壓電場情況。由顯微光譜波長變化、變電壓之顯微光譜量測等可以發現到濕式平台蝕刻製程之壓電場由平台中心至透明導電膜邊緣有越來越小的情況;另外與傳統乾式平台蝕刻製程相比,其濕式平台蝕刻製程之壓電場也都小於乾式平台蝕刻製程。 接著第二部分為利用再磊晶成長技術於奈米柱結構之u型氮化鎵模板藉此製作出具有air-channel結構之發光二極體以及再利用選擇性濕式蝕刻製程技術於製作出同時具有air-channel/nanoporous之高效率發光二極體。此奈米柱結構為利用鎳金屬經過快速退火形成鎳金屬小球,再藉由乾式蝕刻製程所製作而出而此選擇性濕式蝕刻製程技術主要為藉由不同矽摻雜濃度在草酸溶液下進行光輔助電化學蝕刻製程藉此產生不同之蝕刻速率及形貌。在20毫安培驅動電流下,只具有air-channel和同時具有air-channel/nanoporous之發光二極體其亮度皆較一般發光二極體提升了1.48倍及1.75倍並且使其發散角有變小之情況。 最後一部分為將濕式蝕刻技術應用於發光二極體元件進行化學剝離製程。此技術有別於傳統化學剝離方式,為將成長於奈米柱結構上之發光二極體置於80 ℃、濃度2.2 M之氫氧化鉀溶液中進行剝離。此奈米柱結構形成之方式為上述所提。利用濕式蝕刻技術減縮奈米柱尺寸且在N-face面上進行晶面蝕刻,此奈米柱結構會限制N-face蝕刻之情況,藉此降低對上層發光二極體之損傷。於剝離後之發光二極體,由於N-face面上形成角錐結構使其亮度較未剝離前發光二極體提升2.28倍。
The major topics in this thesis were focused the characteristic of the fabrication and analysis about GaN-based optoelectronic devices through wet oxidation and etching process. In first part, a photoelectrichemical (PEC) wet mesa etching process was used to fabricate InGaN-based light-emitting diodes as a substitute for the conventional plasema mesa dry etching process. The etching process were consisted of photoelectrochemical wet oxidation and oxide-removed processes occurred on p-type GaN:Mg layer, InGaN active layer, and n-type GaN:Si layer to define mesa region. Furthermore, the wet mesa etching process produced lateral etching under p-GaN at mesa sidewall region and this process reduced strain in InGaN quantum well layers. We divided the three regions to discuss the piezoelectric fields of dry mesa etching and wet mesa etching process. From the results of the μ-PL spectra, bias-dependent μ-PL and other measurement, the piezoelectric fields from mesa center to TCL edge became smaller and smaller; additionally, the smaller piezoelectric fields of WME-LED were compared with the ST-LED. In second part, the light emitting diodes with the air-channel structure were fabricated by regrowth on a nanorods structure template. And then utilizing selective wet etching process formed nanoporous structure to embed in air-channel light-emitting diodes (A-LEDs). The nanorods structure was formed through the Ni film coated on u-GaN template was subsequently formed as the self-assembled Ni metal clusters using a rapid thermal annealing system, and then the u-GaN template layer was etched using a dry etching system. The selective wet etching was a dopant selective etching in oxalic acid by using PEC etching process to produce a different etching rate and morphology. For the A-LEDs and the nanoporous/air-channel LEDs (NA-LEDs), the light output powers were respectively enhanced 1.48- and 1.75-fold, and divergent angles was became smaller. In final part, the wet etching process was applied on chemical lift-off process of LEDs. The technique was different from other conventional chemical lift-off and it separated the LEDs from a nanorods structure template in a hot KOH solution (80 ℃, 2.2 M). The wet etching processes consisted of a reducing diameter process on a GaN nanorod structure and a crystallographic wet etched process on an N-face GaN surface. The N-face crystallographic etching process was limited by the boundary of the nanorod structure that InGaN active layer can prevent from the etching damage. The light output power of the lift-off LED had 2.28 times enhancement compared with the non-treated LED due to pyramidal-roughened structure formed.
URI: http://hdl.handle.net/11455/11418
其他識別: U0005-1806201313191900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1806201313191900
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.