Please use this identifier to cite or link to this item:
標題: 濺鍍銅(鉻鉬鈮釕鉭釩)合金薄膜自形成多元擴散阻障層之研究
Sputtering Deposition of Cu (CrMoNbRuTaV) Alloy Film for Self Formation of Multi-component Diffusion Barrier
作者: 趙家夆
Chao, Chia-Feng
關鍵字: 內連線
Self-forming Diffusion Barrier
Cu Alloy
出版社: 材料科學與工程學系所
引用: [1] J. J. Sniegowski, “Moving the World with Surface Micromachining”, Solid State Technology, 39 (1996) 83-87. [2] S.Wolf, “Silicon Processing for the VLSI Era.”,Sunset Beach, California , Lattice Precess, (2000) 111-191. [3] S.P. Murarka, and S.W. Hymes,“Copper metallization for ULSI and beyond”, Crit.l Rev. Solid State, 20 (1995) 87-124. [4] R.S. Muller, and K.I. Kamins, “Device Electronics for Integrated Circuits” , 2nd ed., Johm wiley & Sons, New York,(1986) 1-56. [5] Noya, and K. Sasaki,“Auger Electron Spectroscopy Study on the Characterization and Stability of the Cu9Al4/TiN/Si System”, J. Appl. Phys., 30 (1991) 1760-1763. [6] T. Kouno, H. Niwa, and M. Yamada,“Effect of TiN Microstructure on Barrier Properties in Cu metallization”, J. Electrochem. Soc., 145(1998) 2164-2167. [7] M. Stavrev, D. Fischer, A. Preub, C. Wenzel, and N. Mattern,“Study of nanocrystalline Ta(N,O) diffusion barriers for use in Cu metallization”, Microelectron. Eng., 33(1997) 269-275. [8] K.H Min, K.C. Chun, and K.B. Kim,“Comparative Study of Tantalum and Tantalum Nitrides (Ta2N and TaN) as a Diffusion Barrier for Cu Metallization”, J. Vac. Sci. Technol. B,14 (1996) 3263-3269. [9] S.H. Kwon, O.K. Kwon, J.S. Min, and S.W. Kang, “Plasma-Enhanced Atomic Layer Deposition of Ru–TiN Thin Films for Copper Diffusion Barrier Metals”, J. Electrochem. Soc., 153 (2006) 578-581. [10] C.W. Chen, J.S. Chen, and J.S. Jeng, “Improvement on the Diffusion Barrier Performance of Reactively Sputtered Ru–N Film by Incorporation of Ta”, J. Electrochem. Soc., 155.(2008) 438-442. [11] Y. Liu, S. Song, D. Mao, H. Ling, and M. Li, “Diffusion barrier performance of reactively sputtered Ta–W–N between Cu and Si”, Microelectron. Eng., 75 (2004) 309-315. [12] S. Rawal, D.P. Norton, H. Ajmera, T.J. Anderson, and L. McElwee-White, “Properties of Ta–Ge–(O)N as a diffusion barrier for Cu on Si”, Appl. Phys. Lett., 70 (2007) 051913. [13] K.C. Hsu, D.C. Perng and Y.C. Wang,“Robust ultra-thin RuMo alloy film as a seedless Cu diffusion barrier”, J. Alloy. Compd., 516 (2012) 102– 106. [14] Kuo-Chung Hsu, Dung-Ching Perng, Jia-Bin Yeh and Yi-Chun Wang,“Ultrathin Cr added Ru film as a seedless Cu diffusion barrier for advancedCu interconnects”, Appl. Surf. Sci., 258 (2012) 7225– 7230. [15] D.C. Tasi, Y.L. Huang, S.R. Lin, D.R. Jung, S.Y. Chang, Z.C. Chang, M.J. Deng and F.S. Shieu,“Characteristics of a 10 nm-thick (TiVCr)N multi-component diffusion barrier layer with high diffusion resistance for Cu interconnects”, Surf. Coat. Technol. 205 (2011) 5063-5067. [16] Y. Liu , S. Song, D. Mao, H. Ling and M. Li“Diffusion barrier performance of reactively sputtered Ta–W–N between Cu and Si”, Microelectron. Eng., 75 (2004) 309–315. [17] P. Majumdera and C. Takoudis,“Reactively sputtered Mo-V nitride thin films as ternary diffusion barrier for copper metallization”, J. Electrochem. Soc., 155 (2008) 703-706. [18] Y.H Chou, Y. Sung, Y.M Liu, N.W. Pu and M.D. Ger,“Amorphous Ni–Mo–P diffusion barrier deposited by non-isothermal deposition”, Surf. Coat. Technol., 203 (2009) 1020–1026. [19] S.T. Lin and C. Lee,“Characteristics of sputtered Ta-B-N thin film as diffusion barriers between copper and silicon”, Apppl. Surf. Sci., 253 (2006) 1215-1221. [20] H.Y. Cheng, Y.C. Chen, C.M. Lee, R.J. Chung and T.S. Chin, “Thermal stability and electrical resistivity of SiTaNx heating layer for Phase-change memories”, J. Electrochem. Soc., 153 (2006) 685-691. [21] J. Li, H.S. Lu, Y.W. Wang and X.P. Qu, “Sputtered Ru–Ti, Ru–N and Ru–Ti–N films as Cu diffusion barrier”, Microelectron. Eng., 88 (2011) 635–640. [22] J.S. FANG, J.H. LIN, B.Y. CHEN, G.S. CHEN and T.S. CHIN, “Low-Resistivity Ru-Ta-C Barriers for Cu Interconnects”, J. Electron. Mater.,41 (2011) 138-143. [23] G. He, L. Yao, Z. Song, Y. Li and K. Xu, “Diffusion barrier performance of nano-structured and amorphous Ru-Ge diffusion barriers for copper metallization”, Vacuum 86 (2012) 965-969. [24] P. Majumder and C.G. Takoudis, “Investigation on the diffusion barrier properties of sputtered Mo/W–N thin films in Cu interconnects”, Appl. Phys. Lett., 91 (2007) 162108. [25] B. Zhao, K. Sun, Z. Song and J. Yang,“Ultrathin Mo/MoN bilayer nanostructure for diffusion barrier application of advanced Cu metallization” Appl. Surf. Sci., 256 (2010) 6003–6006. [26] W. Sari, T.K. Eom, S.H. Choi and S.H. Kim,“Ru/WNx Bilayers as Diffusion Barriers for Cu Interconnects” Jpn. J. Appl. Phys.,50 (2011) 05EA08. [27] S. Rawal, D.P. Norton, K. Kim, T.J.Andersonn and L.McElwee-White,“Ge/HfNx diffusion barrier for Cu metallization on Si”, Appl. Phys. Lett., 89 (2006) 231914. [28] D.C. Perng, J.B. Yeh and K.C. Hsu,“Ru/WCoCN as a seedless Cu barrier system for advanced Cu metallization” , Appl. Surf. Sci., 256 (2009) 688–692. [29] L. C. Leu, D. P. Norton, L. McElwee-White and T. J. Anderson,“Ir/TaN as a bilayer diffusion barrier for advanced Cu interconnects” , Appl. Phys. Lett., 92 (2008) 111917. [30] Y. Wang, F. Cao, Y. Liu and M.H. Ding,“Investigation of Zr–Si–N/Zr bilayered film as diffusion barrier for Cu ultralarge scale integration metallization”, Appl. Phys. Lett., 92 (2008) 032108. [31] P. Majumder and C. Takoudis,“Thermal stability of Ti/Mo and Ti/MoN nanostructures for barrier applications in Cu interconnects” , Nanotechnology,19 (2008) 205202. [32] Q. Xie, X.P. Qu, J.J. Tan, Y.L.Jiang,M. Zhou, T. Chen and G.P. Ru“Superior thermal stability of Ta/TaN bi-layer structure for copper metallization”, Appl. Surf. Sci., 253 (2006) 1666–1672. [33] M.H. Tsai , J.W. Yeh and J.Y. Gan,“Diffusion barrier properties of AlMoNbSiTaTiVZr high-entropy alloy layer between copper and silicon” , Thin Solid Films, 516 (2008) 5527–5530. [34] M.H. Tsai, C.W. Wang, C.H. Lai, J.W. Yeh and J.Y. Gan“Thermally stable amorphous (AlMoNbSiTaTiVZr)50N50 nitride film as diffusion barrier in copper metallization” , Appl. Phys. Lett., 92, (2008) 052109. [35] S.Y Chang, M.K. Chen and D.S. Chen,“Multiprincipal-Element AlCrTaTiZr-Nitride Nanocomposite Film of Extremely High Thermal Stability as Diffusion Barrier for Cu Metallization”, J. Electrochem. Soc., 156 (2009) G37-G42. [36] S.Y Chang, C.Y. Wang, M.K. Chen and Chen-En Li,“Ru incorporation on marked enhancement of diffusion resistance of multi-component alloy barrier layers” , J. Alloy. Compd., 509 (2011) L85–L89. [37] M.H. Tsai, C.W. Wang, C.W. Tsai, W.J. Shen, J.W. Yeh, J.Y. Gan and W.W. Wu,“Thermal Stability and Performance of NbSiTaTiZr High-Entropy Alloy Barrier for Copper Metallization” , 158 (2011) H1161-H1165. [38] S.Y. Chang, C.Y. Wang, C.E. Li and Y.C. Huang“5 nm-Thick (AlCrTaTiZrRu)N0.5 Multi-ComponentBarrier Layer with High Diffusion Resistance for Cu Interconnects” , Nanosci. Nanotechnol. Lett., 3 (2011) 289-293. [39] 莊達人,“VLSI 製造技術” ,高立圖書公司,2006。 [40] C. Marcadal , E. Richard, J. Torres , J. Palleau and R. Madar,“CVD process for copper interconnection”, Microelectron. Eng., 37/38 (1997) 97-103. [41] F.A Lowenheim,“Moern Electroplating”, The Electrochem. Soc., 1974 . [42] P. C. Andricacos, C. Uzoh, J. O. Dukovic, J. Horkans, and H. Deligianni,“Damascene Copper Electroplating for Chip Interconnections”, IBM J. Res. Dev., 42 (1998) 567-574. [43] J. M. E. Harper, C. Cabral, P. C. Andricacos, L. Gignac, and I. C. Noyan et al., “Mechanisms for microstructure evolution in electroplated copper thin films near room temperature”, J. Appl. Phys., 86 (1999) 2516-2525. [44] W. C. Gau, T. C. Chang, Y. S. Lin, J. C. Hu, L. J. Chen, C. Y. Chang, C. L. Cheng, “Copper electroplating for future ultralarge scale integration interconnection,” , J. Vac. Sci. Technol. A, 18 (2000) 656-661. [45] P. Majumder, and C.G. Takoudis, “Investigation on the diffusion barrier properties of sputtered Mo/W–N thin films in Cu interconnects” , Appl. Phys. Lett., 91 (2007) 162108. [46] L.C. Leu, D.P. Norton, L. McElwee-White, and T.J. Anderson, “Ir/TaN as a bilayer diffusion barrier for advanced Cu interconnects” , Appl. Phys. Lett., 92 (2008) 111917. [47] J.C. Chuang, S.L. Tu, and M.C. Chen, “Sputtered Cr and reactively sputtered CrN serving as barrier layers against Copper diffusion”, J. Electrochem. Soc., 145 (1998) 4290-4296. [48] Xin-Ping Qu “Improved barrier properties of ultrathin Ru film with TaN interlater for copper metallization”, Appl. Phys. Lett. ,88,151912(2006) . [49] M.T. Wang, Y.C. Lin, and M.C. Chen, “Barrier properties of very thin Ta and TaN layers against Copper diffusion”, J. Electrochem. Soc., 145 (1998) 2538-2545. [50] T. B. Massalski, “Binary alloy phase diagrams”, American Society for Metals (1990) . [51] H. K. Chiu, M. S. Tsai, H. C. Lin, Dry Process Symposium, 1998, p175. [52] J.P. Manaud , A. Poulon, S. Gomez, Y. Le Petitcorps “A comparative study of CrN, ZrN, NbN and TaN layers as cobalt diffusionbarriers for CVD diamond deposition on WC–Co tools” , Surface & Coatings Technology 202 (2007) 222–231. [53] Mayumi B. Takeyama_, Takaomi Itoiy, and Atsushi Noya“Evolution of Microstructures in Nanocrystalline VN Barrier Leading to Failure in Cu/VN/SiO2/Si Systems” , Japanese Journal of Applied Physics 49 (2010) 05FA05. [54] S.Y. Chang, and D.S. Chen, “(AlCrTaTiZr)N/(AlCrTaTiZr)N0.7 bilayer structure of high resistance to the interdiffusion of Cu and Si at 900°C”, Mater. Chem. Phys., 125 (2011) 5-8. [55] S.Y. Chang, C.E. Li, S.C. Chiang, and Y.C. Huanga, “4-nm thick multilayer structure of multi-component (AlCrRuTaTiZr)Nx as robust diffusion barrier for Cu interconnects”, J. Alloy. Compd., 515 (2012) 4-7. [56] J. Koike, and M. Wada, “Self-forming diffusion barrier layer in Cu–Mn alloy metallization”, Appl. Phys. Lett., 87 (2005) 041911. [57] S. Tsukimoto, T. Morita, M. Moriyama, Kazuhiro Ito and Masanori Murakami, “Formation of Ti Diffusion Barrier Layers in Thin Cu(Ti) Alloy Films”, J. Electrochem. Soc., 34(2005) 592-599. [58] Y. Wang, F. Cao, M. L. Zhang, and T. Zhang, “Property improvement of Cu-Zr alloy films with ruthenium addition for Cu metallization”, Acta Mater., 59 (2011) 400-404. [59] J. P. Chu, C. H. Lin, P. L. Sun, and W. K. Leau, “Cu(ReNx) for advanced barrierless interconnects stable up to 730 degrees C”, J. Electrochem. Soc., 156 (2009) H540-H543. [60] K. Ito, S.Tsukimoto, T. KABE, K. Tada, and M. Murakami, “Effects of Substrate Materials on Self-Formation of Ti-Rich Interface Layers in Cu(Ti) Alloy Films”, J. Electron, Mater., 36 (2007) 606-613. [61] M. He, and T.M. Lu, “Chapter 7 Self-Forming Barriers”, Metal-Dielectric Interfaces in Gigascale Electronics, (2012) 91-108.
摘要: 在半導體銅內連線結構中,為防止銅迅速擴散進入元件內造成特性退化,必須在介電層與銅導線間沉積一極薄具高熱穩定性、低電阻係數及良好界面附著性之有效擴散阻障層。本研究以射頻磁控濺鍍法於矽基板上沉積銅(鉻鉬鈮釕鉭釩)合金薄膜,經400°C退火後,藉由合金元素擴散至界面處自形成一多元擴散阻障層,期望能開發出性質優越之擴散阻障層材料。經擴散阻障性質分析研究發現,純銅膜結構於300°C明顯出現Cu3Si (312) 訊號且電阻值上升,顯示銅矽已交互擴散發生反應。而銅 (鉻鉬鈮釕鉭釩) 合金薄膜則可有效將阻障極限溫度自300°C提升至400°C,顯示銅合金薄膜具有較佳之擴散阻障能力。經分析可知,銅合金薄膜內的合金元素確實擴散至界面處自形成一極薄之阻障層,阻止銅快速擴散進入矽基板中,因此提供了較佳之擴散阻障能力。
To prevent rapid Cu diffusion into electronic devices and subsequent performance degradation, a thin and effective diffusion barrier layer with high thermal stability, low electrical resistivity and also good interface adhesion is strongly demanded between Cu wires and dielectric layers in Cu interconnect structures. In this study, a Cu(CrMoNbRuTaV) alloy film was deposited on Si substrates by radio-frequency magnetron sputtering. A multi-component diffusion barrier self formed at the Cu/Si interface by the diffusion of alloyed elements during thermal annealing at 400�C for the development of a promising diffusion barrier material. Experiment results indicated that, for pure Cu films after annealing at 300�C, a Cu3Si compound formed, and the electrical resistivity increased, revealing the interdiffusion and reaction of Cu and Si. For the Cu(CrMoNbRuTaV) alloy film, the endurance temperature was effectively enhanced from 300 to 400�C, suggesting the better diffusion resistance of the alloy film. By analyses, the alloyed elements indeed diffused to the Cu/Si interface and formed an ultra-thin barrier layer to prevent the rapid Cu diffusion into Si substrates, accordingly providing a better diffusion resistant ability.
其他識別: U0005-1311201221214100
Appears in Collections:材料科學與工程學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.