Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11424
標題: 無電鍍銅(錸)合金薄膜自形成錸擴散阻障層之研究
Electroless Deposition of Cu(Re) Alloy Film for Self Formation of Re Diffusion Barrier
作者: 梁莉苹
Liang, Li-Ping
關鍵字: 自形成擴散阻障層
self-formed diffusion barrier
無電鍍
銅(錸)合金
熱穩定性
electroless deposition
copper(rhenium) alloy
thermal stability
出版社: 材料科學與工程學系所
引用: [1] Shyam P. Murarka, “Multilevel interconnections for ULSI and GSI era” , Mater. Sci. Eng., R., 19 (1997) 87-151. [2] C.A. Chang, “Formation of copper silicides from Cu(100)/Si(100) and Cu(111)/Si(111) structures ” , J. Appl. Phys., 67 (1990) 566-569. [3] L. Stolt, and F.M. D’Heurle, “The formation of Cu3Si marker experiments”, Thin Solid Films, 189 (1990) 269-274. [4] M.H. Tsai, S.C. Sun, C.E. Tsai, S.H. Chuang, and H.T. Chiu, “Comparison of the diffusion barrier properties of chemical vapor deposited TaN and sputtered TaN between Cu and Si” , J. Appl. Phys., 79 (1996) 6032-6938. [5] K.H. Min, K.C. Chun, and K.B. Kim, “Comparative study of tantalum and tantalum nitrides (Ta2N and TaN) as a diffusion barrier for Cu metallization” , J. Vac. Sci. Technol. B, 14 (1996) 3263-3269. [6] K.C. Park, K.B. Kim, I.J.M.M. Raaijmakers, and K. Ngan, “The effect of density and microstructure on the performance of TiN barrier films in Cu metallization” ,J. Appl. Phys., 80 (1996) 5674-5681. [7] T. Kouno, H. Niwa, and M. Yamada, “Effect of TiN microstructure on diffusion barrier properties in Cu metallization” ,J. Electrochem. Soc., 145 (1998) 2164-2167. [8] P. Majumder, and C.G. Takoudis, “Investigation on the diffusion barrier properties of sputtered Mo/W–N thin films in Cu interconnects” , Appl. Phys. Lett., 91 (2007) 162108. [9] P. Majumder, and C. Takoudis, “Thermal stability of Ti/Mo and Ti/MoN nanostructures for barrier applications in Cu interconnects”, Nanotechnology, 19 (2008) 205202. [10] L.C. Leu, D.P. Norton, L. McElwee-White, and T.J. Anderson, “Ir/TaN as a bilayer diffusion barrier for advanced Cu interconnects” , Appl. Phys. Lett., 92 (2008) 111917. [11] International Technology Roadmap for Semiconductors-2011 Edition, http://www.itrs.net/Links/2011ITRS/2011Chapters/2011Inter connect.pdf [12] J. Koike and M. Wada, “Self-forming diffusion barrier layer in Cu–Mn alloy metallization” , Appl. Phys. Lett., 87 (2005) 041911. [13] M. J. Frederick and G. Ramanath, “Interfacial phase formation in Cu–Mg alloy films on SiO2” , J. Appl. Phys., 95 (2004) 3202. [14] M. J. Frederick and G. Ramanath, “Kinetics of interfacial reaction in Cu–Mg alloy films on SiO2” , J. Appl. Phys., 95 (2004) 363. [15] S. Tsukimoto, T. Morita, M. Moriyama, K. Ito, and M. Murakami, “Formation of Ti Diffusion Barrier Layers in Thin Cu(Ti) Alloy Films” , J. Electron. Mater., 34 (2005) 592-599. [16] C.H. Lin, W.K. Leau, and C.H. Wu, “Copper–Holmium Alloy Film for Reliable Interconnects” , Jpn. J. Appl. Phys., 49 (2010) 05FA03. [17] C.H. Lin, and W.K. Leau, “Copper-Silver Alloy for Advanced Barrierless Metallization” , J. Electron. Mater., 38 (2009) 2212-2221. [18] J.J. Sniegowski, “Moving the World with Surface Micromachining”, Solid State Technology, 39 (1996) 83-87. [19] S.Wolf, “Silicon Processing for the VLSI Era.” ,Sunset Beach, California, Lattice Precess, (2000) p. 111-191. [20] S.P. Murarka, and S.W. Hymes, “Copper metallization for ULSI and beyond” , Crit.l Rev. Solid State, 20 (1995) 87-124. [21] R.S. Muller, and K.I. Kamins, “Device Electronics for Integrated Circuits” , 2nd ed., Johm Wiley & Sons, New York, (1986) p. 1-56. [22] R.C. Weast, CRC Handbook of Chemistry and Physics, The Chemical Rubber Co., New York, (1970). [23] 莊達人,“VLSI 製造技術”,高立圖書公司,2006年。 [24] A. Noya, and K. Sasaki, “Auger Electron Spectroscopy Study on the Characterization and Stability of the Cu9Al4/TiN/Si System” , Jpn. J. Appl. Phys., 30 (1991) 1760-1763. [25] T. Kouno, H. Niwa, and M. Yamada, “Effect of TiN Microstructure on Barrier Properties in Cu metallization” ,J. Electrochem. Soc., 145 (1998) 2164-2167. [26] M. Stavrev, D. Fischer, A. Preub, C. Wenzel, and N. Mattern, “Study of nanocrystalline Ta(N,O) diffusion barriers for use in Cu metallization” ,Microelectron. Eng., 33(1997) 269-275. [27] T. Oka, E. Kawakami, M. Uecubo, K. Takahiro, S. Yamaguchi and M. Murakami, “Diffusion Barrier Property of TaN between Si and Cu”, Appl. Surf. Sci., 99 (1996) 265-272. [28] K.H Min, K.C. Chun, and K.B. Kim, “Comparative Study of Tantalum and Tantalum Nitrides (Ta2N and TaN) as a Diffusion Barrier for Cu Metallization” ,J. Vac. Sci. Technol. B, 14 (1996) 3263-3269. [29] C. Li, J. H. Hsieh, and Z.Z. Tang, “Diffusion Barriers Performance of Amorphous Ta–Zr Films in Cu Metallization” ,Surf. Coat. Technol., 202 (2008) 5676-5679. [30] C.W. Chen, J.S. Jeng, and J.S. Chen, “Comparative Study of Cu Diffusion in Ru and Ru-C Films for Cu Metallization” ,J. Electrochem. Soc., 157 (2010) H997-H1002. [31] K.C. Hsu, D.C. Perng and Y.C Wang, “Robust ultra-thin RuMo alloy film as a seedless Cu diffusion barrier” ,J. Alloy. Compd., 516 (2012) 102-106. [32] D.C. Tsai,Y.L. Huang, S.R. Lin, D.R Jung, S.Y. Chang and F.S. Shieu, “Diffusion barrier performance of TiVCr alloy film in Cu metallization” ,Appl. Surf. Sci., 257 (2011) 4923-4927. [33] D.C. Tasi, Y.L. Huang, S.R. Lin, D.R. Jung, S.Y. Chang, Z.C. Chang, M.J. Deng and F.S. Shieu, “Characteristics of a 10 nm-thick (TiVCr)N multi-component diffusion barrier layer with high diffusion resistance for Cu interconnects” ,Surf. Coat. Technol., 205 (2011) 5063-5067. [34] Kuo-Chung Hsu, Dung-Ching Perng, Jia-Bin Yeh and Yi-Chun Wang, “Ultrathin Cr added Ru film as a seedless Cu diffusion barrier for advanced Cu interconnects” , Appl. Surf. Sci., 258 (2012) 7225- 7230 [35] Y. Liu, S. Song, D. Mao, H. Ling and M. Li, “Diffusion barrier performance of reactively sputtered Ta–W–N between Cu and Si”, Microelectron. Eng., 75 (2004) 309-315. [36] P. Majumdera and C. Takoudis, “Reactively sputtered Mo-V nitride thin films as ternary diffusion barrier for copper metallization” ,J. Electrochem. Soc., 155 (2008) 703-706. [37] Y.H Chou, Y. Sung, Y.M Liu, N.W. Pu and M.D. Ger, “Amorphous Ni–Mo–P diffusion barrier deposited by non-isothermal deposition” , Surf. Coat. Technol., 203 (2009) 1020-1026. [38] S.T. Lin and C. Lee, “Characteristics of sputtered Ta-B-N thin film as diffusion barriers between copper and silicon” ,Apppl. Surf. Sci., 253 (2006) 1215-1221. [39] H.Y. Cheng, Y.C. Chen, C.M. Lee, R.J. Chung and T.S. Chin, “Thermal stability and electrical resistivity of SiTaNx heating layer for Phase-change memories” ,J. Electrochem. Soc., 153 (2006) 685-691. [40] J. Li, H.S. Lu, Y.W. Wang and X.P. Qu, “Sputtered Ru–Ti, Ru–N and Ru–Ti–N films as Cu diffusion barrier” ,Microelectron. Eng., 88 (2011) 635-640. [41] J.S. Fanfg, J.H. Lin, B.Y. Chen, G.S. Chen and T.S. Chin, “low-resistivity Ru-Ta-C barriers for Cu interconnects” ,J. Electron. Mater., 41 (2011) 138-143. [42] G. He, L. Yao, Z. Song, Y. Li and K. Xu, “Diffusion barrier performance of nano-structured and amorphous Ru-Ge diffusion barriers for copper metallization” , Vacuum 86 (2012) 965-969. [43] B. Zhao, K. Sun, Z. Song and J. Yang, “Ultrathin Mo/MoN bilayer nanostructure for diffusion barrier application of advanced Cu metallization” , Appl. Surf. Sci., 256 (2010) 6003-6006. [44] W. Sari, T.K. Eom, S.H. Choi and S.H. Kim, “Ru/WNx Bilayers as Diffusion Barriers for Cu Interconnects” ,Jpn. J. Appl. Phys., 50 (2011) 05EA08. [45] S. Rawal, D.P. Norton, K. Kim, T.J.Andersonn and L.McElwee-White, “Ge/HfNx diffusion barrier for Cu metallization on Si” ,Appl. Phys. Lett., 89 (2006) 231914. [46] D.C. Perng, J.B. Yeh and K.C. Hsu, “Ru/WCoCN as a seedless Cu barrier system for advanced Cu metallization” ,Appl. Surf. Sci., 256 (2009) 688-692. [47] L. C. Leu, D. P. Norton, L. McElwee-White and T. J. Anderson, “Ir/TaN as a bilayer diffusion barrier for advanced Cu interconnects” , Appl. Phys. Lett., 92 (2008) 111917. [48] Y. Wang, F. Cao, Y. Liu and M.H. Ding, “Investigation of Zr–Si–N/Zr bilayered film as diffusion barrier for Cu ultralarge scale integration metallization” ,Appl. Phys. Lett., 92 (2008) 032108. [49] Q. Xie, X.P. Qu, J.J. Tan, Y.L.Jiang,M. Zhou, T. Chen and G.P. Ru, “Superior thermal stability of Ta/TaN bi-layer structure for copper metallization” ,Appl. Surf. Sci., 253 (2006) 1666-1672. [50] M.H. Tsai , J.W. Yeh and J.Y. Gan, “Diffusion barrier properties of AlMoNbSiTaTiVZr high-entropy alloy layer between copper and silicon” ,Thin Solid Films, 516 (2008) 5527-5530. [51] M.H. Tsai, C.W. Wang, C.H. Lai, J.W. Yeh and J.Y. Gan“Thermally stable amorphous (AlMoNbSiTaTiVZr)50N50 nitride film as diffusion barrier in copper metallization” ,Appl. Phys. Lett., 92, (2008) 052109. [52] S.Y Chang, M.K. Chen and D.S. Chen, “Multiprincipal-Element AlCrTaTiZr-Nitride Nanocomposite Film of Extremely High Thermal Stability as Diffusion Barrier for Cu Metallization” , J. Electrochem. Soc., 156 (2009) G37-G42. [53] M.H. Tsai, C.W. Wang, C.W. Tsai, W.J. Shen, J.W. Yeh, J.Y. Gan and W.W. Wu, “Thermal Stability and Performance of NbSiTaTiZr High-Entropy Alloy Barrier for Copper Metallization” , J. Electrochem. Soc. , 158 (2011) H1161-H1165. [54] S.Y. Chang, C.Y. Wang, C.E. Li and Y.C. Huang, “5 nm-Thick (AlCrTaTiZrRu)N0.5 Multi-Component Barrier Layer with High Diffusion Resistance for Cu Interconnects” ,Nanosci. Nanotechnol. Lett., 3 (2011) 289-293. [55] A. Lindsay Greer, Nature (1993) 303. [56] Hankbook Committee, Metal Handbook, Ed. 10, Vol. 3, ASM International, Metals Park, OH, 1992. [57] J.W. Yeh, S.K., Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau and S.Y. Chang, “Nanostructure High-Entropy Alloys with Multiple Principal Element: Novel Alloy Design Concepts and Outcomes” , Adv. Eng. Mater., 6 (2004) 299-303. [58] F.R. de Boer, R. Boom, W.C.M. Mattens, A.R. Miedema and A.K. Niessen, in Cohesion in Metals: Transition Metal Alloy (Eds: F.R. de Boer, D.G. Pettifor), Elsevier, New York, 1998, Ch.1 and 2. [59] C.J. Tong, M.R. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, S.J. Lin and S.Y Chang, “Mechanical Performance of AlxCoCrCuFeNi High-Enteopy alloy System with Multiprincipal Elements” ,Metall. Mater. Trans. A 36 (2005) 1263-1271. [60] S.Y Chang and D.S Chen, “10-nm-thick quinary (AlCrTaTiZr)N film as effective diffusion barrier for Cu interconnects at 900°C” ,Appl. Phys. Lett., 94 (2009) 231909. [61] S.Y. Chang, C.E. Li, S.C. Chiang, and Y.C. Huanga, “4-nm thick multilayer structure of multi-component (AlCrRuTaTiZr)Nx as robust diffusion barrier for Cu interconnects” ,J. Alloy. Compd., 515 (2012) 4-7. [62] S.Y. Chang, and D.S. Chen, “(AlCrTaTiZr)N/(AlCrTaTiZr)N0.7 bilayer structure of high resistance to the interdiffusion of Cu and Si at 900°C” ,Mater. Chem. Phys.,125 (2011) 5-8. [63] M. He and T.M. Lu, “Self-forming barriers”, Springer Series in Materials Science, 157 (2012) 91-108. [64] 馮世昌,“以自形成氧化錳薄膜應用於銅金屬化擴散阻障層特性研究”,國立交通大學材料科學工程研究所碩士論文,2011年。 [65] D.C. Perng, J.B Yeh, K.C. Hsu, and S.W Tsai, “Self-forming AlOx layer as Cu diffusion barrier on porous low-k film” ,Thin Solid Films, 518 (2010) 1648-1652. [66] S. Tsukimoto, T. Morita, M. Moriyama, K. Ito, and M. Murakami, “Formation of Ti Diffusion Barrier Layers in Thin Cu(Ti) Alloy Films”, J. Electron. Mater., 34 (2005) 592-599. [67] K. Kohama, K. Ito, S. Tsukimoto, K. Mori, K. Maekawa, and M. Murakami, “Characterization of Self-Formed Ti-Rich Interface Layers in Cu(Ti)/Low-k Samples” ,J. Electron. Mater., 37 (2008) 1148-1157. [68] M. J. Frederick and G. Ramanath, “Interfacial phase formation in Cu–Mg alloy films on SiO2” ,J. Appl. Phys., 95 (2004) 3202 . [69] M. J. Frederick and G. Ramanath, “Kinetics of interfacial reaction in Cu–Mg alloy films on SiO2” ,J. Appl. Phys. 95 (2004) 363. [70] C.H. Lin, W.K. Leau, and C.H. Wu, “Copper–Holmium Alloy Film for Reliable Interconnects”, Jpn. J. Appl. Phys., 49 (2010) 05FA03. [71] C.H. Lin, W.K. Leau and C.H. Wu, “The Application of Barrierless Metallization in Making Copper Alloy, Cu(RuHfN), Films for Fine Interconnects”, J. Electron. Mater., 39 (2010) 2441-2447. [72] X.Y. Zhanga, X.N. Li a, L.F. Niea, J.P. Chub, Q. Wanga, C.H. Linc and C. Donga, “Highly stable carbon-doped Cu films on barrierless Si” ,Appl. Surf. Sci., 257 (2011) 3636–3640. [73] 施敏,“半導體元件物理及製作技術”,國立交通大學出版社,2002 年。 [74] 羅吉宗,“薄膜科技與應用”,全華圖書股份有限公司,2009 年。 [75] C. Marcadal , E. Richard, J. Torres , J. Palleau and R. Madar, “CVD process for copper interconnection” ,Microelectron. Eng., 37/38 (1997) 97-103. [76] F.A Lowenheim, “Moern Electroplating” ,The Electrochem. Soc., 1974. [77] P. C. Andricacos, C. Uzoh, J. O. Dukovic, J. Horkans and H. Deligianni, “Damascene Copper Electroplating for Chip Interconnections” ,IBM J. Res. Dev., 42 (1998) 567-574. [78] J. M. E. Harper, C. Cabral, P. C. Andricacos, L. Gignac and I. C. Noyan et al., “Mechanisms for microstructure evolution in electroplated copper thin films near room temperature” ,J. Appl. Phys., 86 (1999) 2516-2525. [79] W. C. Gau, T. C. Chang, Y. S. Lin, J. C. Hu, L. J. Chen, C. Y. Chang and C. L. Cheng, “Copper electroplating for future ultralarge scale integration interconnection” ,J. Vac. Sci. Technol. A, 18 (2000) 656-661. [80] Y. Shacham-Diamand, V. D. and M.Angyal, “Electroless copper deposition for ULSI” ,Thin Solid Films, 262 (1995) 93-103. [81] V.M. Dubin, Y. Shacam-Diamand, B. Zhao, P.K. Vasuder and C.H. Ting, “Selective and Blanket Electroless Copper Deposition for Ultralarge Scale Integration” ,J. Electrochem. Soc., 144 (1997) 898-908. [82] H.H. Hsu, C.C. Hsie, M.H. Chen, S.J. Lin and J.W. Yeh, “Displacement Activation of Tantalum Diffusion Barrier Layer for Electroless Copper Deposition” ,J. Electrochem. Soc., 148 (2001) C590-C598. [83] B.K.W. Baylis, A. Busuttil, N.E. Hedgecock and M. Schlesinger, “Tin (Ⅳ) Chloride Solution as a Sensitizer in Photoselective Metal Deposition” ,J. Electrochem. Soc., 123 (1976) 348-351. [84] M.J. Desilva and Y.S. Diamand, “A Novel Seed Layer Scheme to Protect Catalytic Surfaces for Electroless Deposition” ,J. Electrochem. Soc., 143 (1996) 3512-3516. [85] N. Feldstein and J.A. Weiner, “Surface Characterization of Sensitized and Activa Teflon” ,J. Electrochem. Soc., 120 (1973) 475. [86] S.Y. Chang, C.J. Hsu, R.H. Fang and S.J. Lin, “Electrochemical Deposition of Nanoscaled Palladium Catalysts for 65 nm Copper Metallization” ,J. Electrochem. Soc., 150 (2003) C603-C607. [87] S.Y. Chang, C.W Lin, H.H. Hsu, J.H. Fang and S.J. Lin, “Integrated electrochemical deposition of copper metallization for ultralarge-scale integrated circuits” ,J. Electrochem. Soc., 151 (2004) C81-C88. [88] H.H. Hsu, J.W. Yeh and S.J. Lin, “Repeated 3D nucleation in eledtroless Cu deposition and the grain boundary structure involved” ,J. Electrochem. Soc., 150 (2003) C813-C815. [89] 莊萬發編著,“無電解鍍金-化學鍍金技術”,復漢出版社,台南市,1996 年。 [90] Y. Lantasov, R. Palmans and K. Maex, “New plating bath for electroless copper deposition on sputtered barrier layers”, Microelectron. Eng., 50 (2000) 441–447 [91] M. Schlesinger and M. Paunovic, “Modern Electroplating”, Wiley-Interscience, 2000, p645. [92] J. Li, H. Hayden, Paul A. Kohl, “The influence of 2,2-dipyridyl on non-formaldehyde electroless copper plating” ,Electrochim. Acta, 49 (2004) 1789–1795. [93] D.H. Cheng, W.Y. Xu, Z.Y. Zhang and Z.H. Yiao, “Electroless Copper Plating Using Hypophosphite as Reducing Agent” ,Met. Finish., 95 (1997) 34. [94] J.E. A van den Meerakker, “On the mechanism of Electroless Plating:I. Oxidation of Formaldehyde at Different Electrode Surface” ,J. Appl. Electrohem., 11 (1981) 395-401. [95] E. A van den Meerakker, “On the mechanism of Electroless Plating: II. One Mechanism for Different Reductants” ,J. Appl. Elecrtochem., 11 (1981) 387-493. [96] Y. Shacham-Diamand,V. Dubin and M. Angyal, “Electroless copper deposition for ULSI” ,Thin Solid Films, 262 (1995) 93-103. [97] Y. Shacham-Diamand and V.M. Dubin, “Copper electroless deposition technology for ultra-large-scale- integration (ULSI) metallization” ,Microelectron. Eng., 33 (1997) 47-58. [98] Y. Shacham-Diamandz, “Electroless Copper Deposition Using Glyoxylic Acid as Reducing Agent for Ultralarge Scale Integration Metallization” ,Electrochem. Solid State Lett., 3 (2002) 279-282. [99] M. Pounovic and R. Arndt, “The Effect of Some Additives on Electroless Copper Deposition” ,J. Electrochem. Soc., 130 (1983) 794-799. [100] Yosi Shacham-Diamand, Valery M. Dubin, “Copper electroless deposition technology for ultra-large-scale-integration(ULSI) metallization” ,Microelectron. Eng., 33 (1997) 47-58. [101] Trans. Inst. Metal Finish., “Rhenium plating” , Trans. Inst. Metal Finish., 101 (2003) 86-96. [102] Adi Naor, Noam Eliaz, Eliezer Gileadi and S. Ray Taylor, “Properties and Applications of Rhenium and Its Alloys” ,The Ammtiac Quarterly, 5 (2010) 11-15. [103] Magyar, M.J., Minerals Yearbook:Rhenium, US Geological Survey March 2008. [104] T.B. Massalski, H. Okamoto, P.R. Subramanian and L. Kacprzak, “Binary Alloy Phase Diagrams” ,ASM International, 2 (1990) P.1464. [105] T.B. Massalski, H. Okamoto, P.R. Subramanian and L. Kacprzak, “Binary Alloy Phase Diagrams” ,ASM International, 3 (1990) P.3063. [106] Russian Patent SU396438-A;1974. [107] Alla Duhin, Alexandra Inberg, Noam Eliaz and Eliezer Gileadi, “Electroless plating of rhenium–nickel alloys” ,Electrochim. Acta, 56 (2011) 9637– 9643 [108] J. P. Chu, C. H. Lin, P. L. Sun and W. K. Leau, “Cu(ReN) for advanced barrierless interconnects stable up to 730°C” ,J. Electrochem. Soc., 156 (2009) H540-H543. [109] 姚壽山、李戈揚、胡文彬編,“表面科學與技術”,機械工業出版社,北京,2004 年。 [110] A. Kohn, M. Eizenberg, Y. Shacham-Diamand, B. Israel and Y. Sverdlov, “Evaluation of electroless deposited Co(W,P) thin films as diffusion barriers for copper metallization” ,Microelectron. Eng., 55 (2001) 97–303. [111] Y. Shacham-Diamand, Sverdlov, Y and Petrov. N, “Electroless deposition of thin-film cobalt-tungsten-phosphorus layers using tungsten phosphoric acid (H-3[P(W3O10)(4)]) for ULSI and MEMS applications” ,J. Electrochem. Soc., 148 (2001) C162-C167. [112] K. Ohmori, K. Mori, K. Maekawa, K. Kohama, K. Ito, T. Ohnishi, M. Mizuno, K. Asai, M. Murakami and H. Miyatake, “Performance of Cu Dual-Damascene Interconnects Using a Thin Ti-Based Self-Formed Barrier Layer for 28nm Node and Beyond” ,Jpn. J. Appl. Phys., 49 (2010) 05FD01. [113] B.D. Cullity and S.R. Stock, “Elements of X-Ray Diffraction” , Prentice-Hall, Inc., Upper Saddle River, New Jersey, (2001) 169-171. [114] A. Atrens and A. S. Lim, Applied Physics A, 51 (1990) 411-418 [115] A. Rochefort, J. C. Bertolini, M. Abon and P. Delichere, Physical Electronics Division. [116] G. Haemers, J.J. Verbist and S. Maroie, Applications of Surface Science, 17 (1984) 463-476. [117] G. Mink, G. Varsanyi, I. Bertoti, J. Grabis, J. Vaivads, T. Millers and T. Szekely, Surface and Interface Analysis, 12 (1988) 527-530. [118] G. Kumar, J.R. Blackburn, M.M. Jones, R.G. Albridge, W.E. Moddeman, Inorganic Chemistry, 11 (1972) 296-300. [119] C.D. Wangner, J.F. Moulder, L.E. Davis and W.M. Riggs, Perking-Elmer Corporation, Physical Electronics Division.
摘要: 隨著積體電路線寬及線距不斷縮小,具有低電阻率及高抗電遷移能力的銅已被廣泛地應用作為內連線材料。為防止銅迅速地擴散進入矽元件內,須在介電層與銅導線間沉積一有效之擴散阻障層,且具有高熱穩定性、低電阻係數及良好界面附著性等特性。本研究便以無電鍍方法於矽基板上沉積銅(錸)合金薄膜,探討其作為銅內連線自形成擴散阻障層之可行性。實驗中使用不同比例之銅錸鍍液(10:1、10:2及10:3)於矽基板上沈積不同錸含量之銅(錸)合金薄膜,其中以比例10:1之銅錸鍍液所沉積之薄膜較為平整,且退火後經X光繞射及電阻率分析發現其損壞程度較低,適合作為自形成擴散阻障層。由研究結果並發現,純銅膜經 400°C 退火後便開始出現 Cu3Si 結晶相且電阻率略為上升,顯示銅已擴散進入矽基板中。而以比例10:1之銅錸鍍液所沉積之銅(錸)合金薄膜於 400°C 退火後,電阻率由初鍍狀態大幅降低,顯示在高溫驅動下,部分錸原子應已擴散至銅矽基材界面而自形成擴散阻障層;再經 500°C 退火後,電阻值仍維持在低值,顯示在此溫度下此自形成擴散阻障層仍能有效阻障銅矽之交互擴散;而在 600°C 退火才開始出現些微 Cu3Si 結晶相,電阻率亦逐漸上升,顯示此自形成擴散阻障層確實具有一定之擴散阻障能力。
As the line width and spacing of intergrated circuits continually decrease, copper with low electrical resistivity and high electromigration resistance has been widely used as an interconnect material. To inhibit rapid copper diffusion into silicon devices, an effective diffusion barrier with high thermal stability, low electrical resistivity and good interface adhesion is demanded. Thus in this study, a copper(rhenium) alloy film was electrolessly deposited on Si substrate for self formation of rhenium diffusion barrier. Different copper-rhenium plating solutions (ratios 10:1, 10:2 and 10:3) were attempted, and the alloy film (by solution 10:1) was more continuous and less failed after annealing. Experimental results indicated that, for a pure copper film after annealing at 400°C, copper diffusion into silicon and Cu3Si phase formation occurred, leading to the increase in electrical resistivity. In comparison, for the alloy film (by the solution 10:1) after annealing at 400°C, the electrical resistivity decreased, attributable to the migration of rhenium atoms and the self formation of diffusion barrier at the copper/silicon interface. After annealing at 500°C, the electrical resistivity remained low, suggesting the diffusion resistance of the self-formed rhenium barrier layer. Only at 600℃, the Cu3Si phase formed, and the electrical resistivity increased, indicating the failure of the barrier layer but also a certain diffusion-resistant ability of the self- formed barrier layer.
URI: http://hdl.handle.net/11455/11424
其他識別: U0005-3110201215173900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-3110201215173900
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.