Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11426
標題: 熱處理對白金/磷酸亞鐵觸媒在燃料電池的影響
Effects of heat treatment on catalysis of Pt / Vivianite in Fuel Cells
作者: 黃家賢
Huang, Chia-Hsien
關鍵字: 燃料電池
Fuel cell
磷酸亞鐵
白金觸媒
熱處理
vivianite
platinum catalysts
heat treatment
出版社: 材料科學與工程學系所
引用: 1. 林昇佃等合著, “ 燃料電池-新世紀能源 “, 滄海書局, 2006 2. John O''M. Bockris and Suprmaniam Srinivasan , McGraw-Hill, Fuel cells: Their electrochemistry, (1969) 3. G. HOOGERS, Fuel Cell Technology Handbook, (2002) 4. Linda Carrette Dr., K. Andreas Friedrich Dr., Ulrich Stimming Prof. Dr, Fuel Cells: Principles, Types, Fuels, and Applications (2000) 162 5. Fuel Cell Handbook (Seventh Edition) By EG&G Technical Services, Inc 6. Badwal SPS. Fuel cells: an environmentally friendly power generation technology for the next century. 1998. p. 567e78. 7. Carrette L, Friedrich KA, Stimming U. Fuel cells e fundamentals and applications.Fuel Cells 2001;1:5e39 8. Winter M, Brodd RJ. What are batteries, fuel cells, and supercapacitors? Wiley-VCH Verlag; 2004. 9. S. Giddey, S.P.S. Badwal*, A. Kulkarni, C. Munnings, Progress in Energy and Combustion Science 38 (2012) 360e399 10. Shimshon Gottesfeld,; Tom A. Zawodzinski, The Polymer Electrolyte Fuel Cell, (2008) 11. A.J.Appleby, in: R. Dudley, W. O''Grady, S. Srinivasan (Eds), 1979 12. C. C Chien and K. T. Jeng, Mater. Chem. Phys., 99 (2006) 80-87 13. E. Antolini, Mater. Chem., Phys., 78 (2003) 563-573 14. P. H. Fernandez, S. Rojas, P. Ocon, J. L. G. de la Fuente, P. Terreros, M. A. Pena, and J. L. G. Fierro, Appl. Catal. B: Environmental, 77 (2007) 19-28 15. L. Xiong and A. Manthiram, Electrochim. Acta, 50 (2005) 16. F. H. B. Lima, W. H.Lizcano-Valbuena, E. Teixeira-Neto, F. C. Nart, F.R. Gonzalez, and E. A. Ticianelli, Electrochim. Acta, 52 (2006) 385-393 17. W. Li. W. Zhou, H. Li, Z. Zhou, B Zhou, G. Sun, and Q. Xin, Electrochim. Acta, 49 (2004) 1045-1055 18. X. Zhang, F. Zhang, and K. Y, Chan, Catal. Comm., 5 (2004) 19. E. Ticianelli, J. G. Beery, M. T. Paffett, and S. Gottesfeld, J.Electroanal. Chem., 258 (1989) 61 20. Watanabe, M. and S. Motoo, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1975. 60(3): p. 267-273. 21. S. Gottesfeld, T.A. Zawodzinski, in: R.C. Alkire, D.M. Kolb (Eds.), Advances in Electrochemical Science and Engineering, vol. 5, Wiley-VCH, Weinham, 1997. 22. N.M. Markovic, P.N. Ross, Electrochim. Acta. 45 (2000) 4101. 23. T.E. Springer, T. Rockward, T.A. Zawodzinski, S. Gottesfeld, J.Electrochem. Soc. 148 (2001) A11. 24. Y. Kiros, S. Schwartz, Long-term hydrogen oxidation catalysts in alkaline fuel cells, Journal of Power Sources 87_2000.101–105 25. K. Sasaki, J.X. Wang, M. Balasubramanian, J. McBreen, F. Uribe, R.R. Adzic, Long-term hydrogen oxidation catalysts in alkaline fuel cells, Journal of Power Sources 87_2000.101–105 26. O. Lindstro¨m, A critical assessment of fuel cell technology, Stockholm, 1993. 27. Silvera Scaccia, Maria Carewska, Angelo Di Bartolomeo, Pier Paolo Prosini, Thermochimica Acta 397 (2003) 135–141 28. Hanzel, D., et al., Mössbauer effect study of the oxidation of vivianite. Solid State Communications, 1990. 76(3): p. 307-310. 29. Waerenborgh, J. and M. Figueiredo, 1986. 29(1): p. 1101-1104. 30. Nai-Su Pai, Po-Sheng Chang, Shiow-Kang Yen, J. hydrogen energy, 38( 2013)5259-5269 31. Kinoshita, K., Carbon: electrochemical and physicochemical properties. Other Information: From review by T. Apple, Univ. of Nebraska, in Journal of the American Chemical Society, Vol. 110, No. 18 (31 Aug 1988)1988. Medium: X; Size: Pages: 541. 32. A.S. AricoÁ, A.K. Shukla, H. Kim, S. Park, M. Min, V. Antonucci, Applied Surface Science 172 (2001) 33-40 33. Yamashita, T. and P. Hayes, Applied Surface Science, 2008. 254(8): p.2441-2449. 34. Lee, S.J., et al., Electrochimica Acta, 1998. 43(24): p. 3693-3701. 35. Markovic, N.M., H.A. Gasteiger, and P.N. Ross, The Journal of Physical Chemistry, 1995. 99(11): p. 3411-3415. 36. Marković, N.M., B.N. Grgur, and P.N. Ross, The Journal of Physical Chemistry B, 1997. 101(27): p. 5405-5413. 37. Kim, K.S., N. Winograd, and R.E. Davis, Journal of the American Chemical Society, 1971. 93 (23) :P. 6296-6297 38. Tamizhmani, G., J.P. Dodelet, and D. Guay, Journal of The Electrochemical Society, 1996. 143(1): p. 18-23. 39. Bouwman, P.J., et al., Journal of The Electrochemical Society, 2004. 151(12): p. A1989.
摘要: 根據之前的實驗﹐磷酸亞鐵(Fe3(PO4)2•8H2O, V0)除了在電化學比表面積(ECSA)有良好的性能﹐在甲醇氧化反應(MOR)也無CO毒化的效應,但在循環測試之穩定性仍有很大需改善的空間。 本研究將未熱處理之磷酸亞鐵(V0)及退火至400℃(V4)和600℃(V6)之磷酸亞鐵﹐分別當作白金還原的載體﹐還原後的白金觸媒再分別退火至200℃( Pt2/V0, Pt2/Fe/V4, Pt2/Fe/V6) 和400℃ ( Pt4/V0, Pt4/Fe/V4和Pt4/Fe/V6)。(此處Fe代表必須加入(NH4)2Fe(SO4)2.6H2O才能使Pt在V4及V6上還原) 各種觸媒的性質藉由X光繞射儀(XRD), 場發掃描式電子顯微鏡(FE-SEM),感應耦和電漿質譜儀(ICP-AES) 和X射線光電子能譜(XPS)分析探討熱處理效應對以磷酸亞鐵為載體之白金觸媒物性及化性的影響。 合成之白金/載體若再經200℃退火﹐Pt2/V0之載體由Fe3(PO4)2•8H2O轉化成Fe3(PO4)2(OH)3﹐Pt2/Fe/V4之載體仍然保持非晶型磷酸鐵﹐Pt2/Fe/V6者則由FePO4﹐Fe2O3及H2O轉化成Fe4(PO4)3(OH)3﹐及一直存在的Fe3PO7,此兩種化合物亦是經由400℃退火Pt4/V0, Pt4/Fe/V4和Pt4/Fe/V6之載體成分。 由循環伏安法(CV) 顯示Pt2/V0在氫氣吸/脫附測試的電化學表面積(ECSA)最高(706 cm2 mg-1),在1000圈之後剩下原來的78.8%, 仍高於未熱處理者的65.4%。而Pt2/Fe/V4和Pt2/Fe/V6展現了更高ECSA的存留百分比,分別為92%和100%﹐而初始ECSA則呈現下降的情形。這是由於退火溫度從200℃升高至400℃時發生了Pt晶粒成長和載體相變化﹐同時顯現高溫產物Fe4(PO4)3(OH)3和 Fe3PO7較低溫產物Fe3(PO4)2(OH)3 穩定。而Pt2/V0和P4/V0在甲醇氧化反應(MOR)時無CO毒化現象,且展現較高的電化學活性及較低的啟動電位﹐而其他的觸媒則呈現典型的具CO毒化甲醇氧化曲線。這些在MOR表現的特性應與ECSA﹐Fe3+及比表面積有關。
URI: http://hdl.handle.net/11455/11426
其他識別: U0005-1908201320142800
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1908201320142800
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.