Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11430
標題: 白金觸媒承載於含鐵磷酸鹽多孔微米球應用於燃料電池
Preparation and characterization of Pt Catalysts Supported on Fe-contained Phosphate Porous Microspheres for Fuel Cells
作者: 張博勝
Chang, Po-Sheng
關鍵字: 直接甲醇燃料電池
DMFC
藍鐵礦
磷酸鐵
白金觸媒
多孔微米球
vivianite
iron phosphate
platinum catalysts
porous microspheres
出版社: 材料科學與工程學系所
引用: 1. Grove, W.R., LXXII. On a gaseous voltaic battery. Philosophical Magazine Series 3, 1842. 21(140): p. 417-420. 2. Larminie, J., Fuel Cells, in Kirk-Othmer Encyclopedia of Chemical Technology2000, John Wiley & Sons, Inc. 3. Wang, C., et al., Proton Exchange Membrane Fuel Cells with Carbon Nanotube Based Electrodes. Nano Letters, 2003. 4(2): p. 345-348. 4. Wasmus, S. and A. Küver, Methanol oxidation and direct methanol fuel cells: a selective review. Journal of Electroanalytical Chemistry, 1999. 461(1–2): p. 14-31. 5. Basri, S., et al., Nanocatalyst for direct methanol fuel cell (DMFC). International Journal of Hydrogen Energy, 2010. 35(15): p. 7957-7970. 6. Lamy, C., et al., Recent advances in the development of direct alcohol fuel cells (DAFC). Journal of Power Sources, 2002. 105(2): p. 283-296. 7. Santiago, E.I., G.A. Camara, and E.A. Ticianelli, CO tolerance on PtMo/C electrocatalysts prepared by the formic acid method. Electrochimica Acta, 2003. 48(23): p. 3527-3534. 8. Watanabe, M. and S. Motoo, Electrocatalysis by ad-atoms: Part III. Enhancement of the oxidation of carbon monoxide on platinum by ruthenium ad-atoms. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1975. 60(3): p. 275-283. 9. Watanabe, M. and S. Motoo, Electrocatalysis by ad-atoms: Part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1975. 60(3): p. 267-273. 10. Watanabe, M., M. Uchida, and S. Motoo, Preparation of highly dispersed Pt + Ru alloy clusters and the activity for the electrooxidation of methanol. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987. 229(1–2): p. 395-406. 11. Dinh, H.N., et al., Electrocatalysis in direct methanol fuel cells: in-situ probing of PtRu anode catalyst surfaces. Journal of Electroanalytical Chemistry, 2000. 491(1–2): p. 222-233. 12. Liu, J., et al., Studies on performance degradation of a direct methanol fuel cell (DMFC) in life test. Physical Chemistry Chemical Physics, 2004. 6(1): p. 134-137. 13. Piela, P., et al., Ruthenium Crossover in Direct Methanol Fuel Cell with Pt-Ru Black Anode. Journal of The Electrochemical Society, 2004. 151(12): p. A2053-A2059. 14. Sarma, L.S., et al., Investigations of direct methanol fuel cell (DMFC) fading mechanisms. Journal of Power Sources, 2007. 167(2): p. 358-365. 15. Piña, C., H. Arriola, and N. Nava, Mössbauer spectroscopy of iron phosphate Fe 3 (PO 4 ) 2 (H 2 O) n pigments. Journal of Physics: Conference Series, 2010. 217(1): p. 012037. 16. Hanzel, D., et al., Mössbauer effect study of the oxidation of vivianite. Solid State Communications, 1990. 76(3): p. 307-310. 17. Waerenborgh, J. and M. Figueiredo, X-ray powder diffraction and<sup>57</sup>Fe Mössbauer spectroscopy study of the thermal breakdown of vivianite, Fe<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>.8H<sub>2</sub>O. Hyperfine Interactions, 1986. 29(1): p. 1101-1104. 18. Kreuer, K.-D., Proton Conductivity:  Materials and Applications. Chemistry of Materials, 1996. 8(3): p. 610-641. 19. Moffat, J.B., Phosphates as Catalysts. Catalysis Reviews, 1978. 18(2): p. 199-258. 20. Alberti, G. and M. Casciola, Layered metalIV phosphonates, a large class of inorgano-organic proton conductors. Solid State Ionics, 1997. 97(1–4): p. 177-186. 21. Ai, M. and K. Ohdan, Oxidation by iron phosphate catalyst. Journal of Molecular Catalysis A: Chemical, 2000. 159(1): p. 19-24. 22. Gadgil, M.M. and S.K. Kulshreshtha, Study of FePO4 Catalyst. Journal of Solid State Chemistry, 1994. 111(2): p. 357-364. 23. Otsuka, K. and Y. Wang, Direct conversion of methane into oxygenates. Applied Catalysis A: General, 2001. 222(1–2): p. 145-161. 24. Yuan, Q., Q. Zhang, and Y. Wang, Direct conversion of methane to methyl acetate with nitrous oxide and carbon monoxide over heterogeneous catalysts containing both rhodium and iron phosphate. Journal of Catalysis, 2005. 233(1): p. 221-233. 25. Ai, M., Oxidation activity of iron phosphate and its characters. Catalysis Today, 2003. 85(2–4): p. 193-198. 26. Campelo, J.M., et al., Effect of preparation method on the surface acidity and catalytic performance of iron orthophosphates in cyclohexene conversion. Journal of Materials Chemistry, 1995. 5(11): p. 2019-2026. 27. Liu, H.-C., et al., Electrochemical Synthesis of FePO[sub 4] for Anodes in Rechargeable Lithium Batteries. Journal of The Electrochemical Society, 2008. 155(12): p. E178-E182. 28. Bouwman, P.J., et al., Platinum-Iron Phosphate Electrocatalysts for Oxygen Reduction in PEMFCs. Journal of The Electrochemical Society, 2004. 151(12): p. A1989. 29. Kim, C., et al., Iron-phosphate∕platinum∕carbon nanocomposites for enhanced electrocatalytic stability. Applied Physics Letters, 2007. 91(11): p. 113101. 30. Lee, B., et al., Nanostructured Platinum/Iron Phosphate Thin-Film Electrodes for Methanol Oxidation. Electrochemical and Solid-State Letters, 2006. 9(10): p. E27. 31. Nahm, C., et al., Iron-PhosphatePt Nanostructured Electrodes for High-Efficiency Fuel Cells. Electronic Materials Letters, 2008. 4(1): p. 5-7. 32. Park, Y., et al., Effects of iron-phosphate coating on Ru dissolution in the PtRu thin-film electrodes. Journal of Materials Research, 2009. 24(01): p. 140-144. 33. Fournier, J., et al., High-Performance, Low Pt Content Catalysts for the Electroreduction of Oxygen in Polymer-Electrolyte Fuel Cells. Journal of The Electrochemical Society, 1997. 144(1): p. 145-154. 34. Pozio, A., et al., Comparison of high surface Pt/C catalysts by cyclic voltammetry. Journal of Power Sources, 2002. 105(1): p. 13-19. 35. Okamoto, M., T. Fujigaya, and N. Nakashima, Design of an Assembly of Poly(benzimidazole), Carbon Nanotubes, and Pt Nanoparticles for a Fuel-Cell Electrocatalyst with an Ideal Interfacial Nanostructure. Small, 2009. 5(6): p. 735-740. 36. Hsieh, C.-T., W.-M. Hung, and W.-Y. Chen, Electrochemical activity and stability of Pt catalysts on carbon nanotube/carbon paper composite electrodes. International Journal of Hydrogen Energy, 2010. 35(16): p. 8425-8432. 37. Wang, J., et al., Effect of carbon black support corrosion on the durability of Pt/C catalyst. Journal of Power Sources, 2007. 171(2): p. 331-339. 38. Wang, X., et al., Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell. Journal of Power Sources, 2006. 158(1): p. 154-159. 39. Sivakumar, M., I. Manjubala, and K. Panduranga Rao, Preparation, characterization and in-vitro release of gentamicin from coralline hydroxyapatite–chitosan composite microspheres. Carbohydrate Polymers, 2002. 49(3): p. 281-288. 40. Khachani, M., et al., Iron–calcium–hydroxyapatite catalysts: Iron speciation and comparative performances in butan-2-ol conversion and propane oxidative dehydrogenation. Applied Catalysis A: General, 2010. 388(1–2): p. 113-123. 41. Jiang, M., et al., Fe^{2+}/Fe^{3+} substitution in hydroxyapatite: Theory and experiment. Physical Review B, 2002. 66(22): p. 224107. 42. Venugopal, A. and M.S. Scurrell, Hydroxyapatite as a novel support for gold and ruthenium catalysts: Behaviour in the water gas shift reaction. Applied Catalysis A: General, 2003. 245(1): p. 137-147. 43. Kuo, Y.-T., Chitosan/Hydroxyapatite Composite Microspheres for Vancomycin Loading and Releasing 2010. 44. Kinoshita, K., Carbon: electrochemical and physicochemical properties. Other Information: From review by T. Apple, Univ. of Nebraska, in Journal of the American Chemical Society, Vol. 110, No. 18 (31 Aug 1988)1988. Medium: X; Size: Pages: 541. 45. Liu, R. and D. Zhao, In situ immobilization of Cu(II) in soils using a new class of iron phosphate nanoparticles. Chemosphere, 2007. 68(10): p. 1867-1876. 46. Frost, R.L., et al., Dehydration of synthetic and natural vivianite. Thermochimica Acta, 2003. 401(2): p. 121-130. 47. Tsai, S.Y., Preparation and Characterization of Porous Hydroxyapatite Microspheres 2007. 48. Schmidt, T.J., et al., Characterization of High-Surface-Area Electrocatalysts Using a Rotating Disk Electrode Configuration. Journal of The Electrochemical Society, 1998. 145(7): p. 2354-2358. 49. Yamashita, T. and P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Applied Surface Science, 2008. 254(8): p. 2441-2449. 50. Wang, X., MCM-41-supported iron phosphate catalyst for partial oxidation of methane to oxygenates with oxygen and nitrous oxide. Journal of Catalysis, 2003. 51. Lee, S.J., et al., Effects of Nafion impregnation on performances of PEMFC electrodes. Electrochimica Acta, 1998. 43(24): p. 3693-3701. 52. Markovic, N.M., H.A. Gasteiger, and P.N. Ross, Oxygen Reduction on Platinum Low-Index Single-Crystal Surfaces in Sulfuric Acid Solution: Rotating Ring-Pt(hkl) Disk Studies. The Journal of Physical Chemistry, 1995. 99(11): p. 3411-3415. 53. Marković, N.M., B.N. Grgur, and P.N. Ross, Temperature-Dependent Hydrogen Electrochemistry on Platinum Low-Index Single-Crystal Surfaces in Acid Solutions. The Journal of Physical Chemistry B, 1997. 101(27): p. 5405-5413. 54. Kim, K.S., N. Winograd, and R.E. Davis, Electron spectroscopy of platinum-oxygen surfaces and application to electrochemical studies. Journal of the American Chemical Society, 1971. 93(23): p. 6296-6297. 55. Tamizhmani, G., J.P. Dodelet, and D. Guay, Crystallite Size Effects of Carbon-Supported Platinum on Oxygen Reduction in Liquid Acids. Journal of The Electrochemical Society, 1996. 143(1): p. 18-23.
摘要: 直接甲醇燃料電池(DMFC)是將甲醇燃料直接轉換成電能的裝置,可應用於攜帶型電子產品上。為普及商品化,仍有許多問題需要被解決,例如二元合金(如PtRu)可被用於改善甲醇氧化過程之中間產物一氧化碳(CO)毒化Pt而降低其活性之現象。本研究主要目的係利用兩種含鐵磷酸鹽類微米球承載白金觸媒,以提高觸媒效能,並改善CO毒化現象。 利用化學合成法製備含鐵磷酸鹽微米球做為其中一種白金載體,由TGA/DSC熱分析及X光繞射分析(XRD)顯示,剛合成出之晶體結構為Fe3(PO4)2‧8H2O,在100°C至500°C加熱脫水後形成非晶形磷酸鹽,在600°C以上則形成FePO4、Fe3PO7及Fe2O3結晶相,以掃描式電子顯微鏡觀察結果顯示微米球大小約為10μm由片狀結構所組成。利用XRD分析Pt負載於此微米球(Pt/V),其白金顆粒大小平均為4.2nm。由循環伏安法(Cyclic Voltammetry)測試氫氣吸/脫附反應,其電化學活性表面積為128-155 m2 g-1;對於甲醇氧化反應,其中Pt/VH0-0.1具有最高的質量活性 (8.98 A/gPt,在0.2 V vs. Ag/AgCl)且無CO毒化現象。 於另一種含鐵磷酸鈣微米球為載體之白金(Pt/FeHAp),由TEM觀察其顆粒大小約為3.41 nm,而XRD之分析其大小約為4.4 nm。利用CV測試氫氣吸/脫附反應(Hydrogen adsorption/desorption),在-0.128V (vs. Ag/AgCl)之氫氣脫附特徵峰位置,發現Pt/FeHAp之白金顆粒以(110)晶面組成為主,且Pt20/FeHAp之電化學表面積(electrochemical surface area)可達200 m2 g-1。在甲醇氧化反應中,雖然Pt33/FeHAp氧化峰值電流密度比值(IForward/IReverse)僅為1.18,卻有最高之質量活性190.4 A/gPt (在0.81 V vs. Ag/AgCl)。
Direct methanol fuel cell (DMFC) is a device converting fuel into electric energy and usually used for portable electronic applications. Pt-Ru catalysts are widely used to solve the problem caused by carbon monoxide (CO) which is the intermediate during methanol oxidation. In this study, two kinds of iron-contained phosphate porous microspheres were prepared as the supports for Pt catalysts to improve the performance in fuel cells and prevent the CO poisoning. As-synthesized iron phosphate microspheres were synthesized by chemical precipitation method and used as one kind of supports. Vivianite, (Fe3(PO4)2‧8H2O), was transformed into dehydrated amorphous iron phosphate from 100 °C to 500 °C, and crystalized into FePO4, Fe3PO7, and Fe2O3 above 600 °C, identified by thermal gravimetric analysis/differential scanning calorimetry (TGA/DSC) and X-ray diffraction (XRD). The iron phosphate porous microsphere was composed of plates and the diameter was about 10μm. The particle size of Pt supported on vivianite (Pt/V) is around 4.2 nm. The cyclic voltammetry indicated that the electrochemical surface area (ECSA) ranges from 128 to 155 m2 g-1. The mass activity of Pt/V was 8.98 A/gPt at 0.2 V vs. Ag/AgCl for methanol oxidation reaction. No forward or reverse current peak was observed, indicating scarce CO poison effect. FeHAp microspheres are used as the other kind of support for Pt. The Pt particle size is around 4.4 nm analyzed by XRD and 3.41 nm observed by TEM. The cyclic voltammograms of Pt/FeHAp catalysts exhibit the characteristics of Pt (110) with desorption peak potential at -0.128 V (vs. Ag/AgCl) similar to Pt/vivianite. The ECSA of Pt20/FeHAp (200 m2 g-1) is greater than those of Pt33/FeHAp and Pt50/FeHAp. However, Pt33/FeHAp shows the greatest mass activity (190.4 A/gPt, at 0.81 V vs. Ag/AgCl) of methanol oxidation, although the IF/IR ratio is just 1.18.
URI: http://hdl.handle.net/11455/11430
其他識別: U0005-2107201219325400
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2107201219325400
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.