Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11432
標題: 磺酸化尼龍6/氧化石墨烯奈米複合材料之製備與特性研究
Preparation and Characterization of Sulfonated Polyamide 6/ Graphene Oxide Nanocomposite
作者: 柯冠如
Ko, Kuan-Ju
關鍵字: 磺酸化尼龍6
Sulfonated Polyamide 6
石墨烯
Graphene
出版社: 材料科學與工程學系所
引用: 1. http://www.taiwan921.lib.ntu.edu.tw/mypdf/mf08.pdf 2. X. G. Qi, N. X. Ding, M. L. He, Z. G. Huang, W. Li, G. G. Liu. Qingdao University of Science and Technology, Qingdao, 266042. 3. C. Zhang, C. A. Ma , P. Wang , M. Sumita. Carbon, 2005, 43, 2544. 4. W. H. Tang, B. B. Liu, Z. Liu, J. Tang, H. L. Yuan, Journal of Applied Polymer Science, 2012, 123, 1032. 5. T. Kuila, S. Bose, A. K. Mishra, P. Khanra, N. H. Kim, J. H. Lee. Progress in Materials Science, 2012, 57, 1061. 6. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science, 2004, 306, 666. 7.http://commons.wikimedia.org/wiki/File:Nylon_6_and_Nylon_6-6.png 8. 劉常勇,陳萬鐘,在全球化趨勢下台灣尼龍纖維產業的發展策略,中山大學,2005年。 9. 張勝善,抗靜電纖維及應用,紡織產業綜合研究所,2009年。 10. C. P. Yu, X. S. Gao, Y. Tong, Beijing Institue of Clothing Techonology, 100029. 11.http://baike.b Beijing aidu.com/view/2668841.htm 12.郭熙桃,趙耀明等,染色工藝及染色機理,華南理工大學材料學院,2006年 13.蔡宜壽,李君敏,陽離子可染型尼龍6纖維的製備與其物性之研究,逢甲大學紡織工程研究所,2007年。 14.http://upload.wikimedia.org/wikipedia/commons/4/4c/Caprolactam_polymerization.png 15.芮祥鵬,曾毓麒,Nylon-6固態聚合及nylon-6共聚合物物性研究,國立台北科技大學有機高分子研究所,2007年。 16. http://physicsforme.wordpress.com/2012/11/27/graphene-from-a-conceptual-material-to-a-material-of-the-future/ 17. T. Kuilla, S. Bhadra, D. Yao, N. H. Kim, S. Bose, J. H. Lee. Polymer Science,2010, 35, 1350. 18. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim. Nair et al., Science, 2008, 320, 1308. 19.洪偉修,世界上最薄的材料-石墨烯,98康熹化學報報,康熹文化事業股份有限公司,2009年。 20.黃淑娟,郭信良等,新碳材時代-從奈米碳管到石墨烯,工研院材化所,2011291, 93. 21. C. Berger, Z. M. Song, T. B. Li, X. B. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, The Journal of Physical Chemistry, 2004, 108, 19912. 22. P. Sutter, Nature Materials, 2009, 8, 171. 23. Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Nature Nanotechnology, 2008, 3, 563. 24.蘇清源,石墨烯氧化物之特性與應用前景,中研院應用科學研究中心,2011年。 25. S. J. Park, R. S. Ruoff, Nature Nanotechnology, 2009, 4, 217. 26. M. Choucair, P. Thordarson, J. A. Stride, Nature Nanotechnology, 2008, 4, 30. 27. L. Y Jiao, L. Zhang, X. R. Wang, G. Diankov, H. G. Dai, Nature, 2009, 458, 877. 28. G. Brumfiel, Nature, 2009, 10, 367. 29. T. Rattana, S.Chaiyakun, N.Witit-anun, N. Nuntawong, P. Chindaudom, S. Oaew ,C. Kedkeaw, P. Limsuwan,Procedia Engineering, 2012, 32, 759. 30. M. Quintana, E. Vazquez, M. Prato, Accounts of chemical research , 2013, 46, 138. 31. J. X. Huang, L. J. Cote, J. Y. Kim, V. C. Tung, J. Y. Luo, F. Kim, J. Engineering Material, 2011, 291, 123. 32. B. C. Brodie, Philos. Trans. R. Soc. London, 1859, 149, 249. 33. L. Staudenmaier, Ber. Dtsch. Chem. Ges. 1898, 31, 1481. 34. W. S. Hummers, R. E. Offeman, J. Am. Chem. Soc., 1958, 80, 1339. 35. J. I. Paredes, S. Villar-Rodil, A. Martı´nez-Alonso, J. M. D. Tasco´n. Langmuir 2008, 24, 10560. 36. O. C. Compoton, S. T. Nguyen, Small, 2010, 6, 711. 37. G. Chen, D. Wu, W. Weng, C. Wu, Carbon, 2003, 41, 619. 38. J. R. Potts , D. R. Dreyer, C. W. Bielawski , R. S. Ruoff, Polymer, 2011, 52, 5. 39. G. X. Wang, J. Yang, J. S. Park, X. L. Gou, B. Wang, H. Liu, J. Yao, J. Phys. Chem. C, 2008, 112, 8192. 40. M.C.Hsiao, S.H. Liao, M.Y. Yen, P.I Liu, N. W. Pu, C.A. Wang, C. C. M. Ma, Appl. Mate. interf., 2010, 11, 3092. 41. X.Zhao, Q. Zhang, D.Chen, P. Lu, Macromolecules, 2010, 43, 2357. 42. http://www-03.ibm.com/press/us/en/pressrelease/34726.wss#release 43. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, Nature, 2006, 442, 282. 44. H. Kim, A. A. Abdala, C. W. Macosko, Macromolecules 2010, 43, 6515. 45. J. Du, H. M. Cheng, Macromol. Chem. Phys., 2012, 213, 1060. 46. S. Villar-Rodil, J. I. Paredes, Amelia Martı´nez-Alonso and Juan. M. D. Tascon, J. Mater. Chem., 2009, 19, 3591. 47. A. O’Neill, U. Khan, P. N. Nirmalraj, J. Boland, J. N. Coleman, J. Phys. Chem. C, 2011, 115, 5422. 48. D. Zheng, G. S. Tang, H. B. Zhang, Z. Z. Yu, Y. Fazel, K. Nikhil; S. H. Lim, M. W. Lee, Composites Science and Technology, 2012, 72, 284. 49. J. H. Li, M. Li, H. F. Da, Q. Liu, M. H. Liu, Composites, 2012, 43, 1038. 50. N. D. Luong, N. Pahimanolis, U. Hippi, J. T. Korhonen, J. Ruokolainen, L. S. Johansson, J. D. Nam, J. Seppala, J. Mater. Chem., 2011, 21, 13991. 51. Z. Xu, C. Gao, Macromolecules, 2010, 43, 6716. 52. P. Song, Z. H. Cao, Y. Z. Cai, L. P. Zhao, Z. P. Fang , S. Y. Fu, Polymer, 2011, 52, 4001. 53. J. Liang, Y. Huang, L. Zheng, Y. Wang, Y. Ma, T. Guo, Y. Chen, Adv. Funct. Mater., 2009, 19, 1. 54. X. Wang, H. Y. Yang, L. Song, Y. Hu, W. Y. Xin, H. D. Lu, 2011, 72, 1. 55. S. F. Pei, H. M. Cheng, Carbon, 2012, 50, 3210. 56. T. Wei, G. Luo, Z. J. Fan, C. Zheng, J. Yan, C. Z. Yao,W. F. Li, C. Zhang, Carbon, 2009, 47, 2290. 57. T. D. Fornes, D.R. Paul, Polymer, 2003, 44, 3945. 58. B. Yalcin, Z. Ergungor, Y. Konishi, M. Cakmak, C. Batur, Polymer, 2008, 49, 1635. 59. A. I. Medilia, Rubber Chemistry and Technology, 1986, 59, 435.. 60. A. Malliaris, D. T. Turner, J Appl Phys, 1971, 42, 614. 61. L. Karasek, M. Sumita, J Mater Sci, 1996, 31 ,281. 62. H. Pang, T. Chen, G. M. Zhang, B. Q. Zeng, Z. M. Li, Materials Letters, 2010, 64, 2226. 63. J. R. Araujo, C. B. Adamo, Marco-A. De Paoli, Chemical Engineering Journal, 2011, 174, 425. 64. J. C. Aphesteguy, E. Jacobo, J. Mater Sci.,2007,42,7062. 65. H. Miyagawa, L. T. Drzal, Polymer, 2004, 45, 5163. 66. Q. H. Liu, X. F. Zhou , X. Y. Fan, C. Y. Zhu, X. Y. Yao, Z. P. Liu, Polymer-Plastics Tech. & Eng, 2012, 51, 251-256. 67. X. Zhao, Q. H. Zhang, D. J. Chen, Macromolecules, 2010, 43, 2357.
摘要: 由先前文獻得知化學法製備石墨烯為目前大量得到石墨烯最有效及製程簡單之方法,因此本實驗利用化學法來製備石墨烯,並利用FT-IR、XRD、Raman、TGA來分析證實在化學法製備中,成功得到氧化石墨,並藉由超音波震盪得到分散性良好之氧化石墨烯。本研究以溶液混合法分別將1wt%、3wt%、5wt%、10wt%及15wt%氧化石墨烯(reduced graphene oxide, rGO)添加入磺酸化尼龍6(Sulfonated polyamide 6; CDPA6), 製備成磺酸化尼龍6/氧化石墨烯複合材料,來探討添加不同含量rGO對高分子的分散性、結構性、導電性、熱穩定性與機械性質所造成之影響。 首先將添加不同含量rGO之磺酸化尼龍6複合材料以TEM進行分散性分析,由結果可觀察到rGO良好分散於高分子基材中。在XRD結果中發現添加rGO會提升磺酸化尼龍6在θ=23.8°繞射峰型的強度,可知rGO能幫助磺酸化尼龍6在(002,202)平面晶體更有層次的組成,但過多的添加量時,如15wt% rGO含量的磺酸化尼龍6複合材料,因為有大量的氧化石墨烯無序分散在高分子中,反而影響了高分子鏈的排列,並造成磺酸化尼龍6結晶度下降。 接著藉四點探針來量測不同添加量的rGO對磺酸化尼龍6導電度的影響,發現當添加量達3wt%時,複合材料內部的導電通路逐漸完整,磺酸化尼龍6的導電度從原先未添加任何rGO的1.31×10-12 S•cm-1升了三個次方到1.71×10-8 S•cm-1。但當rGO含量超過10wt%後導電通路變得太過密集,添加再多的rGO在磺酸化尼龍6內,其導電度漲幅不再明顯。 以TGA檢測熱性質部份,得知未添加任何rGO的磺酸化尼龍6在399℃下損失10wt%重量,隨著表面具有氧化官能基的rGO添加,含量至15wt%時磺酸化尼龍6降低至356℃就損失10wt%重量,由此得知,氧化石墨烯的增加將會影響複合材料的熱重損失。以DMA測試磺酸化尼龍6/氧化石墨烯複合材料之機械性質,磺酸化尼龍6因rGO之片狀剛性結構將磺酸化尼龍6分子鏈限制住,使滑移上變得格外困難,其儲存模數從原先未添加rGO的4.44×108 Pa到15wt%添加量的1.27×109 Pa,漲幅達186%,而Tg的部份也從未添加石墨烯的76.66℃提升到15wt%添加量的89.13℃。
Chemical modification of graphite is the most commonly and simple method to generate a lot of graphene. The fabricated graphite oxide and reduced graphene oxide used as a reinforced material were characterized by FTIR, XRD, Raman spectrometry and TGA analysis. The reduced graphene oxide removed a large number of oxidation function groups using reducing agent could become less hydrophilic and be relatively difficult to disperse in solution. In this study, the sulfonated polyamide6/ reduced graphene oxide (rGO) nanocomposites were prepared through solution mixing technique. The effect of rGO on the structure, morphology electrical conductivity and thermal stability was investigated. The TEM images revealed the rGO was well dispersed in polymer matrix. The XRD data of sulfonated polyamide6/rGO nanocomposites showed the intensity of diffraction peak at 2θ=23.8° increased with the addition of rGO. These results indicated the crystalline domain of (002) or (200) plane was regularly stacked by rGO, except the loading of 15wt% rGO caused the irregular structure arrangement of nanocomposites. The electrical conductivity of sulfonated polyamide 6/rGO nanocomposites was measured by four-point probe conductance meter. The experimental data showed that the conductivity drastically increased from 1.31×10-12S.cm-1 for pure sulfonated polyamide 6 to 1.71×10-8 S.cm-1 for 3wt% loading of rGO into sulfonated polyamide 6. The enhancement of conductivity has reached the plateau area with continuous loading of rGO to 15wt%. The effect of rGO on the mechanical properties of sulfonated polyamide 6/rGO nanocomposites was measured by DMA. The storage modulus of sulfonated polyamide 6 was 4.44×108Pa. The addition of 15wt% rGO into polymer matrix could increase the storage modulus up to 1.27×109Pa, which is about 186% enhancement. At the same time, the Tg is increased from 76.66℃ for pure polymer to 89.13℃ for 15wt% loading of rGO. This behavior might be contributed to the inorganic nature and high stiffness of rGO.
URI: http://hdl.handle.net/11455/11432
其他識別: U0005-1208201321595200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1208201321595200
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.