Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11434
標題: 純鎂表面生長鎂鐵碳酸根雙層氫氧化物及其在模擬體液中的抗蝕性研究
Direct growth of Mg-Fe-CO3 layered double hydroxide on pure Mg and its corrosion property in conventional simulated body fluid
作者: 辜泓熙
Ku, Hung-Hsi
關鍵字: 
Mg
水滑石
模擬體液
雙層氫氧水合物
hydrotalcite
simulated body fluid
layered double hydroxide
出版社: 材料科學與工程學系所
引用: [1] Polmear IJ. Light alloys : Metallurgy of the light metals 3rd ed. London: John Wiley & Sons; 1995. [2] B.L. Mordike TE. Magnesium Properties – applications - potential. Mater Sci Eng A. 2001;301:37-45. [3] B. Heublein RR, V. Kaese, M. Niemeyer, W. Hartung, A. Haverich. Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology? Heart. 2003;89:651-6. [4] Zartner P, Cesnjevar R, Singer H, Weyand M. First successful implantation of a biodegradable metal stent into the left pulmonary artery of a preterm baby. Catheter Cardio Inte. 2005;66:590-4. [5] Erbel R, Di Mario C, Bartunek J, Bonnier J, de Bruyne B, Eberli FR, et al. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial. The Lancet. 2007;369:1869-75. [6] Song G, Song S. A Possible Biodegradable Magnesium Implant Material. Adv Eng Mater. 2007;9:298-302. [7] Ozgur Duygulu RAK, Gizem Oktay, Ali Arslan Kaya. Investigation on the Potential of Magnesium Alloy AZ31 as a Bone Implant. Mater Sci Forum. 2007;546-549:421-4. [8] B. Denkena FW, C. Podolsky and A. Lucas. Degradable implants made of magnesium alloys. Proc of 5th euspen International Conference ,Montpelier France. 2005. [9] Gu XN, Zheng W, Cheng Y, Zheng YF. A study on alkaline heat treated Mg–Ca alloy for the control of the biocorrosion rate. Acta Biomater. 2009;5:2790-9. [10] Staiger MP, Pietak AM, Huadmai J, Dias G. Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials. 2006;27:1728-34. [11] Elin RJ. Magnesium: the fifth but forgotten electrolyte. Am J Clin Pathol. 1994;102:616-22. [12] H. P. Dimai, S. Porta, G. Wirnsberger, M. Lindschinger, I. Pamperl, H. Dobing, et al. Daily Oral Magnesium Supplementation Suppresses Bone Turnover inYoung Adults Males. J Clin Endocr Metab. 1998;83:2742-8. [13] Maggio M, Ceda GP, Lauretani F, Cattabiani C, Avantaggiato E, Morganti S, et al. Magnesium and anabolic hormones in older men. Inter J Androl. 2011:594-600. [14] Francis RM. The effects of testosterone on osteoporosis in men. Clin Endocr. 1999;50:4. [15] R. L. Beckstrand, Pickens JS. Beneficial Effects of Magnesium Supplementation. J Evid-Based Compl Alt. 2011;16:181-9. [16] Zhang E, He W, Du H, Yang K. Microstructure, mechanical properties and corrosion properties of Mg-Zn-Y alloys with low Zn content. Mater Sci Eng A. 2008;488:102-11. [17] Shaylin Shadanbaz, Dias GJ. Calcium phosphate coatings on magnesium alloys for biomedical applications: A review. Acta Biomater. 2012;8:20-30. [18] Gu X, Zheng Y, Cheng Y, Zhong S, Xi T. In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials. 2009;30:484-98. [19] Meyer-Lindenberg A WH, Witte F. 200410241036. [20] W. PAUL CPS. Development of porous spherical hydroxyapatite granules: application towards protein delivery. J Mater Sci Mater Med. 1999;10:383-8. [21] Julia C. Vogt, Gudrun Brandes, IIka Kruger, Peter Behrens, Ingo Nolte, Thomas Lenarz, et al. A comparison of different nanostructured biomaterials in subcutaneous tissue. J Mater Sci Mate Med. 2008;19:2629-36. [22] Mee Ryang Kim TGP. Temperature-responsive and degradable hyaluronic acid / Pluronic composite hydrogels for controlled release of human growth hormone. J Control Release. 2002;80:69-77. [23] Lin Hong XH, K. de Groot. Tensile strength of the interface between hydroxyapatite and bone. J Biomed Mater Res. 1992;26:7-18. [24] Yingwei Song, Dayong Shan, Rongshi Chen, Fan Zhang, Han E-H. Biodegradable behaviors of AZ31 magnesium alloy in simulated body fluid. Mater Sci Eng C. 2009;29:1039-45. [25] Song Y, Zhang S, Li J, Zhao C, Zhang X. Electrodeposition of Ca-P coatings on biodegradable Mg alloy: In vitro biomineralization behavior. Acta Biomater. 2010;6:1736-42. [26] Song YW, Shan DY, Han EH. Electrodeposition of hydroxyapatite coating on AZ91D magnesium alloy for biomaterial application. Mater Lett. 2008;62:3276-9. [27] Wang HX, Guan SK, Wang X, Ren CX, Wang LG. In vitro degradation and mechanical integrity of Mg–Zn–Ca alloy coated with Ca-deficient hydroxyapatite by the pulse electrodeposition process. Acta Biomater. 2010;6:1743-8. [28] Hiromoto S, Shishido T, Yamamoto A, Maruyama N, Somekawa H, Mukai T. Precipitation control of calcium phosphate on pure magnesium by anodization. Corros Sci. 2008;50:2906-13. [29] Onoki T, Yamamoto Sy, Onodera H, Nakahira A. New technique for bonding hydroxyapatite ceramics and magnesium alloy by hydrothermal hot-pressing method. Mater Sci Eng C. 2011;31:499-502. [30] Bigi A, Falini G, Foresti E, Ripamonti A, Gazzano M, Roveri N. Magnesium influence on hydroxyapatite crystallization. J Inorg Biochem. 1993;49:69-78. [31] Enrico Bertoni AB, Gianna Cojazzi, Massimo Gandol, Silvia Panzavolta, Norberto Roveri. Nanocrystals of magnesium and fuoride substituted hydroxyapatite. J Inorg Biochem. 1998;72:29-35. [32] Yajing Zhang, Zhang G, Wei M. Controlling the biodegradation rate of magnesium using biomimetic apatite coating. J Biomed Mater Res B. 2009;89B:408-14. [33] Lin J-K, Uan J-Y, Wu C-P, Huang H-H. Direct growth of oriented Mg–Fe layered double hydroxide (LDH) on pure Mg substrates and in vitro corrosion and cell adhesion testing of LDH-coated Mg samples. J Mater Chem. 2011;21:5011. [34] Cavani F, Trifiro F, Vaccari A. Hydrotalcite-type anionic clays: Preparation, properties and applications. Catal Today. 1991;11:173-301. [35] Delhoyo C. Layered double hydroxides and human health: An overview. Appl Clay Sci. 2007;36:103-21. [36] H. Zhu MW, J. Buckley, N. B. Roberts. Different Mg to Fe Ratios in the Mixed Metal MgFe Hydroxy-Carbonate Compounds and the Effect on Phosphate Binding Compared With Established Phosphate Binders. J Pharm Sci. 2001;91:53-66. [37] Du Y, Rees N, O''Hare D. A study of phosphate absorption by magnesium iron hydroxycarbonate. Dalton Trans. 2009:8197. [38] Despina D. Deligianni, Nikoleta D. Katsala, Petros G. Koutsoukos,Yiannis F. Missirlis. Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength. Biomaterials. 2001:87-96. [39] Huang H. Effect of surface roughness of ground titanium on initial cell adhesion. Biomol Eng. 2004;21:93-7. [40] J. K. Lin, C. L. Hsia, J. Y. Uan. Characterization of Mg,Al-hydrotalcite conversion film on Mg alloy and Cl− and CO32- anion-exchangeability of the film in a corrosive environment. Scripta Mater. 2007;56:927-30. [41] Lin JK, Uan JY. Formation of Mg,Al-hydrotalcite conversion coating on Mg alloy in aqueous HCO3−/CO32− and corresponding protection against corrosion by the coating. Corros Sci. 2009;51:1181-8. [42] Uan J-Y, Lin J-K, Tung Y-S. Direct growth of oriented Mg-Al layered double hydroxide film on Mg alloy in aqueous HCO3−/CO32− solution. J Mater Chem. 2010;20:761. [43] Jun-Kai Lin, Kai-Li Jeng, Jun-Yen Uan. Crystallization of a chemical conversion layer that forms on AZ91D magnesium alloy in carbonic acid. Corros Sci. 2011;53:3832-9. [44] C. Ohtsuki, H. Kushitani, T. Kokubo ,S. Kotani and T. Yamamuro. apatite formation on the surface of ceravital-type glass-ceramicin the body. J Biomed Mater Res. 1991;25:8. [45] Fontana MG. Corrosion engineering / Mars G. Fontana, Norbert D. Greene. New York :: McGraw-Hill; 1978. [46] Jones DA. Principles and prevention of corrosion: Prentice Hall; 1996. [47] ASTMD3359. Standard Test Method for Measuring Adhesion by Tape Test, Test B, Cross-Cut Test Method. 1993. [48] Domenech-Carbo M-T, Domenech-Carbo A, Osete-Cortina L, Sauri-Peris M-C. A Study on Corrosion Processes of Archaeological Glass from the Valencian Region (Spain) and its Consolidation Treatment. Microchim Acta. 2006;154:123-42. [49] Y. Mori, M. Ueda, M. Hashimoto, Y. Aoi, S. Tanase, Sakai T. Amorphous carbon coated stainless separator for PEFCs. Surf Coat Technol. 2008;202:4094-101. [50] Kessler D, Theato P. Reactive Surface Coatings Based on Polysilsesquioxanes: Defined Adjustment of Surface Wettability. Langmuir. 2009;25:14200-6. [51] Strydom ABaCA. DTA and FT-IR analysis of the rehydration of basic magnesium carbonate. J Therm Anal Calorim. 2003;71:9. [52] Das J. Studies on Mg/Fe Hydrotalcite-Like-Compound (HTlc) I. Removal of Inorganic Selenite (SeO32−) from Aqueous Medium. J Colloid Interface Sci. 2002;251:26-32. [53] Liang Xue-feng HW-G, Xu Jie. Sorption of Pb(II) on Mg-Fe Layered Double Hydroxide. Chinese J Chem. 2009;27:8. [54] Millange F, Walton RI, O''Hare D. Time-resolved in situ X-ray diffraction study of the liquid-phase reconstruction of Mg-Al-carbonate hydrotalcite-like compounds. J Mater Chem. 2000;10:1713-20. [55] Zhang J, Zhang F, Ren L, Evans DG, Duan X. Synthesis of layered double hydroxide anionic clays intercalated by carboxylate anions. Mater Chem Phys. 2004;85:207-14. [56] Raquel Trujillano, Maria Jesus Holgado, Jose Luis Gonzalez, Vicente Rives. Cu-Al-Fe layered double hydroxides with and anionic surfactants with different alkyl chains in the interlayer. Solid State Sci. 2005;7:931-5. [57] Trikeriotis M, Ghanotakis DF. Intercalation of hydrophilic and hydrophobic antibiotics in layered double hydroxides. Inter J Pharm. 2007;332:176-84.
摘要: Mg-Fe-CO3 雙層氫氧水合物(Mg-Fe-CO3 LDH)已被證實具備生物相容性,常以粉末形式存在,被視為藥物釋放與吸收載體。本研究於純鎂表面成長Mg-Fe-CO3 LDH 薄膜,該薄膜提升基材於模擬體液(c-SBF)中的抗蝕性。成膜過程中,純鎂在CO2pH4.6/20h的化成處理中,可得微細Mg-Fe-CO3 LDH 結構,而在CO2pH6.0/20h條件時,Mg-Fe-CO3 LDH明顯粗大。重複地滑動在Mg-Fe-CO3 LDH的表面,可以形成平滑但略為粗糙的表面。透過穿透式電子顯微鏡(TEM)的Mg-Fe-CO3 LDH橫截面觀察,可以得知共有Mg-Fe-CO3 LDH、中間層以及最底層。最頂層為Mg-Fe-CO3 LDH厚約為1um,中間層厚約為2~2.5um以及最底層厚約為1~2um。透過TEM的能量散射光譜儀(EDS)的分析,Mg-Fe-CO3 LDH有鎂、鐵、氧和碳,而中間層和最底層的組成有鎂、碳和氧。
Mg-Fe-CO3 layer double hydroxide (Mg-Fe-CO3 LDH) has been investigated that is highly biocompatible and is low cytotoxicity. LDH usually be synthesized into powder, and is utilized to be a drug delivery. This work presents a method for directly forming Mg-Fe-CO3 LDH on the pure Mg substrate and the coating of the Mg-Fe-CO3 LDH could increase the ability of corrosion-resistant in C-SBF at 37.5 。C. Moreover, the size of the platelet-like structure of Mg-Fe-CO3 LDH is affected by the pH value of the Fe3+/HCO3-/CO32- at 70 。C. the size of the platelet-like structure of Mg-Fe-CO3 LDH the CO2pH6.0/20h sample is bigger than the CO2pH4.6/20h sample. Repeatedly sliding on the CO2pH4.6/20h sample could be an effective way to change the morphology of the CO2pH4.6/20h sample. From the cross-sectional observation of the CO2pH4.6/20h sample by TEM, Mg-Fe-CO3 LDH (the top layer), the middle layer and inner layer were observed. The thickness of Mg-Fe-CO3 LDH is around 1um, the middle layer is around 2~2.5um and the inner layer is 1~2um. The Mg-Fe-CO3 LDH is composed of Mg, Fe, C and O. Moreover, the middle layer and the inner layer are composed of Mg, C and O.
URI: http://hdl.handle.net/11455/11434
其他識別: U0005-0808201218002600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0808201218002600
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.