Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11443
標題: 聚苯胺/石墨烯奈米複合材料製備與性質研究
Preparation and Characterization of Polyaniline/Graphene Nanocomposites
作者: 林育春
Lin, Yu-Chun
關鍵字: 聚苯胺
Polyaniline
石墨烯
十二烷基硫酸鈉
graphene
SDS
出版社: 材料科學與工程學系所
引用: 1. Z. Zhang, and M. Wan, “Composite films of nanostructured polyanilinewith poly (vinyl alcohol)”, Synth. Met., 2002, 128, pp. 83-89.
 2. 馬寧元, “導電高分子及其工業應用”, 化工資訊與商情, 2007, 53, pp. 70-71. 3. 林彥文, “聚苯胺-奈米碳管導電複合材料之製備與電性研究”, 中興大學材料工程系碩士論文, 2003. 4. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films”, Science, 2004, 306, pp. 666-669. 5. R. E. Peierls, “Quelaues proprietes typiques des corpses solides”, Ann. Inst. Henri Poincare, 1935, 5, pp. 177-222. 6. C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene”, Science, 2008, 321, pp. 385-388. 7. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene”, Science, 2008, 320, pp. 1308. 8. 洪偉修, “世界上最薄的材料-石墨烯”, 98康熹化學報報, 康熹文化事業股份有限公司, Nov. 2009, pp. 1-4. 9. D. Han, Y. Chu, L. Yang, Y. Liu, and Z. Lv, “Reversed micelle polymerization: a new route for the synthesis of DBSA-polyaniline nanoparticles”, Colloids and surfaces A: Physicochem. Eng. Aspects, 2005, 259, pp. 179-187. 10. 公超, “石墨烯在聚合物複合材料中的應用”, 化學工業與工程, 2011, Vol. 28, No. 5, pp. 73-78. 11. D. Chapman, R. J. Warm, A. G. Fitzgerald, and A. D. Yoffe, “Spectra and the semi-conductivity of the [SN]x polymer”, J. Chem. Soc., Faraday Trans., 1964, 60, pp. 294-300. 12. H. Shirakawa, E. J. Louis, A.G. MacDiarmid, C. K. Chiang, and A. J. Heeger, “Synthesis of Electrically Conducting Organic Polymers: Halogen Derivatives of Polyacetylene (CH)x”, J. Chem. Soc. Chem. Comm., 1977, pp. 578-590. 13. A. G. MacDiarmid, and A. J. Heeger, “Organic metals and semiconductors- The chemistry of polyacetylene, (CH)x, and its derivatives”, Synth. Met., 1980, 1, pp. 101-118. 14. M. Aldissi, “Inherently Conducting Polymers”, Noyes Data Corp., New Jersey, 1989. 15. B. Wessling, “Dispersion hypothesis and non-equilibrium thermodynamics: key elements for a materials science of conductive polyers. A key to understanding polymer blends or other multiphase polymer systems”, Synth. Met., 1991, 45, pp. 119-149. 16. T. A. Skothirm, “Handbook of Conducting Polymers”, M. Dekker, New York, 1986. 17. W. W. Fock, G. E. Wnek, and Y. Wei, “Influence of oxidation state, pH, and counterion on the conductivity of polyaniline”, J. Phys. Chem, 1987, 91, pp. 5813-5818. 18. 陳鴻宇, “導電性聚苯胺/磺酸化聚胺酯混合材料之研究”, 台灣大學化學工程所碩士論文, 2001. 19. M. G. Kanatzidis, “Conductive Polymers”, Chemical and Engineering News, 1990, 68, pp. 36-54. 20. K.Gurunathan, A.Vadivel Murugan, R Marimuthu, U.P Mulik, and D.P Amalnerkar “Electrochemically synthesised conducting polymeric materials for applications towards technology in electronics, optoelectronics and energy storage devices”, Materials Chemistry and Physics, 1999, 61, pp. 173-191. 21. H.Letheby, “On the production of a blue substance by the electrolysis of sulphate of aniline”, J. Chem. Soc., 1862, 15, pp. 161-163. 22. A.G. Green, and A. E. Woodhead, “Aniline-black and allied compounds”, J. Chem. Soc. Trans., 1910, 97, pp. 2388-2403. 23. J. Langer, “Unusual properties of the aniline black-Does the superconductivity exist at room temperature”, Solid state Commumication, 1978, 26, pp. 839-844. 24. A. G. MacDiarmid, J. C. Chiang, M. Halpern, W. S. Huang, S. L. Mu, and L. D. Somasir, “Polyanilne: Interconversion of Metallic and Insulating Forms”, Mol. Cryst. Liq. Cryst., 1985, 121, pp. 173-180. 25. Y.Cao, P. Smith, and A. J. Heeger, “Counter-ion induced processibility of conducting polyaniline”, Synth. Met., 1993, 57, pp. 3514-3519. 26. S. P. Armes, and J. F. Miller, “Optimum reaction conditions for the polymerization of aniline in aqueous solution by ammonium persulphate”, Synth. Met., 1988, 22, pp. 385-393. 27. A. G. MacDiarmid, and A. J. Epstein, “Polyaniline: Interrelationships Between Molecular Weight, Morphology, Donnan Potential and Conductivity”, Mater. Res. Soc. Symp. Proc., 1992, 247, pp. 565-578. 28. J. Stejskal, A. Riede, D. Hlavata, J. Prokes, M. Helmstedt, and P. Holler, “The effect of polymerization temperature on molecular weight, crystallinity, and electrical conductivity of polyaniline”, Synth. Met., 1998, 96, pp. 55-61. 29. F. Wang, J. Tang, L. Wang, H. Zhang, and M. Zhishen, “Study on the Crystallinity of Polyaniline, Mol. Cryst. Liq. Cryst., 1988, 160, pp. 175-184.
 30. J. S. Tang, X. B. Jing, B. C. Wang, and F. S. Wang, “Infrared spectra of soluble polyaniline”, Synth. Met., 1988, 24, pp. 231-238.
 31. A. G. MacDiarmid, and A. J. Epstein, “Secondary doping in polyaniline”, Synth. Met., 1995, 69, pp. 85-92. 32. 林世仁, 何國賢, “導電性聚摻合物之研究”, 國立高雄應用科技大學化學工程系碩士畢業論文, 2004. 33. 謝孟吟, “以界面聚合法製備不同型態之本質型導電高分子” ,南台科技大學化學工程與材料工程系碩士論文, 2008. 34. K. Levon, K. H. HO, W. Y. Zheng, J. Laakso, T. Karna, T. Taka, and J. E. Osterholm, “Thermal doping of polyaniline with dodecylbenzene sulfonic acid without auxiliary solvents”, Polymer, 1995, 36, pp. 2733-2738. 35. B. J. Kim, S. G. Oh, M. G. Han, and S. S. Im,” Synthesis and characterization of polyaniline nanoparticles in SDS micellar solutions”, Synth. Met., 2001, 122, pp. 297-304. 36. O. Shah, “Adsorption and Desorption of Cetyl Pyridinium Ions at a Tungsten- Coated Silicon Wafer Surface”, Journal of Colloid and Interface Science,1998, 208, pp. 104-109. 37. 江偉宏, 郭信良, “石墨烯於功能性高份子複合材料的應用” , 工業材料雜誌, Apr. 2012, pp. 75-81. 38. M. I. Katsnelson, and K.S. Novoselov, “Graphene-New bridge between condensed matter physics and quantum electrodynamics”, Solid State Commun., 2007, 143, pp. 3-13. 39. M. Eizenberg, and J. M. Blakely, “Carbon interaction with nickel surfaces: Monolayer formation and structural stability”, J. Chem. Phys., 1979, 71, pp. 3467-3477. 40. L. Jiao, L. Zhang, X. Wang, G. Diankov, and H. Dai, “Narrow graphene nanoribbons from carbon nanotubes”, Nature, 2009, 458, pp. 877-880. 41. D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, and J. M. Tour, “Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons”, Nature, 2009, 458, pp. 872-876. 42. W. S. Hummers, R. E. Offeman, and J. Am. “Preparation of Graphitic Oxide”, Chem. Soc., 1958, 80, pp. 1339. 43. D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, “The chemistry of graphene oxide”, Chem. Soc. Rev., 2010, 39, pp. 228-240. 44. J. I. Paredes, S. Villar-Rodil, A. Martınez-Alonso, and J. M. D. Tascon, “Graphene Oxide Dispersions in Organic Solvents”, Langmuir, 2008, 24, pp. 10560-10564. 45. A. Buchsteiner, Lerf, and J. Pieper, “Water Dynamics in Graphite Oxide Investigated with Neutron Scattering”, Phys. Chem. B, 2006, 110, pp. 22328-22338. 46. S. Park, and R. S. Ruoff, “Chemical methods for the production of graphenes”, Nature Nanotech., 2009, 4, pp. 217-224. 47. X. Gao, J. Jang, and S. Nagasae, “Hydrazine and ThermalReduction of Graphene Oxide: Reaction Mechanisms, Product Structures, and Reaction Design”, J. Phys. Chem. C, 2010, 114, pp. 832-842. 48. O. C. Compton, and S. T. Nguyen, “Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene-Versatile Building Blocks for Carbon-Based Materials”, Small, 2010, 6, pp. 711-723. 49. P. G. Ren, D. K. Yan, X. Ji, T. Chen, and Z. M. Li, “Temperature dependence of graphene oxide reduced by hydrazine hydrate”, Nanotechnology, 2011, 22, pp. 1-8. 50. J. Yan, T Wei, B. SHAO, Z. Fan, W. Qian, M. Zhang, and F Wei, “Preparation of a Graphene Nanosheet/Polyaniline Composite with High spec Cpapcitance”, Carbon, 2010, 48, pp. 487-493. 51. K. Zhang, L. L. Zhang, X. S. Zhao, and J. Wu, “Graphene/Polyaniline Nanofiber Composites as Supercapacitor Electrodes”, Chem. Mater., 2010, 22, pp. 1392-1401. 52. H. Wang, Q. Hao, X. Yang, L. Lu, and X. Wang, “Effect of Graphene Oxide on the Properties of Its Composite with Polyaniline”, ACS Appl. Mater. Interfaces, 2010, 2, pp. 821-828. 53. S. Ben-Valid, H. Dumortier, M. Decossas, R. Sfez, M. Meneghetti, A. Bianco, and S. Yitzchaik, “Polyaniline-coated single-walled carbon nanotubes-synthesis, characterization and impact on primary immune cells”, J. Mater. Chem., 2010, 20, pp. 2408-2417. 54. N. Yang, J. Zhai, M. Wan, D. Wang, and L. Jiang, “Layered nanostructures of polyaniline with graphene oxide as the dopant and template”, Synth. Met., 2010, 160, pp. 1617-1622. 55. J. Li, H. Xie, Y. Li, J. Liu, and Z. Li, “Electrochemical properties of graphene nanosheets/polyaniline nanofibers composites as electrode for supercapacitors”, Journal of Power Sources, 2011, 196, pp. 10775-10781. 56. 如仙古麗加瑪力, 張校剛, 吐爾遜阿不都熱依木, “表面活性劑SDS對固相反應法製備鹽酸摻雜聚苯胺的影響”, 華東理工大學學報(自然科學版), 2006, 32, pp. 1197-1200. 57. P. S. Rao, D. N. Sathyanarayana, and S. Palaniappan, “Polymerization of Aniline in an Organic Peroxide System by the Inverted Emulsion Process”, Macromolecules, 2002, 35, pp. 4988-4996. 58. K. S. Ryu, B. W. Moon, J. Joo, and S. H. Chang, “Characteriza-ion of Highly Conducting Lithium Salt Doped Polyaniline Films Prepared from Polymer Solution”, Polymer, 2001, 42, pp. 9355-9360. 59. E. T. Kang, K.G. Neoh, and K. L. Tan, “Handbook of Organic Conductive 
Molecules and Polymers”, Wiley, 1997. 60. 周雪芬, “水可溶導電高分子作為電泳介質及自由基捕捉劑之應用探討”, 長庚大學化工與材料工程研究所碩士論文, 2004. 61. Z. Ni, Y. Wang, T. Yu, and Z. Shen, “Raman Spectroscopy and Imaging of Graphene”, Nano Res, 2008, 1, pp. 273-291. 62. K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prudhomme, I. A. Aksay, and R. Car, “Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets”, Nano letters, 2008, 8, pp. 36-41. 63. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhass, A Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide”, Carbon, 2007, 45, pp. 1558-1565. 64. 王淑君, “以硝酸與十二烷基苯磺酸共摻雜製備導電性聚苯胺奈米顆粒之研究”, 南台科技大學化學工程與材料工程研究所碩士論文, 2006.
摘要: 本研究以化學法製備石墨烯,探討不同還原時間下,石墨烯的性質研究及討論,並以石墨烯做為補強材與聚苯胺以原位聚合法製備聚苯胺/石墨烯複合材料,以陰離子型介面活性劑十二烷基硫酸鈉(sodium dodecylsulfate, SDS),克服聚合反應時石墨烯在溶液中分散不良的問題,同時討論不同SDS添加量時,聚苯胺/石墨烯複合材料的性質研究與探討。 在化學法製備石墨烯程序中,隨著還原時間增加,石墨烯的導電度及熱穩定性也都得到提昇,石墨烯在150-250°C間的熱損失主要為含氧官能基團的溢散,經24小時還原後,150-250°C間已無明顯的熱重量損失,顯示經過24小時還原可以得到含氧官能基團移除的石墨烯,且在經過還原後石墨烯導電度也從氧化石墨的4.36x10-5 S/cm提昇至18 S/cm。 在添加SDS製備聚苯胺/石墨烯複合材料系統中,聚苯胺/石墨烯複合材料的導電度隨著SDS濃度增加,聚苯胺複合材料中SDS添加250 mg/ml時導電度可由純聚苯胺的45.8 S/cm提昇至90.3 S/cm,導電度藉由SDS的添加大幅提昇一倍,若繼續增加SDS則導電度呈現下降趨勢。由UV-VIS得知隨著SDS濃度增加,複材中氧化程度先增加再減少;而進一步以XPS N1s觀察複材中[N+]/[N]比例,結果顯示隨著SDS添加至250 mg/ml時其摻雜程度最高,繼續增加SDS添加量則摻雜度下降,此趨勢與導電度及UV-VIS相符合,顯示SDS確實參與摻雜行為,聚苯胺系統中添加SDS可以提昇導電度。 從SEM及TEM圖可以發現在添加SDS之後可以改善石墨烯在聚苯胺/石墨烯複合材料的均勻性,使聚苯胺可以完整披覆石墨烯表面。在添加較高濃度的SDS時,石墨烯分散效果良好,可以觀察到石墨烯的片狀結構,且聚苯胺均勻披覆於石墨烯表層。
In this study, the polyaniline/graphene composites were fabricated through in-situ chemical oxidation polymerization with various amounts of sodium dodecyl sulfate (SDS). The graphene was obtained from reduced graphene oxide, which was treated using various reduction time of graphene oxide. The structure and physical properties of reduced graphene oxide were investigated using XRD, FT-IR, Raman, TGA and SEM. The conductivity and thermal stability of the reduced graphene oxide were enhanced with increasing reduction time. The weight loss of graphene oxide in the temperature range of 150-250�C was due to the remove of oxygen-containing functional group. After 24 hr reduction, there is only a small amount of weight loss in the temperature region. The conductivity of graphene oxide and 24 hr reduced graphene oxide is 4.36 x10-5 and 18 S/cm. Both results indicate that the reduced graphene oxide was suitable to use as a reinforcing material to prepare conductive polyaniline/graphene composite. The conductivity of conductive polyaniline prepared in HCl solution, through chemical oxidation polymerization was 45.8 S/cm. As the loading of 25mg/ml SDS into system, the conductivity drastically increase to 90.3 S/cm. By adding more SDS into the system, the conductivity of polyaniline/graphene was slightly decreased. The chemical composition of polyaniline/graphene composite was characterized using XPS. The intensity ratio of [N+]/[N] increased as the addition of SDS increased to 25 mg/ml. Continuous loading of SDS into the system, the intensity ratio [N+]/[N] decreased. This result is consistent with our experimental data of conductivity.
URI: http://hdl.handle.net/11455/11443
其他識別: U0005-2502201317114100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2502201317114100
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.