Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11457
標題: 被覆含肝素多層複合材於鎳鈦合金應用於心臟血管支架之研究
Heparin Contained Multilayer Composite Coatings on NiTi Alloy for Cardiovascular Stents
作者: 鄭博尹
Cheng, Po-Yin
關鍵字: 鎳鈦合金
Ni-Ti alloy
血管再狹窄
肝素
磷酸鈣鹽
明膠
Restenosis
Heparin
Calcium phosphate
Gelatin
出版社: 材料科學與工程學系所
引用: 1.Andreas R. Grüntzig, M.D., Åke Senning, M.D., and Walter E. Siegenthaler. Nonoperative Dilatation of Coronary-Artery Stenosis — Percutaneous Transluminal Coronary Angioplasty. N Engl J Med 1979; 301:61-68 2.Serruys PW, Jaegere PD, Kiemeneij F, Macaya C, Rutsch W, Heyndrickx G, et al. A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. N Engl J Med 1994;331(8):489–95 3.Fischman DL, Leon MB, Baim DS, Schatz RA, Savage MP, Penn I, et al. A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. N Engl J Med 1994;331(8):496–501 4.Charles T. Dotter, Melvin P. Judkins. Transluminal Treatment of Arteriosclerotic Obstruction: Description of a New Technic and a Preliminary Report of Its Application. Circulation 1964;30:654-670 5.Sigwart, M.D., Jacques Puel, M.D., Velimir Mirkovitch, M.D., Francis Joffre, M.D., and Lukas Kappenberger, M.D. Intravascular Stents to Prevent Occlusion and Re-Stenosis after Transluminal Angioplasty. N Engl J Med 1987; 316:701-706 6.Barry O’Brien, William Carroll. The evolution of cardiovascular stent materials and surfaces in response to clinical drivers: a review. Biomaterials 2009;5:945-958 7.Nakazawa G, Finn AV, John MC, Kolodgie FD, Virmani R. The significance of preclinical evaluation of sirolimus-, paclitaxel-, and zotarolimus-eluting stents. Am J Cardiol 2007; 100:36M-44M. 8.Oberhoff M, Herdeg C, Baumbach A, Karsch KR. Stent-based antirestenotic coatings (sirolimus/paclitaxel). Catheter Cardiovasc Interv 2002; 55:404-8. 9.Lafont A. The Cypher stent: no longer efficacious at three months in the porcine model. Cardiovasc Res 2004; 63:575-6. 10.Tsimikas S. Drug-eluting stents and late adverse clinical outcomes lessons learned, lessons awaited. J Am Coll Cardiol 2006; 47:2112–5. 11.Colombo A, Drzewiecki J, Banning A, Grube E, Hauptmann K, Silber S, et al. Randomized study to assess the effectiveness of slow- and moderate-release polymer-based paclitaxel-eluting stents for coronary artery lesions. Circulation 2003; 108:788–94. 12.Schwartz RS, Chronos NA, Virmani R. Preclinical. restenosis models and drugeluting stents: still important, still much to learn. J Am Coll Cardiol 2004; 44:1373–85. 13.Gautam Kedia MSL. Stent thrombosis with drug-eluting stents: a reexamination of the evidence. Catheter Cardiovasc Interv 2007; 69:782–9. 14.Surmodics, press release. Surmodics announces first human use of synbiosys biodegradable polymer. CardioMind 2008 15.Abizaid AC, de Ribamar Costa Jr J, Whitbourn RJ, Chang JC. The CardioMind coronary stent delivery system: stent delivery on a 0.01400 guidewire platform. EuroInterv 2007; 3:154–7. 16.drug eluting coronary stent system. Biosensors international brochure reference BioMatrix 10351-000-Rev 02, BMXBRO-03-08-EN. 17.press release. Biosensors’ drug-eluting stent demonstrates superior strut coverage to industry-leading drug-eluting stent. Biosensors 2008 18.B.D. Ratner, J. Blood compatibility – a perspective. Biomater. Sci. Polym. 2000; 11:1107. 19.L. Xue, H.P. Greisler, Biomaterials in the development and future of vascular grafts. J. Vasc. Surg. 2003; 37:472. 20.Masakazu Kohno, Koji Yokokawa, Kenichi Yasunari, Mieko Minami, Hiroaki Kano, Anil K. Mandal, and Junichi Yoshikawa. Heparin Inhibits Human Coronary Artery Smooth Muscle Cell Migration. Metabolism 1998; 47(9):1065-1069 21.D. Teomima, I. Fishbienb, G. Golombb, L. Orloffc, M. Maybergd, A.J. Domba. Perivascular delivery of heparin for the reduction of smooth muscle cell proliferation after endothelial injury. J Control Release 1999; 60(1):129-42 22.Li, Juana Wu, Yingfeng Yang, Xinlin. Progress in Heparin-Functionalized Biomaterials. a Chinese Journal of Organic Chemistry. 2010; 30(3):359~367 23.Saravanababu Murugesan, Jin Xie, and Robert J. Linhardt. Immobilization of Heparin: Approaches and Applications. Current Topics in Medicinal Chemistry 2008; 8: 80-100 24.C.J. van Delden, G.H.M. Engbers and J. Feijen. Interaction of antithrombin III with surface-immobilized albuminheparin conjugates. J. Biomed. Mater. 1995; 1317-1329. Res. 29 25.M. Amiji and K. Park. Surface modification of polymeric biomaterials with poly(ethylene oxide), albumin, and heparin for reduced thrombogenicity. J. Biomater. Sci. 1993; 4(3):217-234. 26.Jinhong Fu, Jian Ji, Weiyong Yuan, Jiacong Shen. Construction of anti-adhesive and antibacterial multilayer films via layer-by-layer assembly of heparin and chitosan. Biomaterials 2005; 26:6684–6692 27.F. Sun, X. Pang, I. Zhitomirsky. Electrophoretic deposition of composite hydroxyapatite–chitosan–heparin coatings. journal of materials processing technology 2009; 209:1597–1606 28.Mei Tsung and Diane J. Burgess. Preparation and Stabilization of Heparin/Gelatin Complex Coacervate Microcapsules. Journal of Pharmaceutical Sciences 1997; 86(5):603 29.Barroug A and Glimcher M J. Hydroxyapatite crystals as a local delivery system for cisplatin: adsorption and release of cisplatin in vitro. J. Orthop. Res 2002; 20: 274–80 30.Krisanapiboon A, Buranapanitkit B and Oungbho K. Biocompatability of hydroxyapatite composite as a local drug delivery system. J. Orthop. Surg. 2006; 14:315–8 31.Sogo Y, Ito A, Onoguchi M, Oyane A, Tsurushima H and Ichinose N. Formation of a FGF-2 and calcium phosphate composite layer on a hydroxyapatite ceramic for promoting bone formation. Biomed. Mater. 2007; 2:175–80 32.D M Zhao, Y X Wang, Z Y Chen, R W Xu, G Wu and D S Yu. Preparation and characterization of modified hydroxyapatite particles by heparin. Biomed. Mater. 2008; 3:025016 (6pp) 33.David Tebbe, Roger Thull, Uwe Gbureck. Correlation between heparin release and polymerization degree of organically modified silica xerogels from 3-methacryloxypropylpolysilsesquioxane. Acta Biomaterialia 2007; 3:829–837 34.P. K. Smith, A. K. Mallia, and G.T. Hermanson. Calorimetric Method for the Assay of Heparin Content in Immobilized Heparin Preparations. ANALYTICAL BIOCHEMISTRY 1980; 109: 466-473 35.Changren Zhou, Zhengji Yi. Blood-compatibility of polyurethane/liquid crystal composite membranes. Biomaterials 1999; 20:2093-2099 36.S.K. Yen, C.M. Lin. Cathodic reactions of electrolytic hydroxyapatite coating on pure titanium. Materials Chemistry and Physics 2003; 77(1):70-76 37.C. C. Yang, C. C. Lin, and S. K. Yen. Electrochemical Deposition of Vancomycin/ChitosanComposite on Ti Alloy. Journal of The Electrochemical Society 2011; 158 (12): E152-E158 38.Chun-Yi Lo. The deposition of Chitosan/ Gelatin/Vancomycin /Calcium Phosphate Composite on Titanium Alloy. Unpublished master dissertation, National Chung Hsing University, Tachung.2011 39.A. N. Grace, K. Pandian. Antibacterial efficacy of aminoglycosidic antibiotics protected gold nanoparticles-A brief study. Colloids and surfaces A 2007; 297:63-70. 40.G.B. Oliveira, L.B. Carvalho Jr., M.P.C. Silva. Properties of carbodiimide treated heparin. Biomaterials 2003; 24:4777–4783. 41.F. Suna, K.N. Sask, J.L. Brash, I. Zhitomirsky. Surface modifications of Nitinol for biomedical applications. Colloids and Surfaces B: Biointerfaces. 2008; 67:132–139 42.http://www.answers.com/topic/heparin 43.T. R. Anderegg, H. S. Sader, T. R. Fritsche, J. E. Ross, R. N. Jones. Trends in liezolid susceptibility patterns: report from the 2002-2003 worldwide Zyvox Annual Appraosal of Potency and Spectrum (ZAAPS) Program. International Journal of Antimierobial Agents 2005; 26:13-21. 44.http://www.chm.bris.ac.uk/motm/glycine/glycineh.htm 45.Zhihong Yang, Peter Birkenhauer, Friedgard Julmy, Donald Chickering, John P. Ranierie, Hans P. Merkle, Thomas F. Lu¨schera, Bruno Gander. Sustained release of heparin from polymeric particles for inhibition of human vascular smooth muscle cell proliferation. Journal of Controlled Release 1999; 60:269–277 46.Rogers C, Karnovsky MJ, Edelman ER. Inhibition of experimental neointimal hyperplasia and thrombosis depends on the type of vascular injury and the site of drug administration. Circulation 1993; 88:1215–21.
摘要: 雖然金屬支架(BMS)成功的讓血管成型術(PTCA)後血管再狹窄的機率由30%-40%降為20%-30%,但平滑肌細胞(VSMC)增生仍會造成支架內再狹窄(ISR)的情形。因此,許多研究提出塗藥支架的構想以減少再狹窄的機率。為了增進鎳鈦基材的血液相容性並建立一個穩定釋放肝素(Heparin)的系統,本研究將磷酸鈣鹽(Calcium phosphate)、明膠(Gelatin)、幾丁聚醣 (Chitosan)與肝素複合沉積於鎳鈦合金上。使用了極化法檢視沉積機制,並以X光繞射儀 (XRD)、場發射式掃描電子顯微鏡 (FESEM)、傅立葉紅外線光譜儀 (FTIR)、甲苯胺藍(Toluidine blue)染色法、分光光度計(UV visible spectrometer)和動態凝血測試檢視含肝素複合鍍層之材料特性與抗凝血特性。結果顯示肝素能成功地與磷酸鈣鹽、明膠、幾丁聚醣共沉於鎳鈦合金上。肝素載量可由單層複材的147.06±68.66 μg/cm2 (CaP-Hep)增加至多層複材的324.87±4.94 μg/cm2 (HA/CaP-Hep/Gel-Hep)。相對應地,體外釋放可由1天的爆發釋放增至35天以上的持續釋放。一小時內的凝血測試結果顯示多層複合材其良好的抗凝血效果與體外釋放藥量一致。
Although the initial success of bare metal stents (BMS) has significantly reduced the restenosis rate from 35% for Percutaneous transluminal coronary angioplasty (PTCA) to 25%, the biological mechanism such as smooth muscle cell proliferation and neointimal hyperplasia may still induce in-stent restenosis (ISR). Therefore, some drug eluting stents have been introduced to reduce ISR. In this study, heparin (Hep) combined with calcium phosphate (CaP) and gelatin (Gel) is co-deposited on NiTi alloy in order to promote the hemocompatibility of NiTi substrate and fabricate the sustained heparin releasing system. Polarization tests are carried out in several solutions to investigate deposition mechanisms. Heparin contained composite coatings are characterized by X-ray diffractometry (XRD), Field emission scanning electron microscope (FESEM), Fourier transform infrared spectroscopy (FTIR), toluidine blue colorimetric assay, UV-visible spectrometer and kinetic clotting tests. The consequences indicate that heparin accompanied with CaP, and Gel through ionic bonds can be loaded on the NiTi alloy, respectively. The porous post HA coating can enhance drug content from 147.06±68.66 μg/cm2 of single layer coating (CaP-Hep) to 191.58±11.87 μg/cm2 of bilayer coating (HA/CaP-Hep) and further to 324.87±4.94 μg/cm2 of trilayer coating (HA/CaP-Hep/Gel-Hep) by adding the third layer which also results in the in vitro heparin release prolonging from 1 day burst to more than 35 days sustaining. As the result of clotting tests, drug loaded composite coatings reveal good anticoagulant property which is proportional to the cumulative content of drug release in an hour, indicating no denaturalization of heparin found during the electrochemical process.
URI: http://hdl.handle.net/11455/11457
其他識別: U0005-0108201220475100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0108201220475100
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.