Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11498
標題: 鎂合金廢料於含有氯化鈉之有機酸中無觸媒產氫之研究
Evolution of hydrogen from magnesium metal scraps in NaCl-added organic acid aqueous without catalyst
作者: 游世豪
Yu, Shih-Hao
關鍵字: 氫氣產生
Hydrogen generation
鎂合金廢料
有機酸
檸檬酸
海水
Magnesium scraps
Organic acid
Citric acid
Seawater
出版社: 材料科學與工程學系所
引用: 參考文獻 1.A. Midilli, I. Dincer, “Hydrogen as a renewable and sustainable solution in reducing global fossil fuel consumption”, Int. J. Hydrogen Energy, 33 (2008), pp. 4209-4222. 2.T. Abbasi, S.A. Abbasi, “‘Renewable’ hydrogen: Prospects and challenges”, Renewable and Sustainable Energy Reviews, 15 (2011), pp. 3034-3040. 3.I. Dincer, “Renewable energy and sustainable development: a crucial review”, Renewable and Sustainable Energy Reviews, 4 (2000), pp. 157-175. 4.S.A. Sherif, F. Barbir, T.N. Veziroglu, “Wind energy and the hydrogen economy—review of the technology”, Solar Energy, 78 (2005), pp. 647-660. 5.M.B. Gorensek, C.W. Forsberg, “Relative economic incentives for hydrogen from nuclear, renewable, and fossil energy sources”, Int. J. Hydrogen Energy, 34 (2009), pp. 4237-4242. 6.E. Varkaraki, N. Lymberopoulos, E. Zoulias, D. Guichardot, G. Poli,“Hydrogen-based uninterruptible power supply“, Int. J. Hydrogen Energy 32 (2007), pp. 1589–96. 7.M. Ni, M.K.H Leung , K Sumathy, D.Y.C. Leung, “Potential of renewable hydrogen production for energy supply in Hong Kong”, Int. J. Hydrogen Energy, 31 (2006), pp. 1401–12. 8.B. Mclellan, E.Shoko, A.L. Dicks, and J.C. Diniz da Costa, “Hydrogen production and utilization opportunities”, Int. J. Hydrogen Energy, 30(2005), pp. 669-679. 9.S.C. Amendola, S.L. Sharp-Goldman, M.S. Janjua, N.C. Spencer, M.T. Kelly, P.J. Petillo, M. Binder, “A safe portable hydrogen gas generator using aqueous borohydride solution and Ru catalyst”, Int. J. Hydrogen Energy, 25 (2000), pp. 969-975. 10. L. Soler, J. Macanas, M. Munoz, “Synergistic hydrogen generation from aluminum, aluminum alloys and sodium borohydride in aqueous solutions”, Int. J. Hydrogen Energy, 32 (2007), pp. 4702-4710. 11. M. Grosjean, M. Zidoune, J Huot, L. Roue, “Hydrogen generation via alcoholysis reaction using ball-milled Mg-based materials”, Int. J. Hydrogen Energy, 31 (2006), pp. 1159-1163. 12. J.Y. Uan, S.H. Yu, M.C. Lin, L.F. Chen, H.I. Lin, “Evolution of hydrogen from magnesium alloy scraps in citric acid-added seawater without catalyst”, Int. J. Hydrogen Energy, 34 (2009), pp. 6137-6142. 13. S.H. Yu, J.Y. Uan, T.L. Hsu, “Effects of concentrations of NaCl and organic acid on generation of hydrogen from magnesium metal scrap”, Int. J. Hydrogen Energy, 37 (2012), pp. 3033-3040. 14. J. Golddemberg, “The promise of clean energy”, Energy Policy, 34 (2006), pp. 2185-2190. 15. S. Shafiee, E. Topal, “When will fossil fuel reserves be diminished?”,Energy Policy, 37 (2009), pp.181‐189. 16. T.N. Veziroglu, S. Sahin, “21st Century’s energy: Hydrogen energy system”, Energy Conversion and Management, 49 (2008), pp.1820-1831. 17. X. Labandeira-Villot, “Market instruments and the control of acid rain damage: Effects of a sulphur tax on the Spanish electricity generating industry”, Energy Policy, 24 (1996), pp. 841-854. 18. J. Sungkwon, J Jungkun, K. Sejin, “The preparation of a metal foam support of Pt/Al2O3 for combustion of hydrogen”, Catalysis Today, 155 (2010), pp. 45-50. 19. N. Afgan, A. Veziroglu, “Sustainable resilience of hydrogen energy system”, Int. J. Hydrogen Energy, 37 (2012), pp. 5461-5467. 20. 曲新生, “氫能技術”, 五南, (2006). 21. E.M. do Sacramento, L.C. de Lima, C.J. Oliveira, T. Nejat Veziroglu “A hydrogen energy system and prospect for reducing emission of fossil fuel pollutant in the Geara State- Brazil”, Int. J. Hydrogen Energy, 33 (2008), pp. 2132-2137. 22. F. Ma, H Liu, Y. Wang, Y. Li, J Wang, S. Zhao, “Combustion and emission characteristics of a port-injection HCNG engine under various ignition timings”, International Journal of Hydrogen Energy, 33 (2008), pp. 816–822. 23. T. Shudo, K. Omori, O. Hiyama, “NOx reduction and NO2 emission characteristics in rich-lean combustion of hydrogen”, International Journal of Hydrogen Energy”, 33 (2008), pp. 4689–4693. 24. J.W. Heffel, “NOx emission reduction in a hydrogen fueled internal combustion engine at 3000.rpm using exhaust gas recirculation”, International Journal of Hydrogen Energy, 28 (2003), pp.1285–1292. 25. M. Gregorio, V.S. Teresa, “Towards a Hydrogen Economy”, Int. J. Hydrogen Energy, 32 (2007), pp. 1625-1637. 26. P.J Sebastian, “Mexican participation in IEA program on production, storage and utilization of hydrogen”, Int. J. Hydrogen Energy, 28 (2003), pp 595-595. 27. J. Pangborn, M. Scott, J. Sharer, “Technical prospects for commercial and residential distribution and utilization of hydrogen”, Int. J. Hydrogen Energy, 2 (1977), pp. 431-445. 28. R. Ramachandran, R.K. Menon, “An review of industrial uses of hydrogen”, Int. J. Hydrogen Energy, 23 (1998), pp. 593-598. 29. A. Al-Ghandoor , J.O. Jaber, I. Al-Hinti, I.M. Mansour, “Residential past and future energy consumption: Potential savings and environmental impact”, Renewable and Sustainable Energy Reviews, 13 (2009), pp. 1262–1274. 30. R.E. Brown, “Magnesium recycling yesterday, today, tomorrow”, In: Donald Jr DL, Daley JC, Stephens RL, editors, International symposium of 4th on recycling of metals and engineered materials, Warrendale, PA: The Minerals, Metals & Materials Society, 2000, pp. 1317–1329. 31. N.Y. Li, “Magnesium advances and applications in north America automotive industry”, Mater. Sci. Forum, 488–489 (2005), pp. 931–935. 32. A.A. Luo, “Magnesium: current and potential automotive Applications”, JOM, 54 (2002), pp. 42–48. 33. B.L. Mordike, T. Ebert, “Magnesium properties-applications- potential”, Mater. Sci. Eng. A, 302(2001), pp. 37–45. 34. E. Aghion, B. Bronfin, “Magnesium alloys development towards the 21st century”, Mater. Sci. Forum,350–351 (2000), pp.19–28. 35. R.L Edgar, “Global overview on demand and applications for magnesium alloys”, In: Kainer KU, editor, Magnesium alloys and their applications, Weinheim, Germany: Wiley-VCH Verlag GmbH, 2000, pp. 3–8. 36. A. Javaid, E. Essadiqi, S. Bell, B. Davis, “Literature review on magnesium recycling”, In: Luo AA, Neelameggham NR, Beals RS, editors, Magnesium technology, 2006, Warrendale, PA: The Minerals, Metals & Materials Society, 2006, pp. 7–12. 37. G. Hanko, H. Antrekowitsch, P. Ebner, “Recycling automotive magnesium scrap”, JOM, 54 (2002), pp. 51–54. 38. H.S. Tathgar, P. Bakke, T.A. Engh, “Impurities in magnesium and magnesium based alloys and their removal”, In: Kainer KU, editor, Magnesium alloys and their applications, Weinheim, Germany: Wiley-VCH Verlag GmbH, 2000, pp. 767–779. 39. J.E. Hillis, “The effects of heavy metal contamination on magnesium corrosion”, Light Met Age, 41 (1983), pp. 25–29. 40. G.S. Foerster, US Patent No. 3, 869, 281, 1975. 41. M. Inoue, M. Iwai , S. Kamado, Y. Kojima, T. Itoh, M. ASugama, “A new recycling process of thin walled AZ91D magnesium alloy die-castings with paint finishing”, In: Mordike BL, Kainer KU, editors, Magnesium alloys and their applications, Frankfurt, Germany: Werkstoff-Informationsgesellschaft, 1998, pp. 697–702. 42. H. Westengen, “Recycling”, In: Friedrich HE, Mordike BL, editors,Magnesium technology: metallurgy, design data, applications, Berlin, Germany: Springer-Verlag, 2006, pp. 652. 43. C.E.M. Meskers, A. Kvithyld, M.A. Reuter, T.A. Engh, “Thermal decoating of magnesium – a first step towards recycling of coated magnesium”, In: Luo AA, Neelameggham NR, Beals RS, editors, Magnesium technology 2006. Warrendale, PA: The Minerals, Metals & Materials Society, 2006, pp. 33–38. 44. H. Antrekowitsch, G. Hanko, “Recycling of different types of magnesium scrap”, In: Kaplan HI, editor. Magnesium technology 2002, Warrendale, PA: The Minerals, Metals & Materials Society, 2002, pp. 43–48. 45. C.E.M. Meskers, Y. Xiao, R. Boom, M.A. Reuter, U. Boin, “Predicting the influence of coatings on recyclability of magnesium using exergy analysis”, In: Beals RS, Luo AA, Neelameggham NR, Pekguleryuz MO, editors, Magnesium technology 2007, Warrendale, PA: The Minerals, Metals & Materials Society, 2007, pp. 293–298. 46. J.H. Nordlien, S. Ono, N. Masuko and K. Nisancioglu, “A TEM investigation of naturally formed oxide films on pure magnesium”, Corrosion Science, 39 (1997), p.1397. 47. 陳欣蘋,”顯微組織對壓鑄AZ91D鎂合金之腐蝕行為影響研究”,國立成功大學材料科學及工程學系碩士論文,2002. 48. M. Pourbaix, “Atlas of Electrochemical Equilibria in Aqueous Solution”, NACE, Houston, TX, USA, 1974. 49. J.Y. Uan, C.Y. Cho, K.T. Liu, “Generation of hydrogen from magnesium alloy scraps catalyzed by platinum-coated titanium net in NaCl aqueous solution”, Int. J. Hydrogen Energy, 32 (2007), pp. 2337-2343. 50. J.Y. Uan, M.C. Lin, C.Y. Cho, K.T. Liu, H.I. Lin, “Producing hydrogen in an aqueous NaCl solution by the hydrolysis of metallic couples of low-grade magnesium scrap and noble metal net”, Int. J. Hydrogen Energy, 34 (2009), pp. 1677-1687. 51. R. Ambat, N.N Aung and W. Zhou, “Studies on the influence of chloride ion and pH on the corrosion and electrochemical behaviour of AZ91D magnesium alloy”, Journal of Applied Electrochemistry, 30 (2000), p. 865. 52. O. Lunder, J. E. Lein, T.K. Aune and K. Nisancioglu, “The role of Mg17Al12 phase in the corrosion of Mg alloy AZ91”, Corrosion, 45 (1989), p. 741. 53. W.M. Chan, F.T. Cheng, L.K. Leung, R.J. Horylev and T.M. Yue,“Corrosion behaviour of magnesium alloy AZ91 and its MMC in NaCl Solution”, Corrosion Reviews, 16 (1998), p. 43. 54. C.R. Soccol, L.P.S. Vandenberghe, C. Rodrigues, A. Pandey, New perspectives for citric acid production and application, Food Technology and Biotechnology, 44 (2006), 141-149. 55. S.A. Shojaosadati, V. Babaeipour , Citric acid production from apple pomace in multi-layer packed bed solid-state bioreactor, Process Biochem., 37 (2008), pp. 909-914. 56. T. Pramod, K. Lingappa, Immobilization of Aspergillus niger in polyurethane foam for citric acid production from carob pod extract, Am. J. Food Technol., 3 (2008), pp. 252-256. 57. S.S. Martinez, L.A. Sanchez, A.A.A. Gallegos, P.J. Sebastian,“Coupling a PEM fuel cell and the hydrogen generation from aluminum waste cans”, Int. J. Hydrogen Energy,32 (2007), pp. 3159–3162. 58. S.S Martinez , W.L. Benites, A.A.A. Gallegos, P.J. Sebastian, “Recycling of aluminum to produce green energy”, Sol. Energy Mater. Sol. Cells, 88 (2005), pp. 237–243. 59. L. Soler, J. Macanas, M. Munoz, J. Casado, “Aluminum and aluminum alloys as sources of hydrogen for fuel cell applications”, J. Power Sources, 169 (2007), pp. 144–149. 60. T. Hiraki, M. Takeuchi, M. Hisa, T. Akiyama, “Hydrogen production from waste aluminum at different temperatures, with LCA”, Mater. Trans., 46 (2005), pp. 1052–1057. 61. M.H. Grosjean, M. Zidoune, J.Y. Huot, L Roue, “Hydrogen generation via alcoholysis reaction using ball-milled Mg-based materials”, Int. J. Hydrogen Energy, 31 (2006), pp. 1159–1163. 62. M.H. Grosjean, M. Zidoune, L. Roue, J.Y. Huot, “Hydrogen production via hydrolysis reaction from ball-milled Mg-based materials”, Int. J. Hydrogen Energy,31 (2006), pp.109–119. 63. S.S. Sergev, S.A. Black, “Supercorroding alloys for generating heat and hydrogen gas”, In: Proceedings of the 12th intersociety energy conversion engineering conference, vol. I. La Grange Park, IL: American Nuclear Society, 1977, pp. 973–980. 64. S.C. Amendola, S.L. Sharp-Goldman, M.S. Janjua, N.C. Spencer, M.T. Kelly, P.J. Petillo, et al, “A safe, portable, hydrogen gas generator using aqueous borohydride solution and Ru catalyst”, Int. J. Hydrogen Energy,25 (2000), pp. 969–975. 65. J. Wakefield, “The ultimate clean fuel. A start-up contemplates nonpolluting cars powered by an ingredient of soap”, Sci. Am., 286 (2002), pp. 36–37. 66. J.H. Wee, K.Y.Lee, S.H. Kim, “Sodium borohydride as the hydrogen supplier for proton exchange membrane fuel cell systems”, Fuel Process Technol., 87 (2006), pp. 811-819. 67. M. Pudukudy, Z. Yaakob, B. Narayanan, R. Ramakrishnan, S. Viswanathan, “Hydrogen production from sea water using waste aluminium and calcium oxide”, 37 (2012), pp. 7451-7456. 68. N. Jiang, H.M. Meng, L.J. Song, H.Y. Yu, “Study on Ni-Fe-C cathode for hydrogen evolution from seawater electrolysis”, Int. J. Hydrogen Energy, 35 (2010), pp. 8056-8062. 69. V. Marinovic, A.R. Despic, “Hydrogen evolution from solutions of citric acids”, J. Electroanal Chem., 431 (1997), pp. 127-132. 70. 謝秉軒,”Triton SP-190SDS混合界劑之界面吸附行為的探討”,國立成功大學化學工程學系碩士論文,2002. 71. J.A. Young, “Acetic acid (glacial)”, J. Chem. Educ., 78(2001), p. 721. 72. S.Y. Lee, D.H. Kang, “Combined effects of heat, acetic acid, and salt for inactivating Escherichia coli O157:H7 in laboratory media”, Food Control, 20 (2009), pp. 100-112. 73. S. Lee, D.M. Ha, “The lower flash points of binary systems containing non-flammable component”, Korean J. Chem. Eng., 20 (2003), pp. 799-802. 74. K. Chuchev, J.J. Belbruno, “Theoretical study of carboxylic acids with explicit water molecules”, Joumal Mol. Struct. THEOCHEM, 763 (2006), pp. 199-204.
摘要: 鎂合金材料具有許多優異的特性,例如比強度高、抑震性能佳、良好的電磁遮蔽效果等;因此,隨著輕量化的優勢,以鎂合金製成的零組件,已逐漸地被運用於交通工具上。除此之外,許多個人行動電子產品的零組件也大量地使用鎂合金的製品。基於這些原因,鎂合金廢料將逐日增多,因此,廢棄物資源之處理方式將會成為鎂合金於未來發展的重要課題之一。有鑒於此,本研究以鎂合金廢料或具有防蝕鍍膜而難以回收的鎂合金廢料為製氫材料,使其轉換為一種無二次污染之能源。 本研究使用鎂合金廢料(low-grade Mg scraps)與有機酸,有系統地研究不使用觸煤而產氫的方法。鎂合金耦片於海水溶液中產氫,不鏽鋼網有著觸媒的功用,明顯提升了氫氣累積總量;但鎂合金耦片在含有檸檬酸的海水溶液中產氫,卻沒有觸媒的功用。鎂合金廢料於檸檬酸中產氫,當海水中的檸檬酸濃度為30 wt%時,擁有最大的氫氣累積總量。並計算從含檸檬酸的海水溶液中,產生氫氣的活化能。由於氫離子的移動性與濃度影響了氫氣產生,最大的氫氣累積總量產生於居中的檸檬酸濃度上。氯化鈉濃度對於檸檬酸溶液中的產氫,有著強烈的影響;但是氯化鈉濃度對於醋酸溶液中的產氫,卻沒有影響。雖然15 wt%醋酸溶液與15 wt%檸檬酸溶液,有幾乎相等的可解離氫離子數,但是鎂合金廢料於15 wt%醋酸溶液中的產氫速率,明顯勝過15 wt%檸檬酸中的產氫速率。
Due to excellent properties such as excellent vibration damping property, high specific strength and EMI (electromagnetic interference), in transportation vehicle (e.g., engineering covering, oil pan, door frame wheel, etc) and the outer shell of 3C electric products (e.g., the outer covering of personal mobile communication tool, the upper cover and base seat of notebook computer, etc.), magnesium alloys has an increasing number of uses. Recycling of magnesium scraps (i.e., end-of-life or post-consumed magnesium products) has become increasingly important. The study proposes a method for generating hydrogen gas in citric acid-added seawater by the hydrolysis of magnesium scraps. The study systematically investigates a catalyst-free method of producing hydrogen using low-grade magnesium scraps (LGMS) in aqueous organic acids. The stainless steel (S.S) net, functions as a catalyst of hydrogen production for LGMS plate in seawater, obviously improve the hydrogen yield, but losing the function of catalyst in citric acid-added seawater. The hydrogen yield was highest when the concentration of citric acid is at 30 wt%, while magnesium plate was placed in citric acid-added seawater. Activation energy for the H2 generation in citric acid-added seawater was calculated. The mobility and concentration of hydrogen ions in citric acid aqueous affect the total hydrogen yield, causing that the highest yield occurred at some intermediate citric acid concentration. The concentration of sodium chloride strongly effects on hydrogen yield in citric acid solution but without the effect on the hydrogen yield in acetic acid solution. The hydrogen generation rate from the magnesium scraps in 15 wt% acetic acid solution obviously exceeded that in 15 wt% citric acid solution, although the two organic solutions each had approximately equal moles of dissociable hydrogen atoms.
URI: http://hdl.handle.net/11455/11498
其他識別: U0005-2808201213560100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2808201213560100
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.