Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11515
標題: 鎳鐵/錳奈米多層薄膜之結構及磁性質之研究
The study of Structures and Magnetic Properties of NiFe/Mn Multilayers.
作者: 黃梅如
Huang, Mei-Lu
關鍵字: 雙離子束濺鍍
IBAD
交換偏壓
矯頑磁力
Exchange Bias
Coercivity
出版社: 材料科學與工程學系所
引用: 1-6第一章參考文獻 [1] W. P. Meiklejohn, C. P. Bean, Phys. Rev., 102, 1413 (1956). [2] W. P. Meiklejohn, J. Appl. Phys., 33, 1328 (1962). [3] D. Mauri, H. C. Siegmann, J. Appl. Phys., 82, 3047 (1987). [4] A. P. Malozemoff, Phys. Rev. B., 35, 3679 (1987). [5] N. C. Koon, Phys. Rev. Lett., 78, 4865 (1997). [6] T. C. Schulthess and W. H. Butler, Phys. Rev. Lett., 81, 4516 (1998). [7] A. E. Berkowitz, Kentaro Takano, J. Magn. Magn. Mater., 200, 552 (1999). [8] J. Nogues, Ivan K. Schuller, J. Magn. Magn. Mater., 192, 203 (1999). [9] Nicola A. Spaldin,”Magnetic materials”. [10] David Jiles, “Introduction to magnetism and magnetic materials”, Chapman & Hall. [11] Soshin Chikazumi著,張煦、李學養合譯,”磁性物理學。” [12]金重勳主編,“磁性技術手冊”, 中華民國磁性技術協會。 [13] N. Koon, Phys. Rev. Lett. 78, 4865 (1997). [14] D. Thompson et al., IEEE Trans. MAG-11, 1036 (1975). [15] R. C. O’handley,”Modern Magnetic Materials”,John Wiley and sons Inc.,2002. [16] J. Noguesa, J. Sort, V. Langlais, V. Skumryev, S. Surinach, J.S. Munoz, M.D. Baro, Physics Reports, 422, 65 (2005). [17] 胡裕民、黃榮俊,”鐵磁/反鐵磁金屬薄膜之間的交換磁異向性”,物理雙月刊 廿廿卷六期。 [18] L. Neel, Ann Phys., 2, 61 (1967). [19] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau and F. Pctroff, Phys. Rev. Lett., 61, 2472 (1998). [20] Modern Magnetic Materials, R. C. O’Handley, John Wiley and Sons, Inc. New York (2000) [21] B. Dieny, V. S. Speriosu, S. S. P. Parkung, B.A. Gurney, D. R. Wilhoit, and D. Mauri, Phys. Rev., 43, 1297 (1991). [22] J. S. Moodera et al., Phys. Rev. Lett. 74, 3273 (1995). [23] G. A. Prinz, Science 282, 1660 (1998). [24] L. Geppert, IEEE Spectrum, 49, March 2003. [25] A. E. Berkowitz and K. Takano, J. Magn. Magn. Mater. 200, 552 (1999). [26] Jamal Ben Youssef, David Spenato, and Henri Le Gall, J. Appl. Phys., 91, 7239 (2002). 2-6 第二章參考文獻 [1] R. C. Weast, ”Handbook of Chemistry and Physics”, CRC Press, Inc 1986. [2] E. M. Levin et al, ”Phase Diagram for Ceramists”, Amer. Cer. Soc., 1964. [3] T. C. Anthony, J. Brug, and S. Zhang, IEEE Trans. Magn., 30, 3818 (1994). [4] A. E. Berkowitz and K. Takono, J. Magn. Magn. Mater., 200, 552 (1999). [5] Lederman D., Nogues J., Phys. Rev. B. 56(5), 2332 (1997). [6] Journal of Phase Equilibria and Diffusion Vol. 28 No. 3 2007 [7] J. J.Cuomo and S. M. Rossnagel, H. R. Kaufman, “Handbook of ion beam processing technology:principles, deposition, film modification , and synthesis”, Noyes Publication, 1989. [8]李正中,“薄膜光學與鍍膜技術”,藝軒圖書出版社,2001。 [9] H. R. Kaufman, R. S. Robinson, “End Hall Ion Source”, J. Vac. Sci. Technol. A, 5(3), 2081 (1987). [10] C. Weissmantle, “Ion Beam Deposition of Special Film Structure”, Vac. Sci. Technol., 18, 179 (1989). [11] T. C. Huang, G. Lim, F. Parmigiani, and E. Kay, J. Vac. Sci. Technol. A, 3, 216 (1985). [12] R. A. Roy, D. Yee, and J. J. Cuomo, J. Vac. Sci. Technol. A, 6, 1621 (1988). [13] H. R. Kaufman, R. S. Robinson, “End Hall Ion Source”, J. Vac. Sci. Technol. A, 5(3), 2081 (1987). 3-6第三章參考文獻 [1] C.H.Lai, P.H.Huang, J.Appl. Phys.,95,7222 (2004). [2]林麗娟,”X光繞射原理及其應用”,工業材料86期。 [3] Bruce M. Moskoeitz, Hitchhhiker’s Guide to magnetism. [4]汪建民主編,”材料分析”,中國材料科學學會。 [5] David B. Williams and C. Barry Carter, “Transmission Electron Microscopy”, Plenum Press (1996). [6]龔志榮,駱榮富,”電子顯微鏡教材大綱”。 [7] David Jiles,”Magnetism and Magnetic Materials”, Chapman & Hall,(1991). [8] J. Claudon, F. Balestro, F.W. J. Hekking, and O. Buisson, Phys Rev. Lett. 93, 187003 (2004). [9]楊鴻昌,”最敏感的感測元件SQUID及其前瞻性應用”,物理雙月刊廿四卷五期。 [10] L. H. Lewis, K. M. Bussmann, Rev. Sci. Instrum. 67, 3537 (1996). [11] K.H.J.Buschow,”Concise Encyclopedia of magnetic and Superconduction materials”. [12]汪島軍、馬仁宏、陳亙佑、蔡斯凱、林建智編著,原子力顯微鏡專利地圖。 4-6第四章參考文獻 [1]G. Salazar-Alvarez, J. Sort, S. Surinach, M. D. Baro, and J. Nogues, J.Am. Chem. Soc. 129, 9102 (2007). [2] K.-W. Lin, J.-Y. Guo, T.-J. Chen, H. Ouyang, E. Vass, and J. van Lierop,J. Appl. Phys. 104, 123908 (2008). [3]David B. Williams and C. Barry Carter, “Transmission Electron Microscopy”, Plenum Press (1996). [4]R.C.O’handley,’’Modern Magnetic Materials’’,John Wiley and sons Inc.,2002 [5]W. P. Meiklejohn, C. P. Bean, Phys. Rev., 102, 1413 (1956). [6] P.Z. Si, D. Li, C.J. Choi, Y.B. Li, D.Y. Geng, Z.D. Zhang, Solid State Communications 142,723 (2007). [7] K.-W. Lin, M.-R. Wei, and J.-Y. Guo, J. Nanosci. Nanotechnol. 9, 2023-2009(2009). [8] F. Radu, M. Etzkorn, T. Schmitte, R. Siebrecht, A. Schreyer, K. Westerholt,and H. Zabel, J. Magn. Magn. Mater. 240, 251 (2002). [9]K.W.Lin,M.-R..Wei,and J.-Y.Guo,J.Nanosci.Nanotechnol.,9,2023(2009).
摘要: 此研究乃利用雙離子束濺鍍系統製備NiFe(3.2nm)/Mn(4nm)多層薄膜,探討其結構及磁性質。利用雙離子濺鍍系統,Kaufman型離子源產生一含有氬氣之離子束來轟擊鈀材表面並沈積薄膜。TEM結果顯示,鐵磁層NiFe薄膜為f.c.c.結構,晶格常數a=3.55Å;而反鐵磁層Mn為b.c.c.結構,晶格常數a=8.91Å,其晶粒大小約為2~10nm。 磁性分析顯示,當外加磁場平行於膜面(In-plane),所測得之矯頑磁場約為0.6 Oe,僅需極小的外加磁場即可達到飽和,而垂直膜面(out-of-plane)即使外加磁場達到2000 Oe仍無法達到飽和,因而得知NiFe之易磁化軸(easy axis)為平行膜面方向,垂直膜面方向則為難磁化軸(hard axis)。單層薄膜結果顯示矯頑磁場約為0.6Oe及飽合磁化量(Ms)約為811.81(ms)emu/cm3。 在場冷20kOe至溫度5K時,其矯頑磁力(Hc)與交換偏壓場(Hex)皆較室溫增加,是因為場冷以及量測溫度低於反鐵磁層之尼爾溫度(TN),所以會有顯著之交換耦合現象。因此磁滯曲線在場冷情況下會往負場偏移。單向異向性(unidirectional anisotropy)的反鐵磁磁矩(Mn)與鐵磁磁矩(NiFe)的交換耦合作用(exchange coupling)導致磁滯曲線往負磁場偏移,是鐵磁與反鐵磁磁矩間界面為鐵磁耦合(FM coupling)與反鐵磁耦合(AFM coupling)的轉變。
In this research, we utilized dual-ion-beam sputtering system to fabricate NiFe(3.2nm)/Mn(4nm) multilayer to the study on the structural properties, as well as the magnetic properties. With a dual-ion-beam sputtering system, an Argon-contained ion beam can be produced by using the Kaufman-type ion source. One can deposite films of interest by bombarding the surface of target materials, and the NiFe/Mn multiple-layer film can be manufactured by altering the deposition sequence. From the results of transmission electron microscopy, the ferromagnetic layer NiFe revealed an f.c.c. structure with a lattice constant of 3.55 Å the anti-ferromagnetic layer Mn showed a b.c.c. structure with a lattice constant of 8.91 Å, and the grain size was 2nm-10nm approximately. In magnetic properties analysis, the result demonstrated that when an external magnetic field is applied parallel to the film surface (In-plane), the coercitive is around 0.6 Oe. In addition, the saturation can be reached by appling an extremely small applied field. On the other hand, for an external magnetic field that is perpendicular to the film surface (Out-of-plane), the saturation can hardly be reached even by appling a 2000 Oe field. Hence,the easy axis of the film surface is in-plane , and hard axis,is out-of-plane Furthermore,the coercirity(Hc) was around 0.6 Oe, and the saturation magnetization(Ms) was approximately 811.81 (ms) emu/cm^3. When the sample is field cool at 20kOe to 5K,Hc and exchange bias (Hex) was increased. It was because that field cooling and the measured temperature were lower than the Néel temperature(TN) of anti-ferromagnetic layer, and this would result in an obvious exchange coupling phenomenon. Therefore, under the situation of field cooling, the hytersis curve would shift toward the negative field. This shift of hytersis curve was induced by the exchange coupling effect caused by the interaction of unidirectional anisotropy anti-ferromagnetic domain (Mn) and ferromagnetic domain (NiFe),because of the conversion of interface between anti-ferromagnetic domain and ferromagnetic domain from FM coupling to AFM coupling.
URI: http://hdl.handle.net/11455/11515
其他識別: U0005-3007201217090000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-3007201217090000
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.