Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11517
標題: 鐵含量與熱處理溫度對白金/含鐵氫氧基磷灰石在燃料電池的影響
The effects of iron content and annealing temperature on the catalysis of Pt/FeHAp in PEMFC
作者: 胡智維
Hu, Chih-Wei
關鍵字: 直接甲醇燃料電池
DMFC
含鐵氫氧基磷酸鹽
白金觸媒
氫氧基磷灰石
FeHAp
FeHAp
platinum catalysts
commercial HAp
出版社: 材料科學與工程學系所
引用: 1. Grove, W.R., LXXII. On a gaseous voltaic battery. Philosophical Magazine Series 3, 1842. 21(140): p. 417-420. 2. Larminie, J., Fuel Cells, in Kirk-Othmer Encyclopedia of Chemical Technology 2000, John Wiley & Sons, Inc. 3. Fuel Cell Handbook by EG&G Technical Service Inc. , 7th Ed , US Department of Energy(2004) 4. Yun Wanga, , Ken S. Chen b, Jeffrey Mishlera, Sung Chan Cho a, Xavier CordobesAdroherA review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Applied Energy 88 (2011) 981–1007 5. LigangFeng, WeiweiCai, Chenyang Li, Jing Zhang, Changpeng Liu, Wei Xing Fabrication and performance evaluation for a novel small planar passive direct methanol fuel cell stack. FuelVolume 94, (April 2012) 401–408 6. L. Carrette, K.A. Friedrich, U. StimmingFuel cells—fundamentals and applications Fuel Cells, 1 (1) (2001), p. 5 7. T. Schultz, S. Zhou, K. SundmacherCurrent status of and recent developments in the direct methanol fuel cellChem. Eng. Technol., 24 (12) (2001), p. 1223 8. P. Waszczuk a, A. Wieckowski a,*, P. Zelenay b, S. Gottesfeld b, C. Coutanceau c, J.-M.Le’ger c, C. LamyAdsorption of CO poison on fuel cell nanoparticle electrodes from methanol solutions: a radioactive labeling study Journal of Electroanalytical Chemistry 511 (2001) 55–64 9. Seyyed Mohsen, Mousavi, Ehteshami, SiewHwa Chan, A review ofelectrocatalysts with enhanced CO tolerance and stability forpolymer electrolyte membarane fuel cells. Electrochimica Acta 93 (2013) 334– 345 10. Mansour Rahsepar, Mahmoud Pakshira, Yuanzhe Piao, Hasuck Kim. Synthesis and electrocatalytic performance of high loading active PtRu multiwalled carbon nanotube catalyst for methanol oxidation. Electrochimica Acta 71 (2012) 246– 251 11. Erika Teliz, Veronica Diaz, Ignacio Perez, Mariana Corengia, Carlos Fernando Zinola, Carbon supported Pt, Ru and Mo catalysts for methanol electrooxidation. International Journal of Hydrogen Energy, Volume 37, Issue 19, (October 2012), 14761-14768 12. N. Tsiouvaras, M.V. Martinez-Huerta, O. Paschos, U. Stimming, J.L.G. Fierro, M.A. Pena, PtRuMo/C catalysts for direct methanol fuel cells: Effect of the pretreatment on the structural characteristics and methanol electrooxidation. International Journal of Hydrogen Energy, Volume 35, Issue 20, (October 2010), 11478-11488 13. Watanabe, M. and S. Motoo, Electrocatalysis by ad-atoms: Part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms.Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 60(3) (1975) 267-273 14. K. Ruth, M. Vogt, R. ZuberHandbook of fuel cells – fundamentals, technology and applications, vol. 3John Wiley & Sons, New York (2003) 489 15. Amado Vela’zquez-Palenzuela, Pere-Lluı’s Cabot, Francesc Centellas, Jose’ Antonio Garrido, Conchita Arias, Rosa Marı’aRodrı’guez, EnricBrillasElectroactivity of high performance unsupported Pt-Runanoparticles in the presence of hydrogen and carbon monoxide International Journal of hydrogen energy 35 (2010) 11591-11600 16. Piela, P., et al., Ruthenium Crossover in Direct Methanol Fuel Cell with Pt-Ru Black Anode. Journal of The Electrochemical Society, 151(12) (2004) A2053-A2059 17. Liu, J., et al., Studies on performance degradation of a direct methanol fuel cell (DMFC) in life test. Physical Chemistry Chemical Physics, 6(1) (2004) 134-137. 18. Sarma, L.S., et al., Investigations of direct methanol fuel cell (DMFC) fading mechanisms. Journal of Power Sources, (2007) 167(2) 358-365. 19. C. Pak, S. Kang, Y.S. Choi, H. ChangNanomaterials and structures for the fourth innovation of polymer electrolyte fuel cellJ Mater Res, 25 (2010), 2063–2071 20. JiajunWanga, GepingYina,∗, YuyanShaoa,b, Sheng Zhanga, ZhenboWanga, YunzhiGaoaEffect of carbon black support corrosion on the durability of Pt/C catalystJournal of Power Sources 171 (2007) 331–339 21. J.C. Elliott, P.E. Mackie, R.A. Young Monoclinic hydroxyapatite Science, 180 (1973), 1055–1057 22. Dorozhkin SV, Epple M. Biological andmedical significance of calcium phosphates. Angewandte Chemie (International Edition English) 41(17) (2002) 3130–46 23. Matsumoto T, Okazaki M, Inoue M, Yamaguchi S,Kusunose T, Toyonaga T, et al. Hydroxyapatite particles as a controlled release carrier of protein. Biomaterials 17 (2004) 3807–12 24. Akemi Yasukawa, Takashi Yokoyama, Kazuhiko Kandori, Tatsuo Ishikawa Ion-exchange property and mechanism ofmagnesium–calciumhydroxylapatitesolidsolutionsColloids and Surfaces A: Physicochem. Eng. Aspects 238 (2004) 133–139 25. Q.Y. Ma, S.J. Traina, T.J. Logan, J.A. RyanEffects of Aqueous Al, Cd, Cu, Fe(II), Ni, and Zn on Pb immobilization by hydroxyapatiteEnviron. Sci. Technol., 28 (1994) 1219–1228 26. I. Smičiklas, S. Dimović, I. Plećaš, M. MitrićRemoval of Co2+ from aqueous solutions by hydroxyapatiteWater Res., 40 (2006), pp. 2267–2274 27. Venugopal, A. and M.S. Scurrell, Hydroxyapatite as a novel support for gold and ruthenium catalysts: Behaviour in the water gas shift reaction. Applied Catalysis A: General, 245(1) (2003) 137-147 28. Nai-Su Pai, Po-Sheng Chang, Shiow-Kang Yen Platinum/vivianitebifunction catalysts for DMFC I n t e r n a t i o n a l journal of hydrogen energy, xxx (2013) 1 -1 1 29. Kinoshita, K., Carbon: electrochemical and physicochemical properties. Other Information: From review by T. Apple, Univ. of Nebraska, in Journal of the American Chemical Society, Vol. 110, No. 18 (31 Aug 1988)1988. Medium: X; Size: Pages: 541. 30. Zhaolin Liu, Leong Ming Gan, Liang Hong, Weixiang Chen, Jim Yang Lee, Carbon-supported Pt nanoparticles as catalysts for proton exchange membrane fuel cells. Journal of Power Sources, 139 (January 2005) 73-78 31. A.S. AricoAa,*, A.K. Shuklab, H. Kimc, S. Parkc, M. Minc, V. Antonuccia, An XPS study on oxidation states of Pt and its alloys with Co and Cr and its relevance to electroreduction of oxygen. Applied Surface Science 172 (2001) 33-40 32. Wang, X., MCM-41-supported iron phosphate catalyst for partial oxidation of methane to oxygenate with oxygen and nitrous oxide. Journal of Catalysis, (2003.) 33. Lee, S.J., et al., Effects of Nafion impregnation on performances of PEMFC electrodes. Electrochimica Acta, 43(24) (1998) 3693-3701
摘要: 直接甲醇燃料電池可將甲醇燃料轉換成電能的一種裝置,可應用於攜帶型電子產品上。雙元合金觸媒 Pt-Ru 被廣泛的應用於解決在甲醇燃料電池氧化時產生的中間產物一氧化碳 (CO)造成的白金毒化。本實驗之前研究已成功製備含鐵氫氧基磷灰石(FeHAp)當作白金觸媒,可提升燃料電池的效率並改善一氧化碳中毒的現象;但在循環伏安的穩定性表現仍有待改善。 本研究中,加入三種濃度的亞鐵離子 (Fe1HAp, Fe2HAp, Fe3HAp) 並個別還原白金後進行100℃ (Pt1/Fe1HAp, Pt1/Fe2HAp, Pt1/Fe3HAp), 200℃ (Pt2/Fe1HAp, Pt2/Fe2HAp, Pt2/Fe3HAp), 400℃ (Pt4/Fe1HAp, Pt4/Fe2HAp, Pt4/Fe3HAp) 三種熱處理,並進行XRD, FESEM, TEM, ICP-MS, XPS及CV分析。 XRD分析顯示,附載於HAp上之白金顆粒介於4.95 (nm) ~ 8.1 (nm);經由穿透式顯微鏡之傅立葉轉換(high-resolution transmission electron microscope - fast fourier transform, FFT)顯示,還原的白金 (110) 晶面方向與載體FeHAp (002)晶面方向有一致性之關聯。導致循環伏安法(Cyclic Voltammetry) 測試氫氣吸/脫附反應,皆表現出 (110) 特性反應峰值遠大於(111)及(100)者,隨著退火溫度的上升,(111)與(100)特性峰會進一步地減少,經過400℃的熱處理之後電化學活性面積在1000次循環後存留之電化學活性面積(ECSA)百分比由Pt1/Fe2HAp的64%提升至Pt4/Fe2HAp的80%,顯示循環伏安的穩定性大幅改善,但初期ECSA也由1242.53 m2/g降至676.09 m2/g,類似的結果也發生在其他含鐵量不一樣的觸媒,顯示高溫使Pt晶粒間以(111)或(100)晶面接合而減少此二晶面在電化學之表現;對於甲醇氧化反應,Pt1/Fe2HAp也有較低的啟動電位 (on-set potential) 0.183V及最佳的質量活性在0.6V為110.26 (A/gPt) 且沒有一氧化碳中毒現象。這些在MOR的電化學伏安性能應與Pt催化氫氧化的ECSA表現以及Pt附近F3+能吸附OH而進一步去除CO2的含量相關。
Direct methanol fuel cell (DMFC) is a device converting fuel into electric energy and usually used for portable electronic applications. Binary catalysts (Pt-Ru) are widely used to solve the problem caused by carbon monoxide (CO) which is the intermediate during methanol oxidation. In previous study, iron-contained hydroxyapatite (FeHAp) has been prepared as supports for Pt catalysts to improve the performance in fuel cells and delet CO poisoning. However, the stability on cyclic voltammetry (CV) should be further improved. In this study, three concentrations of Fe2+ including F1, F2 and F3 were added for ion exchange with HAp to form Fe1HAp, Fe2HAp and Fe3HAp. After Pt reduced on, they were annealed at 100℃ (Pt1/Fe1HAp, Pt1/Fe2HAp, Pt1/Fe3HAp), 200℃ (Pt2/Fe1HAp, Pt2/Fe2HAp, Pt2/Fe3HAp) and 400℃ (Pt4/Fe1HAp, Pt4/Fe2HAp, Pt4/Fe3HAp). X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscope - fast fourier transform (TEM-FFT), inductively coupled plasma-atomic emission spectra (ICP-MS), X-ray photoelectron spectra (XPS) and cyclic voltammetry (CV) tests were conducted to characterize catalysts. The Pt particle size is from 4.95 to 8.1 nm calculated by XRD and from 3.66 to 6.27 nm observed by TEM. In general, Pt particle size increased with annealing temperature increasing, leading to electrochemical surface area (ECSA) decreasing. All cyclic voltammogroms of Pt/FeHAp catalysts revealed the characteristics of Pt (110) with desorption peak potential at -0.158 ~ -0.171 V (vs. Ag/AgCl), related to the coherent connection between Pt(110) and HAp(002). After 1000 cycles in CV, the retained percentage of ECSA increased from 64% for Pt1/Fe2HAp to 80% for Pt4/Fe2HAp, while initial ECSA decreased from 1242.53 to 676.09 (m2/g). Similar results were found on the other catalysts. In methanol oxidation reaction (MOR), Pt1/Fe2HAp revealed lower on-set potential 0.183 V and more mass activity 110.26 (A/gPt), without CO poisoning effects. These excellent performances in MOR should be related to ECSA for hydrogen oxidation and content of nearby Fe3+ absorbing OH to delete CO on Pt.
URI: http://hdl.handle.net/11455/11517
其他識別: U0005-1408201316494200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1408201316494200
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.