Please use this identifier to cite or link to this item:
標題: 阻氣性鍍膜應力緩衝層之製作與特性研究
Fabrication and Characterization of Stress-Relief Layers for Gas Barrier Coatings
作者: 王詠聖
Wang, Yung-Sheng
關鍵字: 阻氣性鍍膜
Barrier layer coatings
Silicon nitride
Silicon oxide
UV curing polymer
出版社: 材料科學與工程學系所
引用: [1]陳曼玲,“有機發光二極體顯示器用封裝材料及封裝製程的探討”,工業材料雜誌,第200期,第192-193頁,2003。 [2]R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, J. U. Park, L. Frohlich, R. Buestrich, M. Popall, U. Streppel, P. Dannberg, C. Wachter, and A. Brauer, "Inorganic-organic hybrid materials for application in optical devices," Thin Solid Films, vol. 442, pp. 194-200, 2003. [3]S. Y. Kim, K. Y. Kim, Y. H. Tak, and J. L. Lee, "Dark spot formation mechanism in organic light emitting diodes," Applied Physics Letters, vol. 89, 132108, 2006. [4]P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. McCarty, and M. E. Thompson, "Reliability and degradation of organic light emitting devices," Applied Physics Letters, vol. 65, pp. 2922-2924, 1994. [5]李孟庭,“OLED壽命提升課題探討”,工業材料雜誌,第256期,第126-127頁,2008。 [6]S. F. Lim, L. Ke, W. Wang, and S. J. Chua, "Correlation between dark spot growth and pinhole size in organic light-emitting diodes," Applied Physics Letters, vol. 78, pp. 2116-2118, 2001. [7]J. S. Lewis and M. S. Weaver, "Thin-film permeation-barrier technology for flexible organic light-emitting devices," Selected Topics in Quantum Electronics, IEEE Journal of, vol. 10, pp. 45-57, 2004. [8]T. N. Chen, D. S. Wuu, C. C. Wu, C. C. Chiang, Y. P. Chen, and R. H. Horng, "High-Performance Transparent Barrier Films of SiOx/SiNx Stacks on Flexible Polymer Substrates," Journal of The Electrochemical Society, vol. 153, p. F244, 2006. [9]陳凱琪、陳文彬,“淺談軟性顯示器用保護層材料技術”,工業材料雜誌,第273期,第118-119頁,2009。 [10]陳凱琪、陳文彬,“軟性電子阻水/氧氣鍍膜技術發展與近況”,工業材料雜誌,第275期,第115頁,2009。 [11] [12]J. Lewis, "Material challenge for flexible organic devices," Materials Today, vol. 9, pp. 38-45, 2006. [13]Y. Leterrier, "Durability of nanosized oxygen-barrier coatings on polymers," Progress in Materials Science, vol. 48, pp. 1-55, 2003. [14]T. T. T. Pham, J. H. Lee, Y. S. Kim, and G. Y. Yeom, "Properties of SixNy thin film deposited by plasma enhanced chemical vapor deposition at low temperature using SiH4/NH3/Ar as diffusion barrier film," Surface and Coatings Technology, vol. 202, pp. 5617-5620, 2008. [15]A. Sassella, A. Borghesi, F. Corni, A. Monelli, G. Ottaviani, R. Tonini, B. Pivac, M. Bacchetta, and L. Zanotti, "Infrared study of Si-rich silicon oxide films deposited by plasma-enhanced chemical vapor deposition," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 15, pp. 377-389, 1997. [16]D. S. Wuu, W. C. Lo, L. S. Chang, and R. H. Horng, "Properties of SiO2-like barrier layers on polyethersulfone substrates by low-temperature plasma-enhanced chemical vapor deposition," Thin Solid Films, vol. 468, pp. 105-108, 2004. [17]莊達人,VLSI製造技術,高立書局,第12-18頁,2002。 [18]張豐志,應用高分子手冊,五南圖書,第57-72頁,2003。 [19]K. Koski, J. Holsa, P. Juliet, Z. H. Wang, R. Aimo, and K. Pischow, "Characterisation of aluminium oxide thin films deposited on polycarbonate substrates by reactive magnetron sputtering," Materials Science and Engineering: B, vol. 65, pp. 94-105, 1999. [20]Y. Leterrier, "Durability of nanosized oxygen-barrier coatings on polymers," Progress in Materials Science, vol. 48, pp. 1-55, 2003. [21]H. Lin, L. Xu, X. Chen, X. Wang, M. Sheng, F. Stubhan, K. H. Merkel, and J. Wilde, "Moisture-resistant properties of SiNx films prepared by PECVD," Thin Solid Films, vol. 333, pp. 71-76, 1998. [22]Z. Xiang, H. Liu, P. Deng, M. Liu, Y. Yin, and X. Ge, "The effect of irradiation on morphology and properties of the PET/HDPE blends with trimethylol propane trimethacrylate (TMPTA)," Polymer Bulletin, vol. 63, pp. 587-597, 2009. [23]G. G. Stoney, "The tension of thin metallic films deposited by electrolysis," Proceedings of the Royal Society, vol. 82, p 172, 1909. [24]M. S. Hu and A. G. Evans, "The cracking and decohesion of thin films on ductile substrates," Acta Metallurgica, vol. 37, pp. 917-925, 1989. [25]R. O. Ritchie, J. F. Knott, and J. R. Rice, "On the relationship between critical tensile stress and fracture toughness in mild steel," Journal of the Mechanics and Physics of Solids, vol. 21, pp. 395-410, 1973. [26]D. B. Marshall and B. R. Lawn, "Indentation of brittle materials microindentation techniques in materials science and engineering," ASTM STP 889, pp. 26-46, 1986. [27]D. S. Harding, W. C. Oliver, and G. M. Pharr, "Cracking During Nanoindentation and Its Use in The Measurement of Fracture Toughness," MRS Bulletin, vol. 356, pp. 663-668, 1995. [28]T. Y. Zhang, L. Q. Chen, and R. Fu, "Measurements of residual stresses in thin films deposited on silicon wafers by indentation fracture," Acta Materialia, vol. 47, pp. 3869-3878, 1999. [29]J. Malzbender, G. de With, and J. M. J. den Toonder, "Elastic modulus, indentation pressure and fracture toughness of hybrid coatings on glass," Thin Solid Films, vol. 366, pp. 139-149, 2000. [30]A. S. da Silva Sobrino, G. Czerremuszkin, M. Latreche, and M. R. Wertheimer, "Defect-Permeation Correlation for Ultrain Transparent Barrier Coatings on Polymers," J. Vac. Sci. Technol. A, vol. 18, pp. 149-157, 2000. [31]W. R. Hale, K. K. Dohrer, M. R. Tant, and I. D. Sand, "A diffusion model for water vapor transmission through microporous polyethylene/CaCo3 films," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 187-188, pp. 483-491, 2001. [32]J. Comyn, and J. Comyn(Ed.), "Polymer Permeability," Elsevier Applied Science, London and New York, 1986. [33]R. S. Kumar, M. Auch, E. Ou, G. Ewald, and C. S. Jin, "Low moisture permeation measurement through polymer substrates for organic light emitting devices," Thin Solid Films, vol. 417, pp. 120-126, 2002. [34]B. M. Henry, A. G. Erlat, A. McGuigan, C. R. M. Grovenor, G. A. D. Briggs, Y. Tsukahara, T. Miyamoto, N. Noguchi, and T. Niijima, "Characterization of transparent aluminium oxide and indium tin oxide layers on polymer substrates," Thin Solid Films, vol. 382, pp. 194-201, 2001. [35]A. P. Roberts, B. M. Henry, A. P. Sutton, C. R. M. Grovenor, G. A. D. Briggs, T. Miyamoto, M. Kano, Y. Tsukahara, and M. Yanaka, "Gas permeation in silicon-oxide/polymer (SiOx/PET) barrier films: role of the oxide lattice, nano-defects and macro-defects," Journal of Membrane Science, vol. 208, pp. 75-88, 2002. [36]Standard, A.S.T.M., 1249, 1995. [37]R. Paetzold, A. Winnacker, D. Henseler, V. Cesari, and K. Heuser, "Permeation rate measurements by electrical analysis of calcium corrosion," Review of Scientific Instruments, vol. 74, pp. 5147-5150, 2003. [38]P. O. Nilsson and G. Forssell, "Optical properties of calcium," Physical Review B, vol. 16, pp. 3352-3358, 1977. [39]K. S. Kits, T. A. de Vlieger, B. W. Kooi, and H. D. Mansvelder, "Diffusion Barriers Limit the Effect of Mobile Calcium Buffers on Exocytosis of Large Dense Cored Vesicles," Biophysical Journal, vol. 76, pp. 1693-1705, 1999. [40]J. K. Choi, D. H. Kim, J. Lee, and J. B. Yoo, "Effects of process parameters on the growth of thick SiO2 using plasma enhanced chemical vapor deposition with hexamethyldisilazane," Surface and Coatings Technology, vol. 131, pp. 136-140, 2000. [41]B. Kim, D. W. Kim, and S. S. Han, "Refraction properties of PECVD of silicon nitride film," Vacuum, vol. 72, pp. 385-392, 2004. [42]W. Huang, X. Wang, M. Sheng, L. Xu, F. Stubhan, L. Luo, T. Feng, X. Wang, F. Zhang, and S. Zou, "Low temperature PECVD SiNx films applied in OLED packaging," Materials Science and Engineering: B, vol. 98, pp. 248-254, 2003. [43]G. Rochat, Y. Leterrier, P. Fayet, and J. A. E. Manson, "Mechanical analysis of ultrathin oxide coatings on polymer substrates in situ in a scanning electron microscope," Thin Solid Films, vol. 437, pp. 204-210, 2003. [44]Z. Chen, B. Cotterell, W. Wang, E. Guenther, and S. J. Chua, "A mechanical assessment of flexible optoelectronic devices," Thin Solid Films, vol. 394, pp. 201-205, 2001. [45]M. I. Alayo, I. Pereyra, W. L. Scopel, and M. C. A. Fantini, "On the nitrogen and oxygen incorporation in plasma-enhanced chemical vapor deposition (PECVD) SiOxNy films," Thin Solid Films, vol. 402, pp. 154-161, 2002. [46]W. L. Warren, J. Kanicki, J. Robertson, and P. M. Lenahan, "Energy level of the nitrogen dangling bond in amorphous silicon nitride," Applied Physics Letters, vol. 59, pp. 1699-1701, 1991. [47]A. N. R. da Silva, N. I. Morimoto, and O. Bonnaud, "Tetraethylorthosilicate SiO2 films deposited at a low temperature," Microelectronics Reliability, vol. 40, pp. 621-624, 2000. [48]K. Teshima, Y. Inoue, H. Sugimura, and O. Takai, "Gas barrier properties of silicon oxide films prepared by plasma-enhanced CVD using tetramethoxysilane," Vacuum, vol. 66, pp. 353-357, 2002. [49]K. Fuwa and B. L. Valle, "The Physical Basis of Analytical Atomic Absorption Spectrometry. The Pertinence of the Beer-Lambert Law," Analytical Chemistry, vol. 35, pp. 942-946, 1963. [50]D. G. Shaw and M. G. Langlois, "Some performance characteristics of evaporated acrylate coatings, "Proc. 7th Int. Conf. Vacuum Web Coating, pp. 268 -276 1993. [51]D. S. Wuu, T. N. Chen, E. Lay, C. H. Liu, C. H. Chang, H. F. Wei, L. Y. Jiang, H. U. Lee, and Y. Y. Chang, "Transparent Barrier Coatings on High Temperature Resisting Polymer Substrates for Flexible Electronic Applications," Journal of The Electrochemical Society, vol. 157, p. C47, 2010. [52]I. N. Sneddon, "The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile," International Journal of Engineering Science, vol. 3, pp. 47-57, 1965. [53]W.C. Oliver and G. M. Pharr, "Measurement of hardness and elastic modulus by instrumented indentation Advances in understanding and refinements to methodology," Journal of Materials Research, vol. 19, pp. 3-20, 2004. [54]T. Minamikawa, A. Heya, T. Niki, M. Takano, Y. Yonezawa, S. Muroi, S. Minami, A. Masuda, H. Umemoto, and H. Matsumura, "Formation of highly moisture-resistive SiNx films on Si substrate by Cat-CVD at room temperature," Thin Solid Films, vol. 501, pp. 154-156, 2006.
摘要: 具薄型化與耐撓曲特性之有機發光二極體的開發是近期之趨勢,其中有機發光二極體元件中之發光層對於水/氧氣相當敏感,因此有機發光二極體元件的封裝至為重要。薄膜型的封裝方法被認為是可行且有發展性的技術,其運用無機材料做為多層堆疊結構使得各層之間的缺陷交互錯開,使得水氣的穿透率達最小化;而有機材料因本身為長鏈狀結構,故對於阻擋水氣穿透並無明顯效果,多半應用於應力緩衝及封裝結構保護之用。本論文運用電漿輔助化學氣相沉積系統與紫外線光固化系統製作氮化矽及氧化矽與光固化高分子,實驗分別探討不同製程參數對於氮化矽及氧化矽薄膜特性之影響。其次製作多疊層薄膜封裝結構,利用鍍鈣測試法量測封裝結構之水氣穿透率,並探討高分子緩衝層厚度的改變對於整體封裝結構之水氣穿透率、表面粗糙度、可見光穿透率等變化。經過研究設計優化後的封裝結構,其水氣穿透率可達1.28×10-7 g/m2/day (60 ℃,相對溼度90 %,測試時間為一千兩百小時)、表面粗糙度僅0.198 nm、可見光穿透率達90 %以上。結果驗證了導入可調變應力之封裝結構並應用於薄型化的有機發光二極體元件上將有其發展潛力。
Recent technical developments have succeeded in promoting the thinness and flexibility of organic light emitting diodes (OLED); however, OLED devices are readily susceptible to the moisture and oxygen. This has led to new challenges in device packaging. Using thin films for packaging is regarded as a feasible method with considerable potential. Multi-layer stack structures comprising inorganic materials stagger the pinholes and micro-defects between layers, thereby minimizing penetration of moisture. Organic materials form long-chain structures that are less effective against moisture; therefore, we employed these materials as a stress-relief layer to prevent the structure of the packaging which destroys by internal stress. This thesis employed a plasma-enhanced chemical vapor deposition (PECVD) system in conjunction with UV light curing equipment to fabricate silicon nitride (SiNx), silicon oxide (SiOx) and a UV light curing polymer. At the beginning, extensive parameters studies of the dependence on respective silicon nitride and silicon oxide growth are considered to be done to develop an optimal condition or recipe for the barrier growth. After obtaining suitable parameters, various pairs of multilayer stacks containing silicon oxide and silicon oxide are prepared to discuss the transmission rates of water vapor and fracture toughness. We also determined how the thickness of the UV light curing polymer layer influences the surface roughness, visible light transmittance, and water vapor transmission rate (WVTR) of the overall packaging structure. Within the optimized barrier structure, the WVTR reached 1.28�10-7 g/m2/day (60 �C and 90 % RH during 1200 hours). The low internal stress stack structure exhibited surface roughness of 0.198 nm and visible light transmittance above 90 %. These results demonstrate the potential and effectiveness of applying stress adjusted packaging structures to OLED devices.
其他識別: U0005-2908201210432400
Appears in Collections:材料科學與工程學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.