Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11529
標題: 電化學製備MgO薄膜在純鎂基材上提升在NaCl溶液中之抗腐蝕性
Preparing Mgo Thin Film on Pure Magnesium for Increasing Corrosion Resistance in NaCl Solution by Electrochemical Method
作者: 許茂成
Hsu, Mao-Cheng
關鍵字: 電化學合成
Electrochemical synthesis
陰極極化曲線
沉積機構
Mg(OH)2
MgO
抗蝕性
cathodic polarization curves
deposition mechanism
Mg(OH)2
MgO
corrosion resistance
出版社: 材料科學與工程學系所
引用: [1] Emission Control, Automotive World 4 (2000) p. 10. [2] T. Gill, “Automobiles drive growth in secondary magnesium”, Metal Bulletin Monthly 314 (1997) p. 63. [3] J. Davis, SAE Technical Paper 910551, Detroit, MI, 1991. [4] C. Akey, J Davis, In: Magnesium: The Performance Material, Internattion Magnesium Association, Dearborn, MI, (1989) p. 1. [5] S. Schumann, F. Friedrich, in: B. Mordike, K. Kainer (Eds.), Material Alloys and their Application, Werkstoff-Informationsgesellschaft mbH, Wolfsburg, Germany, (1998) p. 3. [6] G. Cole, in: Magnesium into the Next Millenium, International Magnesium Association, Rome, Italy, (1999) p. 21. [7] Y. Kojima, Mater. Sci. Forum 350–351 (2000) p. 3. [8] D.V. Hai, S. Itoh, S. Kamado and Y. Kojima, Adv. Mater. Res. 11-12 (2006) p. 413. [9] S. Schumanm and H. Friendich, Mater. Sci. Forum 419-422 (2003) p. 51 [10] L.L. Rokhlin, Magnesium Alloys Containing Rare Earth Metals-Structure and Properties (Taylor & Francis Pub., Moscow, (2003) p. 83. [11] B.L. Mordike and T. Ebert, Mater. Sci. Eng. A302 (2001) p. 37. [12] M.M. Avedesian, H. Baker, Magnesium and Magnesium Alloys — ASM Speciality Handbook, ASM International, Ohio, (1999) p. 1-71. [13] D.A. Jones: Principles and Prevention of Corrosion, 2nd ed., Prentice Hall, Englewood Cliffs, NJ, (1996) p. 40 [14] G. Song, A. Atrens, Corrosion mechanisms of magnesium alloys, Advanced Engineering Materials 1 (1999) p. 11. [15] G.L. Makar, J. Kruger, Corrosion of magnesium, International Materials Reviews, 38 (1993) p. 138. [16] O. Lunder, T.K.R. Aune, K. Nisancioglu, Effect of Mn additions on the corrosion behaviour of mould-cast magnesium ASTM AZ91, Corrosion 43 (1987) p. 291. [17] O. Lunder, J.E. Lein, T.K.R. Aune, K. Nisancioglu, The role of the Mg17Al12 phase in the corrosion of Mg alloy AZ91, Corrosion 45 (1989) p. 741. [18] J. D. Hanawalt, C. E. Nelson, and J. A. Peloubet, Corrosion studies of Magnesium and Its Alloys, Trans. AIME, 147 (1942) p. 273. [19] G. Song, A. L. Bowles, D. H. StJohn, Materials Science and Engineering A366 (2004) p. 74. [20] N.N. AUNG, W. ZHOU, Journal of Applied Electrochemistry, 32 (2002) p. 1397. [21] Y. Li , T. Zhang, F. Wang, Electrochimica Acta 51 (2006) p. 2845. [22] Water, electrolyte mineral and acid/base metabolism. Section 2. Endocrine & Metabolic Disorders. Merk Manual of Diagnosis and Therapy Chapter 12 [23] N.E.L. Saris, Magnesium: an update on physiological, clinical and analytical aspects, Clin Chim Acta 294 (2000), pp. 1 [24] T. Okuma, Magnesium and bone strength, Nutrition 17 (2001) p. 679. [25] J. Vormann, Magnesium: nutrition and metabolism, Mol Aspects Med 24 (2003) p. 27. [26] F.I. Wolf and A. Cittadini, Chemistry and biochemistry of magnesium, Mol Aspects Med 24 (2003) p. 3. [27] A. Hartwig, Role of magnesium in genomic stability, Mutat Res/Fund Mol Mech Mutagen 475 (2001) p. 113. [28] M. Staiger, A. Pietak, J. Huadmai, G. Dias, Biomater. 27 (2006) p. 1728. [29] B. Heublein, R. Rohde, V. Kaese, M. Niemeyer,W. Hartung,W. Haverich, Heart 89 (2003) 651. [30] Ph. Baranek, A. Lichanot, R. Orlando, R. Dovesi, Chemical Physics Letters 340 (2001) p. 362 [31] S. H. C. Liang and I. D. Gay, J. Catal. 101(1986) p. 293 [32] Y. Ding, G. Zhang, H. Wu, B. Hai, L. Wang and Y. Qian, Chem. Mater. 13 (2001) p. 435 [33] F. Stippich, E. Vera, G. K. Wolf, G. Berg, C. Friedrich, Surf. Coat. Tech., 103-104 (1998) p. 29. [34] WebElements. "Chemistry : Periodic Table : compound data [magnesium (II) oxide". Retrieved on 2008-12-06. [35] H. Duan, K. Du, C. Yan, F. Wang, Electrochem. Acta, 51 (2006) p. 2898. [36] P.E. DeGarmo, Materials and processes in manufacturing (5th ed), Collin Macmillan, New York (1979). [37] L. Gibson and M. Ashby, Cellular solids. Structure and properties, Pergamon Press, Sydney (1988) p. 1. [38] L. Gibson and M. Ashby, Cellular solids. Structure and properties, Pergamon Press, Sydney (1988) p. 316. [39] J.W. Choi, Y.M. Kong, H.E. Kim and I.S. Lee, Reinforcement of hydroxyapatite bioceramic by addition of Ni3Al and Al2O3, J Am Ceram Soc 81 (1998) p. 1743. [40] T.V. Thamaraiselvi and S. Rajeswari, Biological evaluation of bioceramic materials—a review, Trends Biomater Artif Organs 19 (2004) p. 9. [41] C. F. Li, W. H. Ho, and S. K. Yen, J. Electrochem. Soc., 156, E29 (2009). [42] G. L. Makar and J. Kruger, Int. Mater. Rev., 38, 138 (1993). [43] Z. Koren, H. Rosenson, E. M. Gutman, Ya. B. Unigovski, and A. Eliezer, J. Light Met., 2, 81 (2002). [44] Y. Wang, G. Liu, and Z. Fan, Scr. Mater., 54, 903 (2006) [45] W. Mu, Y. Han, Surface and Coatings Technology, 202 (2008) p. 4278 [46] J. Slunecko, M. Kosec, J. Holc, G. Drazic, J. Am. Ceram. Soc. 81 (1998) p.1269..
摘要: 本研究是藉由電化學沉積MgO鍍層在純鎂基材上應用於防制腐蝕。經由X光繞射(XRD)分析與SEM觀察,顯示經由電解反應可形成Mg(OH)2鍍層,再經370℃退火可形成MgO,其中Mg(OH)2鍍層結晶取向與施加的電壓有關,主要是由於在較負的電壓下,會有較多的OH-離子產生,造成鍍層會有(001)的從優取向。因此我們可以藉由不同的電位來控制Mg(OH)2鍍層的表面形貌。經由電化學極化分析與浸置實驗,可知沉積電位-2.0 V,鍍膜時間2400s,400℃退火處理有較均勻致密的MgO鍍層,且在3.5wt %的NaCl溶液中腐蝕電流由114降低到5.82 μA/cm2,鈍化區域從-1.72到 -1.57 V(Ag/AgCl),可有效改善純鎂的抗蝕性而與微弧氧化法(MAO)性能相當。
The electrolytic MgO coating on Mg alloy has been carried out in 0.1 M Mg(NO3)2 aqueous solution to improve its corrosion resistance. By X-ray diffraction (XRD), and scanning electron microscopy (SEM),the as-deposited film was Mg(OH)2 formed by the electrolysis, (Mg2+‧2H2O → Mg(OH)2 + H2) , and finally condensed into MgO at 370 ℃. It was also found that the crystal orientation and morphology of Mg(OH)2 was linked to the applied voltage. The more negative the applied voltage and the more the OH- concentration was, finally resulting in the more (001) preferred orientation and various related surface appearances. Therefore, the controllable fabrication of highly dense and uniform Mg(OH)2 film could be carried out by tuning deposition potential. An optimum process conducted at -2.0 V(Ag/AgCl) for 2400s and annealed at 400 ℃ was suggested to derive a more uniform and densified MgO protective film, revealing corrosion current density reduced from 114 down to 5.82 μA/cm2 and a passivation region from -1.72 to -1.57 V(Ag/AgCl) in 3.5 wt% NaCl aqueous solution, comparable with micro-arc oxidation.
URI: http://hdl.handle.net/11455/11529
其他識別: U0005-1208201321382500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1208201321382500
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.