Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/12781
標題: 調查台灣乳牛場腸球菌抗藥性與乙內醯胺酶、紅黴素及萬古黴素抗藥性基因之盛行率
The Investigation of Antimicrobial Resistance and Prevalence of β-lactamase, Erythromycin, and Vancomycin Resistance Genes among Enterococcus spp. from Dairy Farms in Taiwan
作者: 陳順安
Chen, Shun-An
關鍵字: Enterococcus spp.
乙內醯胺酶紅黴素
β-lactamase
Erythromycin
Vancomycin
萬古黴素
出版社: 獸醫學系暨研究所
引用: 杜先覺、郭鴻志、莊士德、周濟眾、費昌勇、張紹光。台灣中南部地區生乳中潛在細菌種類與藥物感受性之調查。台灣獸醫學雜誌。36: 296-304,2010。 洪宗林。豬隻大腸桿菌抗藥性調查及其相關基因。碩士論文。國立台灣大學獸醫專業學院獸醫學研究所。台北。中華民國。2009。 郭鴻志。台灣地區圈飼野生動物腸道菌叢之抗生素抗藥性調查及抗萬古黴素腸球菌之基因型測定。碩士論文。國立台灣大學獸醫專業學院獸醫學研究所。台北。中華民國。2002。 蔡哲宇。台灣乳牛場病原性大腸桿菌抗藥性及乙內醯胺酶基因之研究。碩士論文。國立中興大學獸醫學研究所。台中。中華民國。2009。 謝宗發。台灣地區鵝隻腸道菌抗藥性之調查。碩士論文。國立台灣大學獸醫專業學院獸醫學研究所。台北。中華民國。2003。 Almber RP. The structure of β-lactamases. Philos Trans R Soc Lond B Biol Sci 289: 321-331, 1980. Anderson JF, Parrish TD, Akhtar M, Zurek L, Hirt H. Antibiotic resistance of enterococci in American bison (Bison bison) from a nature preserve compared to that of enterococci in pastured cattlE. Appl Environ Microbiol 74: 1726-1730, 2008. Arthur M, Molinas C, Depardieu F, Courvalin P. Characterization of Tn1546, a Tn3-related transposon conferring glycopeptide resistance by synthesis of depsipeptide peptidoglycan precursors in E. faecium BM4147. J Bacteriol 175: 117-127, 1993. Arthur M, Molinas C, Dutka-Malen S, Courvalin P. Structural relationship between the vancomycin resistance protein VanH and 2-hydroxycarboxylic acid dehydrogenases. Gene 103: 133-134, 1991. Asai T, Kojima A, Harada K, Ishihara K, Takahashi T, Tamura Y. Correlation between the usage volume of veterinary therapeutic antimicrobials and resistance in Escherichia coli isolated from the feces of food-producing animals in Japan. Jpn J Infect Dis 58: 369-372, 2005. Bhat KG, Paul C, Ananthakrishna NC. Drug resistant enterococci in a South Indian Hospital. Trop Doct 28: 106-107, 1998. Bradford PA. Extended-Spectrum β-Lactamases in the 21st Century: Characterization, Epidemiology, and Detection of This Important Resistance Threat. Clin Microbiol Rev 14: 933-951, 2001. Bradley AJ, Leach KA, Breen JE, Green LE, Green MJ. Survey of the incidence and aetiology of mastitis on dairy farms in England and Wales. Vet Rec 160: 253-257, 2007. Bugg TD, Dutka-Malen S, Arthur M, Courvalin P, Walsh CT. Identification of vancomycin resistance protein VanA as a D-alanine:D-alanine ligase of altered substrate specificity. Biochemistry 30: 2017-2021, 1991. Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for beta-lactamases and its correlation with molecular structurE. Antimicrob Agents Chemother 39: 1211-1233, 1995. Cetinkaya Y, Falk P, Mayhall CG. Vancomycin-resistant enterococci. Clin Microbiol Rev 13: 686-707, 2000. Chambers HF. Methicillin resistance in staphylococci: molecular and biochemical basis and clinical implications. Clin Microbiol Rev 10: 781-791, 1997. Chopra I, Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistancE. Microbiol Mol Biol Rev 65: 232-260, 2001. Clancy J, DibHajj F, Petitpas JW, Yuan W. Cloning and characterization of a novel macrolide efflux gene, mreA, from Streptococcus agalactiaE. Antimicrob Agents Chemother 41: 2719-2723, 1997. Clancy J, Petitpas J, DibHajj F, Yuan W, Cronan M, Kamath AV, Bergeron J, Retsema JA. Molecular cloning and functional analysis of a novel macrolide-resistance determinant, mefA, from Streptococcus pyogenes. Mol Microbiol 22: 867-879, 1996. DANMAP (Danish Integrated Antimicrobial Resistance Monitoring and Research Programme). Use of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from food animals, foods and humans in Denmark 2003. DANMAP, Soborg, Denmark, 2003. Datt N, Kontomichalou P. Penicillinase synthesis controlled by infectious R-factor in EnterobacteriaceaE. Nature 208: 239-241, 1965. De Oliveira AP, Watts JL, Salmon SA, Aerestrup FM. Antimicrobial susceptibility of Staphylococcus aureus isolated from bovine mastitis in Europe and the United States. J Dairy Sci 83: 855-862, 2000. De Vaux A, Laguerre G, Divies C, Prevost H. E. asini sp. nov. isolated from the caecum of donkeys (Equus asinus). Intl J Syst Bacteriol 48: 383-387, 1998. Del Grosso M, Northwood JGE, Farrell DJ, Pantosti A. The macrolide resistance genes erm(B) and mef(E) are carried by Tn2010 in dual-gene Streptococcus pneumoniae isolates belonging to clonal complex CC271. Antimicrob Agents and Chemothe 50: 4184-4186, 2007. Devriese LA, Hommez J, Laevens H, Pot B, Vandamme P, Haesebrouck F. Identification of aesculin-hydrolyzing streptococci, lactococci, aerococci and enterococci from subclinical intramammary infections in dairy cows. Vet Microbiol 70: 87-94, 1999. Devriese LA, Laurier L, De Herdt P, Haesebrouck F. Enterococcal and streptococcal species isolated from faeces of calves, young cattle and dairy cows. J Appl Bacteriol 72: 29-31, 1992. Eady EA, Ross JI, Tipper JL, Walters CE, Cove JH, Noble WC. Distribution of genes encoding erythromycin ribosomal methylases and an erythromycin efflux pump in epidemiologically distinct groups of staphylococci. J Antimicrob Chemother 31: 211-217, 1993. Edwards U, Rogall T, Blöcker H, Emde M, Böttger EC. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA Nucl Acid Res 17: 7843-7853, 1989. Eisner A, Feierl G, Gorkiewicz G, Dieber F, Kessler HH, Marth E, Kofer J. High prevalence of VanA-type vancomycin-resistant enterococci in Austrian poultry. Appl Environ Microbiol 71: 6407-6409, 2005. Evers S, Sahm DF, Courvalin P. The vanB gene of vancomycin-resistant E. faecalis V583 is structurally related to genes encoding D-Ala:D-Ala ligases and glycopeptide-resistance proteins VanA and VanC. Gene 124: 143-144, 1993. Franz CMAP, Holzapfel WH, Stiles ME. Enterococci at the crossroads of food safety? Int J Food Microbiol 47: 1-24, 1999. Gianneechini RE, Concha C, Franklin A. Antimicrobial susceptibility of udder pathogens isolated from dairy herds in the west littoral region of Uruguay. Acta Vet Scand 43: 31-41, 2002. Gold HS, Moellering RC. Drug therapy-Antimicrobial-drug resistancE. N Engl J Med 335: 1445-1453, 1996. Goldman RC, Capobianco JO. Role of an energy-dependent efflux pump in plasmid pNE24-mediated resistance to 14- and 15-membered macrolides in Staphylococcus epidermidis. Antimicrob Agents Chemother 34: 1973-1980, 1990. Guidry A, Fattom A, Patel A, O''Brien C. Prevalence of capsular serotypes among Staphylococcus aureus isolates from cows with mastitis in the United States. Vet Microbiol 59: 53-58, 1997. Guiney M, Urwin G. Frequency and antimicrobial susceptibility of clinical isolates of enterococci. Eur J Clin Microbiol Infect Dis 12: 362-366, 1993. Hakenbeck R, Grebe T, Zahner D, Stock JB. beta-lactam resistance in Streptococcus pneumoniae: penicillin-binding proteins and non-penicillin-binding proteins. Mol Microbiol 33: 673-678, 1999. Hall BG, Barlow M. Revised Ambler classification of β-lactamases. J Antimicrob Chemother 55: 1050-1051, 2005. Hawkey PM. The growing burden of antimicrobial resistancE. J Antimicrob Chemother 62: 1-9, 2008. Hershberger E, Oprea SF, Donabedian SM, Perri M, Bozigar P, Bartlett P, Zervos MJ. Epidemiology of antimicrobial resistance in enterococci of animal origin. J Antimicrob Chemother 55: 127-130, 2005. Jackson CR, Fedorka-Cray PJ, Barrett JB. Use of a genus- and species-specific multiplex PCR for identification of enterococci. J Clin Microbiol 42: 3558-3565, 2004. Jackson CR, Fedorka-Cray PJ, Barrett JB, Ladely SR. Frects of tylosin use on erythromycin resistance in enterococci isolated from swinE. Appl Environ Microbiol 70: 4205-4210, 2004. Jackson CR, Lombard JE, Dargatz DA, Fedorka-Cray PJ. Prevalence, species distribution and antimicrobial resistance of enterococci isolated from US dairy cattlE. Lett Appl Microbiol 52: 41-48, 2011. Jaurin B, Grundstrom T. ampC cephalosporinase of Escherichia coli K-12 has a different evolutionary origin from that of beta-lactamases of the penicillinase typE. Proc Natl Acad Sci USA 78: 4897-4901, 1981. Jensen LB, Frimodt-Moller N, Aarestrup FM. Presence of erm gene classes in Gram-positive bacteria of animal and human origin in Denmark. FEMS Microbiol Lett 170: 151-158, 1999. Jiang Y, Zhou Z, Qian Y, Wei Z, Yu Y, Hu S, Li L. Plasmid-mediated quinolone resistance determinants qnr and aac(6'')-Ib-cr in extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in China. J Antimicrob Chemother 61: 1003-1006, 2008. Johnston NJ, De Azavedo JC, Kellner JD, Low DE. Prevalence and characterization of the mechanisms of macrolide, lincosamide, and streptogramin resistance in isolates of Streptococcus pneumoniaE. Antimicrob Agents Chemother 42: 2425-2426, 1998. Jung WK, Lim JY, Kwon NH, Kim JM, Hong SK, Koo HC, Kim SH, Park YH. Vancomycin-resistant enterococci from animal sources in Korea. Intern J Food Microbiol 113: 102-107, 2007. Kariyama R, Mitsuhata R, Chow JW, Clewell DB, Kumon H. Simple and reliable multiplex PCR assay for surveillance isolates of vancomycin-resistant enterococci. J Clin Microbiol 38: 3092-3095, 2000. Kataja J, Huovinen P, Skurnik M, Seppala H, Resistance FSGA. Erythromycin resistance genes in group A streptococci in Finland. Antimicrob Agents Chemother 43: 48-52, 1999. Klare I, Konstabel C, Badstubner D, Werner G, Witte W. Occurrence and spread of antibiotic resistances in E. faecium. Int J Food Microbiol 88: 269-290, 2003. Kumar A, Schweizer HP. Bacterial resistantce to antibiotic:active efflux and reduced uptakE. Adv Drug Deliv Rev 57: 1486-1513, 2005. Lancefield RC. A Serological Differentiation of Human and Other Groups of Hemolytic Streptococci. J Exp Med 57: 571-595, 1933. Lauderdale TL, Shiau YR, Wang HY, Lai JF, Huang IW, Chen PC, Chen HY, Lai SS, Liu YF, Ho M. Effect of banning vancomycin analogue avoparcin on vancomycin-resistant enterococci in chicken farms in Taiwan. Environ Microbiol 9: 819-823, 2007. Leclercq R, Courvalin P. Bacterial resistance to macrolide, lincosamide, and streptogramin antibiotics by target modification. Antimicrob Agents Chemother 35: 1267-1272, 1991. Lee EW, Huda MN, Kuroda T, Mizushima T, Tsuchiya T. EfrAB, an ABC multidrug efflux pump in E. faecalis. Antimicrob Agents Chemother 47: 3733-3738, 2003. Levine DP. Vancomycin: A history. Clin Infect Dis 42: 5-12, 2006. Li XZ, Mehrotra M, Ghimire S, Adewoye L. Beta-Lactam resistance and beta-lactamases in bacteria of animal origin. Vet Microbiol 121: 197-214, 2007. Livermore DM. Beta-Lactamases in Laboratory and Clinical ResistancE. Clin Microbiol Rev 8: 557-584, 1995. Lopes MDS, Ribeiro T, Martins MP, Tenreiro R, Crespo MTB. Gentamicin resistance in dairy and clinical enterococcal isolates and in reference strains. J Antimicrob Chemother 52: 214-219, 2003. Lu JJ, Wu JCC, Chiueh TS, Perng CL, Chi WM, Lee WH. Characterization of a highly glycopeptide-resistant E. gallinarum isolatE. J Formos Med Assoc 99: 305-310, 2000. Ma YP, Chang SK, Chou CC. Characterization of bacterial susceptibility isolates in sixteen dairy farms in Taiwan. J Dairy Sci 89: 4573-4582, 2006. Markowitz SM, Wells VD, Williams DS, Stuart CG, Coudron PE, Wong ES. Antimicrobial susceptibility and molecular epidemiology of beta-lactamase-producing, aminoglycoside-resistant isolates of E. faecalis. Antimicrob Agents Chemother 35: 1075-1080, 1991. Manero A, Blanch AR. Identification of E. spp. with a biochemical key. Appl Environ Microbiol 65: 4425-4430, 1999. Markowitz SM, Wells VD, Williams DS, Stuart CG, Coudron PE, Wong ES. Antimicrobial susceptibility and molecular epidemiology of beta-lactamase-producing, aminoglycoside-resistant isolates of E. faecalis. Antimicrob Agents Chemother 35: 1075-1080, 1991. Martineau F, Picard FJ, Lansac N, Menard C, Roy PH, Ouellette M, Bergeron MG. Correlation between the resistance genotype determined by multiplex PCR assays and the antibiotic susceptibility patterns of Staphylococcus aureus and Staphylococcus epidermidis. Antimicrob Agents Chemother 44: 231-238, 2000. Mederski-Samoraj BD, Murray BE. High-level resistance to gentamicin in clinical isolates of enterococci. J Infec Dis 147: 751-757, 1983. Murray BE. The life and times of the E.. Clin Microbiol Rev 3: 46-65, 1990. Murray BE. Beta-lactamase-producing enterococci. Antimicrob Agents Chemother 36: 2355-2359, 1992. Murray BE. Vancomycin-resistant enterococcal infections. N Engl J Med 342: 710-721, 2000. Nam HM, Lim SK, Moon JS, Kang HM, Kim JM, Jang KC, Kim JM, Kang MI, Joo YS, Jung SC. Antimicrobial Resistance of Enterococci Isolated from Mastitic Bovine Milk Samples in Korea. Zoonoses Public Health 57: E59-E64, 2010. NMC. Laboratory Handbook on bovine mastitis. Rev. Ed. National Mastitis Council Inc., Madison, WI, 1999. Olsen JE, Christensen H, Aarestrup FM. Diversity and evolution of blaZ from Staphylococcus aureus and coagulase-negative staphylococci. J Antimicrob Chemother 57: 450-460, 2006. Osteras O, Solverod L, Reksen O. Milk culture results in a large Norwegian survey-effects of season, parity, days in milk, resistance, and clustering. J Dairy Sci 89: 1010-1023, 2006. Pal S. A journey across the sequential development of macrolides and ketolides related to erythromycin. Tetrahedron 62: 3171-3200, 2006. Perichon B, Reynolds P, Courvalin P. VanD-type glycopeptide-resistant E. faecium BM4339. Antimicrob Agents Chemother 41: 2016-2018, 1997. Petersson-Wolfe CS, Wolf SL, Hogan JS. In vitro growth of enterococci of bovine origin in bovine mammary secretions from various stages of lactation. J Dairy Sci 90: 4226-4231, 2007. Pitkala A, Haveri M, Pyorala S, Myllys V, Honkanen-Buzalski T. Bovine mastitis in Finland 2001-prevalence, distribution of bacteria, and antimicrobial resistancE. J Dairy Sci 87: 2433-2441, 2004. Poeta P, Costa D, Rodrigues J, Torres C. Antimicrobial resistance and the mechanisms implicated in faecal enterococci from healthy humans, poultry and pets in Portugal. Int J Antimicrob Agents 27: 131-137, 2006. Poole K. Mechanisms of bacterial biocide and antibiotic resistancE. J Appl Microbiol 92: 55s-64s, 2002. Poole K. Resistance to beta-lactam antibiotics. Cell Mol Life Sci 61: 2200-2223, 2004. Portillo A, Ruiz-Larrea F, Zarazaga M, Alonso A, Martinez JL, Torres C. Macrolide resistance genes in E. spp. Antimicrob Agents Chemother 44: 967-971, 2000. Quintiliani R, Courvalin P. Characterization of Tn1547, a composite transposon flanked by the IS16 and IS256-like elements, that confers vancomycin resistance in E. faecalis BM4281. Gene 172: 1-8, 1996. Quintiliani R, Jr., Courvalin P. Conjugal transfer of the vancomycin resistance determinant vanB between enterococci involves the movement of large genetic elements from chromosome to chromosomE. FEMS Microbiol Lett 119: 359-363, 1994. Roberts MC, Sutcliffe J, Courvalin P, Jensen LB, Rood J, Seppala H. Nomenclature for macrolide and macrolide-lincosamide-streptogramin B resistance determinants. Antimicrob Agents Chemother 43: 2823-2830, 1999. Rossitto PV, Ruiz L, Kikuchi Y, Glenn K, Luiz K, Watts JL, Cullor JS. Antibiotic susceptibility patterns for environmental streptococci isolated from bovine mastitis in central California dairies. J Dairy Sci 85: 132-138, 2002. Sader HS, Biedenbach D, Jones RN. Evaluation of Vitek and API 20S for species identification of enterococci. Diagn Microbiol Infect Dis 22: 315-319, 1995. Safo MK, Zhao QX, Ko TP, Musayev FN, Robinson H, Scarsdale N, Wang AHJ, Archer GL. Crystal structures of the BlaI repressor from Staphylococcus aureus and its complex with DNA: Insights into transcriptional regulation of the bla and mec operons. J Bacteriol 187: 1833-1844, 2005. Schlegelova J, Babak V, Klimova E, Lukasova J, Navratilova P, Sustackova A, Sediva I, Rysanek D. Prevalence of and resistance to anti-microbial drugs in selected microbial species isolated from bulk milk samples. J Vet Med B Infect Dis Vet Public Health 49: 216-225, 2002. Schlegelova J, Napravnikova E, Dendis M, Horvath R, Benedik J, Babak V, Klimova E, Navratilova P, Sustackova A. Beef carcass contamination in a slaughterhouse and prevalence of resistance to antimicrobial drugs in isolates of selected microbial species. Meat Sci 66: 557-565, 2004. Schmitz FJ, Sadurski R, Kray A, Boos M, Geisel R, Kohrer K, Verhoef J, Fluit AC. Prevalence of macrolide-resistance genes in Staphylococcus aureus and E. faecium isolates from 24 European university hospitals. J Antimicrob Chemother 45: 891-894, 2000. Seo KS, Lim JY, Yoo HS, Bae WK, Park YH. Comparison of vancomycin-resistant enterococci isolates from human, poultry and pigs in Korea. Vet Microbiol 106: 225-233, 2005. Shepard BD, Gilmore MS. Antibiotic-resistant enterococci: the mechanisms and dynamics of drug introduction and resistancE. Microbes Infect 4: 215-224, 2002. Sherman JM. The Streptococci. Bacteriol Rev 1: 3-97, 1937. Smith MC, Murray BE. Comparison of enterococcal and staphylococcal beta-lactamase-encoding fragments. Antimicrob Agents Chemother 36: 273-276, 1992. Song JH. Emergence and spread of antimicrobial resistance of Streptococcus pneumoniae in Korea. Yonsei Med J 39: 546-553, 1998. Sood S, Malhotra M, Das BK, Kapil A. Enterococcal infections & antimicrobial resistancE. Indian J Med Res 128: 111-121, 2008. Sutcliffe J, TaitKamradt A, Wondrack L. Streptococcus pneumoniae and Streptococcus pyogenes resistant to macrolides but sensitive to clindamycin: A common resistance pattern mediated by an efflux system. Antimicrob Agents Chemother 40: 1817-1824, 1996. TaitKamradt A, Clancy J, Cronan M, DibHajj F, Wondrack L, Yuan W, Sutcliffe J. mefE is necessary for the erythromycin-resistant M phenotype in Streptococcus pneumoniaE. Antimicrob Agents Chemother 41: 2251-2255, 1997. Tenhagen BA, Koster G, Wallmann J, Heuwieser W. Prevalence of mastitis pathogens and their resistance against antimicrobial agents in dairy cows in Brandenburg, Germany. J Dairy Sci 89: 2542-2551, 2006. Tenover FC. Mechanisms of antimicrobial resistance in bacteria. Am J Infect Control 34: 3-10, 2006. Thomson KS, Smith Moland E. Version 2000: the new beta-lactamases of Gram-negative bacteria at the dawn of the new millennium. Microbes Infect 2: 1225-1235, 2000. Valenzuela AS, ben Omar N, Abriouel H, Lopez RL, Veljovic K, Canamero MM, Topisirovic MKL, Galvez A. Virulence factors, antibiotic resistance, and bacteriocins in enterococci from artisan foods of animal origin. Food Control 20: 381-385, 2009. Watts JL, Salmon SA, Yancey RJ, Nickerson SC, Weaver LJ, Holmberg C, Pankey JW, Fox LK. Antimicrobial Susceptibility of Microorganisms Isolated from the Mammary-Glands of Dairy Heifers. J Dairy Sci 78: 1637-1648, 1995. Weisblum B. Erythromycin Resistance by Ribosome Modification. Antimicrob Agents Chemother 39: 577-585, 1995. Weisblum B. Macrolide resistancE. Drug Resist Updat 1: 155-155, 1998. Wells VD, Wong ES, Murray BE, Coudron PE, Williams DS, Markowitz SM. Infections due to beta-lactamase-producing, high-level gentamicin-resistant E. faecalis. Ann Intern Med 16: 285-292, 1992. Woodford N. Glycopeptide-resistant enterococci: a decade of experiencE. J Med Microbiol 47: 849-862, 1998. Wright GD, Berghuis AM, Mobashery S. Aminoglycoside antibiotics-Structures, functions, and resistancE. Adv Exp Med Biol 456: 27-69, 1998. Wu Z, Wright GD, Walsh CT. Overexpression, Purification, and Characterization of vanX, a D-,D-Dipeptidase Which Is Essential for Vancomycin Resistance in E.-faecium-Bm4147. Biochemistry 34: 2455-2463, 1995. Zou LK, Wang HN, Zeng B, Li JN, Li XT, Zhang AY, Zhou YS, Yang X, Xu CW, Xia QQ. Erythromycin resistance and virulence genes in E. faecalis from swine in China. New Microbiol 34: 73-80, 2011. Zscheck KK, Murray BE. Nucleotide sequence of the beta-lactamase gene from E. faecalis HH22 and its similarity to staphylococcal beta-lactamase genes. Antimicrob Agents Chemother 35: 1736-1740, 1991.
摘要: 腸球菌(Enterococcus spp.)共生於人類和動物腸道內,因為腸球菌先天對許對多抗菌劑保有抗性,因可引起嚴重病院內感染並對公共衛生產生一大挑戰,從早期對penicillin及aminoglycoside的抗藥性,到近年來對其他β-lactams及vancomycin的抗藥性,加上腸球菌可以作為抗藥性基因的保存者,同時扮演散佈抗藥基因的角色,都使得腸球菌的治療充滿困難,因此本研究目的為調查台灣乳牛場腸球菌抗藥性和抗藥基因的盛行率。實驗採用生化性狀鑑定的API 20 Strep®、16s rDNA定序及聚合酶鏈鎖反應將種別做鑑定,並將菌株進行紙錠擴散法和最小抑菌濃度測量以及抗藥性基因的聚合酶鏈鎖反應。試驗中共有215株腸球菌株自生乳、糞材及下痢便樣本被分離出,生乳樣本,分離率最高為E. faecalis (59.6%,34/57);糞便樣本,分離率最高為E. hirae (61.4 %,97/158)。抗生素敏感性試驗的結果中,抗藥性比例最高者依序為cloxacillin (97.7%)、cefuroxime (95.3%) 及sulfa-trimethoprin (87.4%);而感受性最高的抗生素為amoxycillin-clavulanic acid (99.6%)、ampicillin (97.2%)及penicillin (95.4%)。以PCR偵測抗藥性基因的結果中,在乙內醯胺酶部分,發現有4株帶有blaZ,對應ampicillin MIC值為0.5-2 μg/mL。在erythomycin部分,發現有呈現抗藥性之41株皆攜帶有ermB;另外所有腸球菌中,12株帶有mefA/E,47株帶有msrA/B,此些菌株之erythromycin MIC值均高達1024 μg/mL以上。在vancomycin部分,發現有1株帶有vanC1,MIC值為2 μg/mL,6株帶有vanC2/C3,MIC值為0.5-4 μg/mL。根據結果,乳牛場的腸球菌抗藥性已發展出較高之抗藥性,因此有必要持續監控其抗藥性型態並更廣泛地檢測其抗藥性基因。
Enterococcus spp. is a symbiotic organism that can be found in the guts of humans and animals. Being one of the leading causes of nosocomial infections, it poses a significant threat to public health with their intrinsic resistance to many broad-spectrum antimicrobials. The ability to resist penicillin and aminoglycoside in the early age, so as other β-lactams and vancomycin in the recent years has made the medical practice of curing on Enterococcus more difficult. Additionally, Enterococcus spp. could be the reservoirs of antimicrobial and the antimicrobial susceptibility results could be useful for veterinary clinical practice in the selection of antimicrobials The aims of this study were to investigate the resistance phenotypes and resistance genes of Enterococcus spp. from dairy farms in Taiwan. The identification of Enterococcus spp.was performed with API 20 Strep®, PCR (polymerase chain reation) method and 16s rDNA sequencing, proceeded with disc diffusion, MIC (minimum inhibitory concentration) methods, and detection of resistant genes with PCR method. A total of 215 enterococcal isolates were collected from raw milk samples, fecal samples, and diarrheic feces. E. faecalis could be identified with a percentage of 59.6% (34/57) within all enterococcal isolates from raw milk samples, and E. hirae had a highest identification percentage of 61.4% (97/158) from fecal samples. According to the result of antibiotic susceptibility test, Enterococcus spp. showed higher resistance to cloxaciliin (97.7%), cefuroxime (95.3%), and sulfa-trimethoprin (87.4%), while they were more susceptible to amoxycillin-clavulanic acid (99.6%), ampicillin (97.2%), and penicillin (95.4%). About 1.9% (n=4) of isolates were positively detected with gene blaZ (MIC of ampicillin 0.5-2 μg/mL), 19.1% with ermB (n=41) (MIC of erythromycin≧ 1024 μg/mL), 5.6% with mefA/E (n=12) (MIC of erythromycin≧ 1024 μg/mL), 21.9% with msrA/B (n=47) (MIC of erythromycin≧ 1024 μg/mL), 0.5% with vanC1 (n=1) (MIC of vancomycin=4 μg/mL), and 2.8% with vanC2/C3 (n=6) (MIC 0.5-4 μg/mL). In accordance with the results of the study, we suggest that Enterococcus. spp. from dairy farms should be necessarily monitored for a long period surveillance with the antibiogram and resistance genes,
URI: http://hdl.handle.net/11455/12781
其他識別: U0005-0307201217345600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0307201217345600
Appears in Collections:獸醫學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.