Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/12981
標題: 奈米矽片對雞盲腸型球蟲之生物效應
Biological effects of nano silicate platelet on Eimeria tenella
作者: 吳叡璇
Wu, Ruey-Shyuan
關鍵字: Nano silicate platelet
奈米矽片
NSP
Eimeria tenella
雞盲腸型球蟲
出版社: 獸醫學系暨研究所
引用: 李永基。原蟲。家畜寄生蟲學。第二版。藝軒圖書出版社。台北。台灣。中華民 國。263-280。1998。 費昌勇。雞艾美屬球蟲之病因學、病理學及免疫學(上)。中國畜牧雜誌 27: 113-117, 1995。 黃國城。評估magainin-2處理Eimeria tenella卵囊之減毒效果與其免疫保護力。碩 士論文。國立中興大學獸醫系。台中市。中華民國。2005。 蔡震達。評估ANTI-ETCH1處理Eimeria tenella卵囊之活毒免疫效能。碩士論文。國立中興大學獸醫系。台中市。中華民國。2007。 林孟穎。寧素對雞盲腸型球蟲之生物效應。碩士論文。國立中興大學獸醫系。台中市。中華民國。2009。 Akelah A, Moet A. Synthesis of organophilic polymer-clay nanocomposites. J Appl Polym Sci: Appl Polym Symp 55: 153, 1994. Allen PC, Fetterer RH. Recent advances in biology and immunobiology of Eimeria species and in diagnosis and control of infection with these coccidian arasites of poultry. Clin Microbiol Rev 15: 58-65, 2002a. Allen PC, Fetterer RH. Metam sodium reduces viability and infectivity of Eimeria oocysts. J Parasitol 96: 632-637, 2002b. Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng 28: 1, 2000. Anosa GN, Okoro OJ. Anticoccidial activity of the methanolic extract of Musa paradisiacal root in chickens. Trop Anim Health Prod, 2010. Baker SE, Sawvel AM, Zheng N, Stucky GD. Controlling bioprocesses with inorganic surfaces: layered clay hemostatic agents. Chem Mater 19: 4390-4392, 2007. Belli SI, Smith NC, Ferguson DJP. The coccidian ocyst: a tough nut to crack! Trends Parasitol 22: 416-423, 2006. Bowman DD, Lynn RC, Eberhard ML, Alcaraz A. Protozoans. In Parasitology for veterinarians. 8th ed. Elsevier, Missouri, 91-94, 2003. Boyle DB, Heine HG. Recombinant fowlpox virus vaccines for poultry. Immunol Cell Biol 71: 391-397, 1993. Canning EU, Anwar M. Studies on meiotic division in coccidial and malarial parasites. J Protozool 15: 290-298, 1968 Chanie M, Negash T, Tilahun SB. Occurance of concurrent infectious diseases in broiler chickens is a threat to commercial poultry farms in Central Ethiopia. Trop Anim Health Prod 41: 1309-1317, 2009. Chapman HD. Biochemical, genetic and applies aspects of drug resistance in Eimeria parasits of the fowl. Avian Pathol 28: 221-244, 1997. Chapman HD. Practical use of vaccines for the control of coccidiosis in the chicken. World Poultry Sci J 56: 7-20, 2000. Chapman HD, Cherry TE, Danforth HD, Richards G, Shirley MW, Williams RB. Sustainable coccidiosis control in poultry production: the role of live vaccines. Int J Parasitol 32: 617–629, 2002. Chen WY, Chen CJ, Liu CH, Mao FC. Chromium supplementation enhances insulin signaling in skeletal muscle of obese KK/HIJ diabetic mice. Diabetes Obes Metab 11: 293-303, 2009. Cheysin E. Structure de l’oocyste et permeabilite de ses membranes chez les coccidies du lapin. Ann Parasit Hum Comp 13: 133, 1935. Chu CC, Chiang ML, Tsai CM, Lin JJ. Exfoliation of montmorillonite clay by mannich polyamines with multiple quaternary salts. Macromolecules 38: 6240-6243, 2005. Coleman NJ, Bishop AH, Booth SE, Nicholson JW. Ag+- and Zn2+-exchange kinetics and antimicrobial properties of 11 Å tobermorites. J Eur Ceram Soc 29: 1109-1117, 2009. Constantinoiu CC, Molloy JB, Jorgensen WK, Coleman GT. Antibody response against endogenous stages of an attenuated strain of Eimeria tenella. Vet Parasitol 154: 193–204, 2008. Cornelissen JB, Swinkels WJ, Boersma WA, Rebel JM. Host response to simultaneous infections with Eimeria acrevulina, maxima and tenella: accumulation of single responses. Vet Parasitol 162: 58-66, 2009. Cronenberg AM, Van Geffen CE, Dorrestein J, Vermeulen AN, Sondermeijer PJ. Vaccination of broilers with HVT expressing an Eimeria acervulina antigen improves performance after challenge with Eimeria. Acta Virol 43: 192-197, 1999. del Cacho E, Pages M, Gallego M, Monteagudo L, Sánchez-Acedo C. Synaptonemal complex karyotype of Eimeria tenella. Int J Parasitol 35: 1445-1451, 2005. Dong RX, Chou CC, Lin JJ. Synthesis of immobilized silver nanoparticles on ionic silicate clay and observed low-temperature melting. J Mater Chem 19: 2184-2188, 2009. Dubey JP, Miller NL, Frenkel JK. The Toxoplasma gondii oocyst from cat feces. J Exp Med 132: 636-662, 1970. Ducrotte P, Dapoigny M, Bonaz B, Siproudhis L. Symptomatic efficacy of beidellitic monmorillonite in irritable bowel syndrome: a randomized, controlled trial. Aliment Pharmacol Ther 21: 435-444. Fetterer RH, Jenkins MC, Miska KB, GD. Metam sodium reduces viability and infectivity of Eimeria oocysts. J Parasitol 96: 632-637, 2010. Gilbert JM, Fuller AL, Scott TC, McDonald LR. Biological effects of gamma-irradiation on laboratory and field isolates of Eimeria tenella (protozoa; coccidian). Parasitol Res 84: 437-41, 1998. Greshkovich P, Darlington J, Sivak O, Constantinides PP, Wasan KM. Inhibition of intestinal absorption of cholesterol by surface-modified nanostructured aluminosilicate compounds. J Pharm Sci 98: 2390-2400, 2009. Goodrich HP. Coccidian oocysts. Parasitology 36: 72-79, 1944. Gore TC, Long PL, Kogut M, Johnson J. Attenuation of Eimeria necatrix and E. tenella of US origin by serial embryo passage. Avian Dis 27: 569-576, 1983. Guo FC, Suo X, Zhang GZ, Shen AG. Efficacy of decoquinate against drug sensitive laboratory strains of Eimeria tenella and field isolates of Eimeria spp. in broiler chickens in China. Vet Parasitol 147:239-245, 2007. Haydel SE, Remenih CM, Williams LB. Broad-spectrum in vitro antibacterial activities of clay minerals against antibiotic-susceptible and antibiotic-resistant bacterial pathogens . J Antimicrob Chemother 61: 353-361, 2008. Herrera P, Burghardt RC, Phillips TD. Adsorption of Salmonella enteritidis by cetylpyridinium-exchanged montmorillonite clays. Vet Microbiol 74: 259, 2000. Hetrick EM, Shin JH, Stasko NA, Johnson CB, Wespe DA, Holmuhamedov E, Schoenfisch MH. Bactericidal efficacy of nitric oxide-releasing silica nanoparticles. ACS Nano 2: 235–246, 2008. Hsu SH, Tseng HJ, Hung HS, Wang MC, Hung CH, Li PR, Lin JJ. Antimicrobial activities and cellular responses to natural silicate clays and derivatives modified by cationic alkylamine salts. Appl Mater Interfaces 1: 2556-2564, 2009. Hsu WH. Antiparasitic agents. In: Handbook of veterinary pharmacology. Wiley-Blackwell, Iowa, USA, 379-416, 2008. Huynh WU, Dittmer JJ, Alivisatos AP. Hybrid nanorod-polymer solar cells. Science 295: 2425-2427, 2002. Innes EA, Vermeulen AN. Vaccination as a control strategy against the coccidial parasites Eimeria, Toxoplasma and Neospora. Parasitology 133: S145-S168, 2006. Jang SI, Jun M, Lillehoj HS, Dalloul RI, Kong I, Kim S. Anticoccidial effect of green tea-based diets against Eimeria maxima. Vet Parasitol 144: 172-175, 2007. Jeffers TK. Attenuation of Eimeria tenella through selection for precociousness. J Parasitol 61: 1083-1090, 1975. Jenkins MC. Advances and prospects for subunit vaccines against protozoa of veterinary importance. Vet Parasitol 101: 291-310, 2001. Jenkins MC, Chute MB, Danforth HD. Protection against coccidiosis in outbred chickens elicited by gamma-irradiated Eimeria maxima. Avian Dis 41: 702-708, 1997. Jenkins MC, Augustine PC, Danforth HD, Barta JR. X-irradiation of Eimeria tenella oocyst provides direct evidence that sporozoite invasion and early schizont development induce a protective immune response. Infect Immun 59: 4042-4048, 1991. Johnson J and Reid WM. Anticoccidial drugs: lesion scoring techniques in battery and floor-pen experiments with chickens. Exp Parasitol 28: 30-36, 1970. Katti DR, Ghish P, Schmidt S, Katti KS. Mechanical properties of the sodium montmorillonite interlayer intercalated with amino acids. Biomacromolecules 6: 3276, 2005. Kawanishi S, Hiraku Y, Murata, Oikawa S. The role of metals in site-specific DNA damage with reference to carcinogenesis. Free Radic Biol Med 32: 822-832, 2002. Kawazoe U, Bordin EL, De Lima CA, Dias LAV. Characterisation and histopathological observation of a selected Brazilian precocious line of Eimeria acervulina. Vet Parasitol 131: 5-14, 2005. Kim KS, Jenkins MC, Lillehoj HS. Immunization of chickens with live Escherichia coli expressing Eimeria acervulina merozoite recombinant antigen induces partial protection against coccidiosis. Infect Immun 57: 2434-2440, 1989. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH. Antimicrobial effects of silver nanoparticles. Nanomedicine 3: 95–101, 2007. Kruticic V, Wikerhauser T. Studies on the effect of various treatments on the viability of Toxoplasma gondii tissue cysts and oocysts. Curr Top Microbiol Immunol 219: 261-265. Lee SH, Lillehoj HS, Park DW, Jang SI, Morales A, García D, Lucio E, Larios R, Victoria G, Marrufo D, Lillehoj EP. Protective effect of hyperimmune egg yolk IGY antibodies against Eimeria maxima infections. Vet Parasitol 163: 123-126, 2009. Levine ND. The Apicomplexa and the coccidian proper. In: Protozoan parasites of domestic animals and of man. 2nd ed. Burgess Publishing Company, Minneapolis, Minnesota, 236-243, 1973. Li MH, Ooi HK. Effect of chromium compounds on sporulation of Eimeria piriformis oocysts. Exp Anim 57: 79-83, 2008. Li JG, Xing T, Wang L, Tao JP, Liu ZP. Inhibitory effect of S-nitroso-glutathione on Eimeria tenella oocysts was mainly limited to the early stages of sporogony. Vet Parasitology 173: 64-69, 2010. Li PR, Wei JC, Chiu YF, Su HL, Peng FC, Lin JJ. Evaluation on cytotoxicity and genotixicity of the exfoliated silicate nanoclay. Appl Mater Interface. 6: 1608-1613, 2010. Lin JJ, Lin SF. Phase inversion of self-aggregating Mannich amines with poly (oxyethylene) segments. J Colloid Interface Sci. 258: 155, 2003. Lin JJ, Chu CC, Chiang ML, Tsai WC. Manipulating assemblies of high-aspect-ratio clays and fatty amine salts to form surfaces exhibiting a lotus effect. Adv Mater 18: 3248-3252, 2006. Lindsay DS, Blagburn BL. Antiprotozoan drugs. In: Adams HR. ed. Veterinary pharmacology and therapeutics. 7th ed. Iowa State University Press, USA, 962-973, 1998. Long PL, Horton-Smith C. Coccidia and coccidiosis in the domestic fowl. Adv Parasitol 6: 313-325, 1968. Long PL, Joyner LP, Millard BJ, Norton CC. A guide to laboratoey techniques used in the study and diagnosis of avian coccidiosis. Folia Vet Lat 6: 201-217, 1976. Loo C, Lowery A, Halas N, West J, Derek R. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5: 709-711, 2005. Maiti P, Yamada K, Okamoto M, Ueda K, Okamoto K. New polylactide/layered silicate nanocomposites: role of organoclays. Chem Mater 14: 4654, 2002. Marion MF, Wehr EE. Survival of Eimeria acervulina, E. tenella and E. maxima oocysts in soil under various field conditions. Ann Trop Med Parasitol 52: 468-472, 1949. Marquardt WC. Host and site specificity in the Coccidia. In: Hammond DM, Long PL Eds. The Coccidia. Eimeria, Isospora, Toxoplasma, and related genera. University Park Press, Baltimore, MD, 22-43, 1973. Molan AL, Liu Z, De S. Effect of pine bark (Pinus radiata) extracts on sporulation of coccidian occysts. Folia Parasitol 56:1-5, 2009. Monné L Hönig G. On the properties of the shells of coccidian oocysts. Arkiv för Zoologi 7: 251-256, 1954. Mouafo AN, Weck-Heimann A. Dubremetz JF, Entzeroth R. Monoclonal antibodies specific for the two types of wall-forming bodies of Eimeria tenella macrogametes (Coccidia, Apicomplexa). Parasitol Res 88: 217-224, 2002. Nel A, Xia T, Madler L, Li N. Toxic Potential of Materials at the Nanolevel. Science 311: 622-627, 2006. Ogbe AO, Mgbojikwe LO, Abdu PA, Atawodi SE. Organ and carcass weight variation and histopathological changes in Eimeria tenella infected broiler chickens treated with aqueous extract of a wild mushroom (Ganoderma lucidum), EJEAFChe 7: 2906-2913, 2008. Park JK, Choy YB, Oh JM, Kim JY, Hwang SJ, Choy JH. Controlled release of donepezil intercalated in smectite clays. Int J Pharm 359: 198, 2008. Pergola F. Evaluation of a new therapy (beidellian montmorillonite--guar gum) in the treatment of constipation. Ann Gastroenterol Hepatol 23: 43-46, 1987. Patlolla AK, Barnes C, Yedjou C, Velma VR, Tchounwou PB. Oxidative stress, DNA damage, and antioxidant enzyme activity induced by hexavalent chromium in Sprague-Dawley rats. Environ Toxicol 24: 66-73, 2009. Phillips TD. Lemke SL. Grant PG. Characterization of clay-based enterosorbents for the prevention of aflatoxicosis. Adv Exp Med Biol. 504: 157-171, 2002. Roberts WL, Speer CA, Hammond DM. Electron and light microscope studies of the oocyst walls, sporocysts, and excysting sporozoites of Eimeria callospermophili and E. larimerensis. J Parasitol 56: 918-926, 1970. Rose ME. Immunity to Coccidia, In: Davison TF, Morris TR, Payne LN Eds. Poultry Immunology. Carfax Publishing Company, Oxforshire, UK, 265-299, 1996. Ryley JF. Cytochemistry, physiology, and biochemistry. In: Hammond, DM, Long, PL Eds. The Coccidia. Eimeria, Isospora, Toxoplasma, and Related Genera. University Park Press, 145-181, 1973. Schares G, Pantchev GN, Barutzki D, Heydorn AO, Bauer C, Conraths FJ. Oocysts of Neospora caninum, Hammondia heydorni, Toxoplasma gondii and Hammondia hammondi in faeces collected from dogs in Germany. Int J Parasitol 35: 1525-1537, 2005. Schmidt GD, Roberts’ LS. Phylum Apicomplexa: gregarines, coccidia, and related organisms. In: Foundations of parasitology. 7th ed. McGraw-Hill, New York, NY, 128-132, 2005. Shirley MW. Research on avian coccidian: an update. Braz Vet J 148: 479-499, 1992. Shirley MW. Eimeria and Isospora: Eimeria species and strains of chickens. In: Eckert J et al. Eds. COST 89/820 Biotechnology. Guidelines on Techniques in Coccidiosis Research. European Commission: 1-11, 1995. Shirley MW, Bushell AC, Bushell JE, McDonald V, Roberts B. A live attenuated vaccine for the control of avian coccidiosis: trials in broiler breeders and replacement layer flocks in the United Kingdom. Vet Record 137: 453-457, 1995. Shirley MW, Harvey DA. Eimeria tenella: infection with a single sporocyst gives a clonal population. Parasitology 112: 523-528, 1996. Shirley MW, Smith A, Blake DP. Challenges in the successful control of the avian coccidia. Vaccine 25: 540-547, 2007. Silva A, Kawazoe U, Freitas FFT, Gatti MSV, Dolder H, Schmacher RI, Juliano MA, Silva MJ, Leite A. Avian anticoccidial activity of a novel membrane-interactive peptide selected from phage display libraries. Mol Biochem Parasitol 120: 53-60, 2002. Smith AL, Hesketh P, Archer A, Shirley MW. Antigenic diversity in Eimeria maxima and the influence of host genetics and immunization schedule on cross-protective immunity. Infect Immun 70: 2472-2479, 2002. Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275: 177-182, 2004. Stephen B, Rommel M, Daugschies A, Haberkorn A. Studies of resistance to anticoccidials in Eimeria field isolates and pure Eimeria strains. Vet Parasitol 69: 19-29, 1997. Su HL, Chou CC, Hung DJ, Lin SH, Pao IC, Lin JH, Huang FL, Dong RX, Lin JJ. The disruption of bacterial membrane integrity through ROS generation induced by nanohybrids of silver and clay. Biomaterials 30: 5979-5987, 2009. Theng BKG. Formation and Properties of clay-polymer complexes. Elsevier, New York, 1979. Vermeulen AN. Progress in recombinant vaccine development against coccidiosis. A review and prospects into the next millennium. Int J Parasitol 28: 1121-1130, 1998. Vermeulen AN. Avian coccidiosis: a disturbed host-parasite relationship to be restored. Sym Soc Exp Biol 55: 211-241, 2004. Wang CC. Inhibition of the respiration of Eimeria tenella by quinolone coccidiostats. Biochem Pharmacol. 25: 343-349, 1976. Warheit DB, Sayes SM, Reed KL, Swain KA. Health effects related to nanoparticle exposures: environmental, health and safety considerations for assessing hazards and risks. Pharmacol Ther 120: 35-42, 2008. Williams RB. Fifty years of anticoccidial vaccines for poultry (1952-2002). Avian Dis 46: 775-802, 2002. William RB. Tracing the emergence of drug-resistance in coccidian (Eimeira spp.) of commercial broiler flocks medicated with decoquinate for the first time in the United Kingdom. Vet Parasitol 135: 1-14, 2006. Yun CH, Lillehoj HS, Lillehoj EP. Intestinal immune responses to coccidiosis. Dev Comp Immunol 24: 303-324, 2000.
摘要: 本研究針對奈米矽片對未芽胞化Eimeria tenella卵囊之生物效應的評估進行一系列的試驗,包括芽胞化率、形態畸形率、電子顯微鏡之形態觀察及能量散射光譜儀之元素分析。此外,亦評估經處理之球蟲卵囊感染雞隻後之卵囊排出量及盲腸病變積分。將約三萬顆未芽胞化Eimeria tenella卵囊分別置於2 % K2Cr2O7 (對照組)、520 ppm Tag007、520 ppm Tag007D、520 ppm Tag507、520 ppm NSS1150、520 ppm NSS1212及520 ppm NSS1450S(Tag系列:含有奈米銀之奈米矽片;NSS系列:不含有奈米銀之奈米矽片)中,於室溫下培養三天。孵化感作第三天結果顯示最低芽胞化率及最高形態畸形率為NSS1150組別。將篩選出之孵化感作液(NSS1150系列)進一步以不同濃度評估,包括100、 250、 520及1,000 ppm。孵化感作第三天結果顯示除了250 ppm組別外,其餘NSS1150組別間呈現劑量效應,即為濃度越高,芽胞化率越低、形態畸形率越高。高峰日及總卵囊排出量顯示100及250 ppm組別較對照組高,520及1,000 ppm則是較低,NSS1150組別間呈現劑量效應。盲腸病變積分中從濃度250 ppm開始顯示劑量效應,僅有1,000 ppm組別之病變較對照組顯著輕微(p<0.05)。掃描式電子顯微鏡觀察中,奈米矽片濃度越高,球蟲卵囊表面越不光滑平順及越多不規則片狀物覆蓋於上。能量散射光譜儀分析不規則片狀物後,可偵測到矽元素,確認該片狀物為奈米矽片。綜合以上評估可知,奈米矽片濃度越高越具有抗球蟲之效果,且呈現劑量效應。因此,低濃度奈米矽片可用於生產大量球蟲卵囊,高濃度奈米矽片可用於弱化球蟲卵囊並作為免疫試驗前之卵囊處理劑。
A series of experiments had done to evaluate the biological effects of nano silicate platelet (NSP) from montmorillonite on the unsporulated Eimeria tenella coccidian oocysts including sporulation, abnormal morphology rates, scanning electron microscope (SEM) images and energy dispersive spectrometer (EDS). In addition, oocysts per gram (OPG) and cecal lesion scores (LS) from chickens fed with NSP treated sporulated oocysts were also evaluated. Tubes containing approximately 30,000 unsporulated oocysts isolated from droppings of Eimeria tenella coccidia-infected chickens were assigned to 2 % K2Cr2O7 (control), 520 ppm Tag007, 520 ppm Tag007D, 520 ppm Tag507, 520 ppm NSS1150, 520 ppm NSS1212 and 520 ppm NSS1450S (Tag series: NSP with nano silver; NSS series: NSP without nano silver) and incubated at room temperature for 3 days. The results on the 3rd day showed the lowest sporulation rate and the highest abnormal morphology rate in NSS1150 group. NSS1150 was further evaluated by assigning unsporulated oocysts to various concentrations including 100, 250, 520 and 1,000 ppm. The results on the 3rd day indicated dose dependent manner among NSS1150 groups except for the 250 ppm group showing as the concentration gets higher, lower sporulation and higher abnormal morphology rates were observed. Both peak and total OPG revealed 100 and 250 ppm groups had higher oocysts output than control, 520 and 1,000 ppm groups had lower output than control; dose dependent manner was also observed among NSS1150 groups. Lesion scores demonstrated dose dependent manner starting from 250 ppm, only 1,000 ppm group showed significant less lesion score than control (p<0.05). SEM images showed as NSP concentration elevates the surface of the oocysts becomes much bumpy and covered by more irregular plate-like material. EDS analysis confirmed irregular plate-like material is NSP by detecting silicon element on it. Together, results indicated that higher the NSP concentration, higher the anticoccidial effects representing dose dependent characteristic. In conclusion, low concentration NSP can be used to produce vast amount of oocysts, high concentration NSP can be used to attenuate coccidial oocysts for immunization tests.
URI: http://hdl.handle.net/11455/12981
其他識別: U0005-2107201113392500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2107201113392500
Appears in Collections:獸醫學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.