Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributorYueh-Sheng Chenen_US
dc.contributorShu-Peng Hoen_US
dc.contributor.advisorChi Yangen_US
dc.contributor.authorTsai, Chi-Hengen_US
dc.identifier.citationAbel ED, Peroni O, Kim JK, Kin YB, Boss O, Hadro E, Minnemann T, Shulman GI, Kahn BB. Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature 409: 729-33, 2001. Aizawa T, Sato Y, Ishihara F, Taguchi N, Komatsu M, Suzuki N, Hashizume K, Yamada T. ATP-sensitive K+ channel-independent glucose action in rat pancreatic beta-cell. Am J Physiol Cell Physiol 266: C622-7, 1994. Aldhahi W, Hamdy O. Adipokines, inflammation, and the endothelium in diabetes. Curr Diab Rep 3: 293-8, 2003. Ammon HP, Steinke J. 6-Amnionicotinamide (6-AN) as a dibetogenic agent. In vitro and in vivo studies in the rat. Diabetes 21: 143-8, 1972. Araki E, Lipes MA, Patti ME, Bruning JC, Haag B 3rd, Johnson RS, Kahn CR. Alternative pathway of insulin signaling in mice with targeted disruption of the IRS-1 gene. Nature 372: 186-90, 2002. Arkhammar P, Nilsson T, Rorsman P, Berggren PO. Inhibition of ATP-regulated K+ channels precedes depolarization-induced increase in cytoplasmic free Ca2+ concentration in pancreatic β-cells. J Biol Chem 262: 5448-54, 1987. Ashcroft FM, Rprsman P. Electrophysiology of the pancreatic beta-cell. Prog Biophys Mol Biol 54: 87-143, 1989. Ashcroft FM, Gribble FM. ATP-sensitive K+ channels and insulin secretion: their role in health and disease. Diabetologia 42: 903-19, 1999. Atwater I, Ribalet B, Rojas E. Mouse pancreatic beta-cells: tetraethylammonium blockage of the potassium permeability increase induced by depolarization. J Physiol 288: 561-74, 1979. Bahring R, Milligan CJ, Vardanyan V, Engeland B, Young BA, Dannenberg J, Waldschutz R, Edwards JP, Wray D, Pongs O. Coupling of voltage-dependent potassium channel inactivation and oxidoreductase active site of Kvβ subunits. J Biol Chem 276: 22923-9, 2001. Bailey C, Turner RC. M. Metformin. Drug Thr 334: 574-9, 1996. Basabe JC, Farina JM, Chieri RA. Studies on the dynamics and mechanism of glibenclamide-induced insulin secretion. Horm Metab Res 8: 413-9, 1976. Berne C. The metabolism of lipids in mouse pancreatic islets. The biosynthesis of triacylglycerols and phospholipids. Biochem J 152: 667-73, 1975. Bokvist K, Rorsman P, Smith PA. Block of ATP-regulated and Ca2+-activated K+ channels in mouse pancreatic β-cells by external tetraethylammonium and quinine. J Physiol 423: 327-42, 1990. Cejvan K, Coy DH, Holst JJ, Cerasi E, Efendic S. Gliclazide directly inhibits arginine-induced glucagon release. Diabetes 51: S381-4, 2002. Cheng AY, Fantus IG. Oral antihyperglycemic therapy for type 2 diabetes mellitus. CMAJ 172: 213-26, 2005. Choquet D, Sarthou P, Primi D, Cazenave PA, Korn H. Cyclic AMP-modulated potassium channels in murine B cells and their precursors. Science 235: 1211-4, 1987. Ciaraldi TP, Gilmore A, Olefsky JM, Goldberg M, Heidenreich KA. In vitro studies on the action of CS-045, a new antidiabetic agent. Metabolism 39: 1056-62, 1990. Curry DL, Bennett LL, Grodsky GM. Dynamics of insulin secretion by the perfused rat pancreas. Endocrinology 83: 572-84, 1968. Czech MP, Corvera S. Signaling mechanisms that regulate glucose transport. J Biol Chem 274: 1865-8, 1999. Deeney JT, Tornheim K, Korchak HM, Prentki M, Corkey BE. Acyl-CoA esters modulate intracellular Ca2+ handling by permeabilized clonal pancreatic beta-cells. J Biol Chem 267: 19840-5, 1992. DeFronzo RA. Pharmacologic therapy for type 2 diabetes mellitus. Ann Intern Med 131: 281-303, 1999. Dukes ID, Philipson LH. K+ channels: generating excitement in pancreatic beta-cells. Diabetes 45: 845-53, 1996. Dunne MJ, Cosgrove KE, Shepherd RM, Ammala C. Potassium channels, sulphonylurea receptors and control of insulin release. Trends Endocrinol Metab 10: 146-52, 1999. Eberhardson M, Grapengiesser E. Glucose and tolbutamide trigger transients of Ca2+ in single pancreatic β-cells exposed to tetraethylammonium. Cell Calcium 25: 355-60, 1999. Edwards G, Weston AH. The role of potassium channels in excitable cells. Diabetes Res Clin Pract 28: S57-66, 1995. Efendic S, Enzmann F, Nylen A, Uvnas-Wallensten K, Luft R. Effect of glucose/sulfonylurea interaction on release of insulin, glucagon, and somatostatin from isolated perfused rat pancreas. Proc Natl Acad Sci U S A 76: 5901-4, 1979. Fahien LA, MacDonald MJ. The succinate mechanism if insulin release. Diabetes 51: 2669-76, 2002. Fantin VR, Wang Q, Lienhard GE, Keller SR. Mice lacking insulin receptor substrate 4 exhibit mild defects in growth, reproduction, and glucose homeostasis. Am J Physiol Endocrinol Metab 278: E127-33, 2000. Fatherazi S, Cook DL. Specificity of tetraethylammonium and quinine for three K channels in insulin-secreting cells. J Membrane Biol 120: 105-14, 1991. Fili O, Michaelevski I, Bledi Y, Chikvashvili D, Singer-Lahat D, Boshwitz H, Linial M, Lotan I. Direct interaction of brain voltage-gated K+ channel with syntaxin 1A: function impact on channel gating. J Neurosci 21: 1964-74, 2001. Findlay I, Dunne MJ, Ullrich S, Wpllheim CB, Petersen OH. Quinine inhibits Ca2+-independent K+ channels whereas tetraethylammonium inhibits Ca2+-activated K+ channels in insulin-secreting cells. FEBS Lett 185: 4-8, 1985. Fujimoto WY. The importance of insulin resistance in the pathogenesis of type 2 diabetes mellitus. Am J Med 108: 9S-14S, 2000. Fukuen S, Iwaki M, Yasui A, Makishima M, Matsuda M, Shimomura I. Sulfonylurea agents exhibit peroxisome proliferator-activated receptor γ agonistic activity. J Biol Chem 280: 23653-9, 2005. Ganong WF. Endocrine functions of the pancreas & regulation of carbohydrate metabolism. In: Review of medical physiology. 18rd ed. Appleton & Lange, Stamford, 324-6, 1997. Gavin JR 3rd, Alberti KGMM, Davidson MB, DeFronzo RA, Drash A, Gabbe SG, Genuth S, Harris MI, Kahn R, Keen H, Knowler WC, Lebovitz H, Maclaren NK, Palmer JP, Raskin P, Rizza RA, Stren MP. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 25: S5-20, 2002. Gerber SH, Sudhof TC. Molecular determinants of regulated exocytosis. Diabetes 51: S3-11, 2002. Gregorio F, Ambrosi F, Filipponi P, Cristallini S, Santeusanio F. Glucose modulates the amount, but not the kinetics, of insulin released by sulfonylureas. J Diabetes Complications 8: 204-12, 1994. Gribble FM, Reimann F. Pharmacological modulation of KATP channels. Biochem Soc Trans 30: 333-9, 2002. Grodsky GM, Fanska RE. The in vitro perfused pancreas. In: Hardman JG, O'Malley BW, ed. Methods in enzymology. Vol.ΧΧΧIΧ, Hormone Action, Pat D. Isolated Cells, Tissues, and Organ System. Academic Press, New York, 364-72, 1975. Gromada J, Ma X, Hoy M, Bokvist K, Salehi A, Berggren PO, Rorsman P. ATP-sensitive K+ channel-dependent regulation of glucagen release and electrical activity by glucose in wild-type and SUR-/- mouse α-cells. Diabetes 53: S181-9, 2004. Gulbis JM, Mann S. Structure of a voltage-dependent K+ channel β subunit. Cell 97: 943-52, 1999. Guyton AC, Hall JE. Insulin and its metabolic effects. In: Textbook of medical physiology. 10rd ed. Saunders, Philadelphia, 884-91, 2000. Hanson RL, Imperatore G, Bennett PH, Knowler WC. Components of the“Metabolic syndrome”and incidence of type 2 diabetes. Diabetes 51: 3120-7, 2002. Hatorp V. Clinical pharmacokinetics and pharmacodynamics of repaglinide. Clin Pharmacokinet 41: 471-83, 2002. Hayden MR. Islet amyloid, metabolic syndrome, and the natural progressive history of type 2 diabetes mellitus.JOP 3: 126-38, 2002. Hedeskov CJ, Capito K, Thams P. Cytpsolicratios of free [NADPH]/[NADP+] and [NADH]/[NAD+] in mouse pancreatic islets, and nutrient-induced insulin secretion. Biochem J 241: 161-7, 1987. Hequin I. Tetraethylammonium potentiation of insulin release and inhibition of rubidium efflux in pancreatic islets. Biochem Biophys Res Commun 77: 551-6, 1977. Henquin JC. Role of voltage- and Ca2+-dependent K+ channels in the control of glucose-induced electrical activity in pancreatic B-cells. Pflugers Arch 416: 568-72, 1990. Henquin JC. Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes 49: 1751-60, 2000. Henquin JC. Pathways in β-cell stimulus-secretion coupling as targets for therapeutic insulin secretagogues. Diabetes 53: S48-58, 2004. Higgins CF. The ABC of channel regulation. Cell 82: 693-6, 1995. Hodgkin AL, Huxley AF. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J Physiol 116: 449-72, 1952. Holman GD, Kasuga M. From receptor to transporter: insulin signaling to glucose transport. Diabetologia 40: 991-1003, 1997. Huopio H, Otonkoski T, Vauhkonen I, Reimann F, Ashcroft FM, Laakso M. A new subtype of autosomal dominant diabetes attributable to a mutation in the gene for sulfonylurea receptor 1. Lancet 361: 301-7, 2003. Inzucchi SE. Oral antihyperglycemic therapy for type 2 diabetes: scientific review. JAMA 287: 360-72, 2002. James DE, Strube M, Mueckler M. Molecular cloning and characterization of an insulin-regulatable glucose transporter. Nature 338: 83-7, 1989. Ji J, Tsuk S, Salapatek AM, Huang X, Chikvashvili D, Pasyk EA, Kang Y, Sheu L, Tsushima R, Diamant N, Trimble WS, Lotan I, Gaisano HY. The 25-kDasynaptosome-associated protein (SNAP-25) binds and inhibits delayed rectifier potassium channels in secretory cells. J Biol Chem 277: 20195-204, 2002. Kido Y, Nakae J, Accili D. The insulin receptor and its cellular targets. J Clim Endocrinol Metab 86: 972-9, 2001. Kim SJ, Choi WS, Han JS, Warnock G, Fedida D, McIntosh CH. A novel mechanism for the suppression of a voltage-gated potassium channel by glucose-dependent insulinotropic polypeptide. J Biol Chem 280: 28692-700, 2005. Klip A, Paquet MR. Glucose transport and glucose transporters in muscle and their metabolic regulation. Diabetes Care 13: 228-43, 1990. Klip A, Tsakiridis T, Marette A, Ortiz PA. Regulation of expression of glucose transporters by glucose: a review of studies in vivo and in cell cultures. FASEB J 8: 43-53, 1994. Komatsu M, Schermerhorn T, Aizawa T, Sharp GWG. Glucose stimulation of insulin release in the absence of extracellular Ca2+ in rat pancreatic islets. Proc Natl Acad Sci U S A 92: 10728-32, 1995. Koski RR. Oral antidiabetic agents: a comparative review. Journal of Pharmacy Practice 17: 39-48, 2004. Kulkarni RN. The islet β-cell. Int J Biochem Cell Biol 36: 365-71, 2004. Lehtihet M, Welsh N, Berggren PO, Cook GA, Sjoholm A. Glibenclamide inhobits islet carnitine palmitoyltransferase 1 activity, leading to PKC-dependent insulin exocytosis. Am J Physiol Endocrinol Metab 285: E438-46, 2003. Leung YM, Kang Y, Gao X, Xia F, Xie H, Sheu L, Tsuk S, Lotan I, Tsushima RG, Gaisano HY. Syntaxin 1A bindings to the cytoplasmic C terminus of Kv2.1 to regulate channel gating and trafficking. J Biol Chem 278: 17532-8, 2003. Liu SC, Wang Q, Lienhard GE, Keller SR. Insulin receptor substrate 3 is not essential for growth or glucose homeostasis. J Biol Chem 274: 18093-9, 1999. Luna B, Feinglos MN. Oral agents in the management of type 2 diabetes mellitus. Am Fam Physician 63: 1747-56, 2001. MacDonald MJ. The export of metabolites from mitochodria and anaplerosis in insulin secretion. Biochim Biophys Acta 1619: 77-88, 2003. MacDonald PE, Sewing S, Wang J, Joseph JW, Smukler SR, Sakellaropolus G, Wang J, Saleh MC, Chan CB, Tsushima RG, Salapatek AM, Wheeler MB. Inhibition of Kv2.1 voltage-dependent K+ channels in pancreatic β-cell enhances glucose-dependent insulin secretion. J Biol Chem 277: 44938-45, 2002. MacDonald PE, Salapatek AM, Wheeler MB. Glucagon-like peptide-1 receptor activation antagonizes voltage-dependent repolarizing K+ currents in β-Cells: a possible glucose-dependent insulinotropic mechanism. Diabetes 51: S443-7, 2002. MacDonald PE, El-kholy W, Riedel MJ, Salapatek AM, Light PE, Wheeler MB. The multiple actions of GLP-1 on the process of glucose-stimulated insulin secretion. Diabetes 51: S434-42, 2002. MacDonald PE, Wang G, Tsuk S, Dodo C, Kang Y, Tang L, Wheeler MB, Cattral MS, Lakey JR, Salapatek AM, Lotan I, Gaisano HY. Synaptosome-associated protein of 25 kilodaltons modulates Kv2.1 voltage-dependent K+ channels in neuroendocrine islet β-cells through an interaction with the channel N terminus. Mol Endocrinol 16: 2452-61, 2002. MacDnald PE, Salapatek AM, Wheeler MB. Temperture and redox state dependence of native Kv2.1 currents in rat pancreatic β-cells. J Physiol 546: 647-53, 203. MacDonald PE, Wang X, Xia F, El-khony W, Targonsky ED, Tsushima RG, Wheeler MA. Antagonism of rat β-cell voltage-dependent K+ currents by exendin 4 requires dual activation of the cAMP/protein kinase A and phosphatidylinositol 3-kinase signaling pathways. J Biol Chem 278: 52446-53, 2003. MacDonald PE, Wheeler MB. Voltage-dependent K+ channels in pancreatic beta cells: role, regulation and potential as therapeutic targets. Diabetologia 46: 1046-62, 2003. MacDonald PE, Ha XJ, Wang J, Smukler SR, Sun AM, Gaisano HY, Salapatek AM, Backx PH, Wheeler MB. Members of Kv1 and Kv2 voltage-dependent K+ channel families regulate insulin secretion. Mol Endocrinol 15: 1423-35, 2001. Maeda N, Takahashi M, Funahshi T, Kihara S, Nishizawa H, Kishida K, Nagaretani H, Matsuda M, Komuro R, Ouchi N, Kuriyama H, Hotta K, Nakamura T, Shimomura I, Matsuzawa Y. PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes 50: 2094-9, 2001. Malaisse WJ, Sener A, Boschero AC, Kawazn S, Devis G, Somers G. The stimulus-secretion coupling of glucose-induced insulin release. Cationic and secretory effects of menadione in the endocrine pancreas. Eur J Biochem 87: 111-20, 1978. Marshall S, Bacote V, Traxinger RR. Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance. J Biol Chem 266: 4706-12, 1991. McCormack T, McCormack K. Shaker K+ channel beta subunits belong to an NAD(P)H-dependent oxidoreductase superfamily. Cell 79: 1133-5, 1994. McGarry JD. Glucose-fatty acid interactions in health and disease. Am J Clin Nutr 67: 500S-504S, 1998. McLeod JF. Clinical pharmacokinetics of nateglinide: a rapidly-absorbed, short-acting insulinotropic agent. Clin Pharmacokinet 43: 97-120, 2004. Meetoo D. Clinical skills: empowering people with diabetes to minimize complications. Br J Nurs 13: 644-51, 2004. Miki T, Nagashima K, Seino S. The structure and function of the ATP-sensitive K+ channel in insulin-secreting pancreatic β-cells. J Mol Endocrinol 22: 113-23, 1999. Muller G, Wied S, Wetekam EM, Crecelius A, Unkelbach A, Punter J. Stimulation of glucose utilization in 3T3 adipocytes and rat diaphragm with modulations of the cAMP regulatory cascade. Biochem Pharmacol 48: 985-96, 1994. Musi N, Hirshman MF, Nygren J, Svanfeldt M, Bavenholm P, Rooyackers O, Zhou G, Williamson JM, Ljunqvist O, Efendic S, Moller DE, Thorell A, Goodyear LJ. Meformin increase AMP-active protein kinase activity in skeletal muscle of subjects with type 2 diabetes. Diabetes 51: 2074-81, 2002. Nagashima K, Takahashi A, Ikeda H, Hamasaki A, Kuwamura N, Yamada Y, Seino Y. Sulfonylurea and non-sulfonylurea hypoglycemic agents: pharmachological properties and tissue selectivity. Diabetes Res Clin Pract 66S: S75-8, 2004. Nattrass M, Lauritzen T. Review of prandial glucose regulation with repaglinide: a solution to the problem of hypoglycaemia in the treatment of type 2 diabetes?. Int J Obes Relat Metab Disord 24: S21-31, 2000. Nesher R, Anteby E, Yedovizky M, Warwar N, Kaiser N, Cerasi E. β-cell protein kinase and dynamics of the insulin response to glucose. Diabetes 51: S68-73, 2002. Peri R, Wible BA, Brown AM. Mutation in the Kvβ2 binding site for nadph and their effects of Kv1.4. J Biol Chem 276: 738-41, 2001. Pessin JE, Saltiel AR. Signaling pathways in insulin action: molecular targets of insulin resistence. J Clin Invest 106: 165-9, 2000. Peter-Riesch B, Fathi M, Schlegel W, Wollheim CB. Glucose and carbachol generate 1,2-diacylglycerols by different mechanisms in pancreatic islets. J Clin Invest 81: 1154-61, 1988. Philipson LH, Rosenberg MP, Kuznetsov A, Lancaster ME, Worley JF 3rd, Roe MW, Duck ID. Delayed rectifier K+ channel overexpression in transgenic islets and β-cells associated with impaired glucose responsiveness. J Biol Chem 269: 27787-90, 1994. Pocai A, Lam TKT, Gutierrez-Juarez R, Obici S, Schwartz GJ, Bryan J, Aguilar-Bryan L, Rossetti L. Hypothalamic KATP channels control hepatic glucose production. Nature 434: 1026-31, 2005. Prentki M, Vischer S, Glennon MC, Regazzi R, Deeney JT, Corkey BE. Malonyl-CoA and long chai acyl-CoA esters as metabolic coupling factors in nutrient-induced insulin secretion. J Biol Chem 267: 5802-10, 1992. Prentki M, Corkey BE. Are the beta-cell signaling molecules malonyl-CoA and cystolic long-chain acyl-CoA implicated in multiple tissue defects of obesity and NIDDM?. Diabetes 45: 273-83, 1996. Pulido N, Romero R, Suarez AI, Rodriguez E, Cassnova B, Rovira A. Sulfonylureas stimulate glucose uptake through GLUT4 transporter translocation in rat skeletal muscle. Biochem Biophys Res Commun 228: 499-504, 1996. Quesada I, Nadal A, Soria B. Different effects of tolbutamide and diazoxide in α-, β-, and δ-cells within intact islets of langerhans. Diabetes 48: 2390-7, 1999. Rajan AS, Aguilar-Bryan L, Nelson DA, Nichols CG, Wechsler SW, Lechago J, Bryan J. Sulfonylurea receptors and ATP-ensitive K+ channels in clonal pancreatic α cells. J Biol Chem 268: 15221-8, 1993. Rayner DV, Thomas ME, Trayhurn P. Glucose transporters (GLUTs 1-4) and their mRNAs in regions of the rat brain: insulin-sensitive transporter expression in the cerebellum. Can J Physiol Pharmacol 72: 475-9, 1994. Reis AF, Velho G. Sulfonylurea receptor -1 (SUR1): genetic and metabolic evidences for a role in the susceptibility to type 2 diabetes mellitus. Diabetes Metab 28: 14-9, 2002. Renstrom E, Barg S, Thevenod F, Rorsman P. Sulfonylurea-mediated stimulation of insulin exocytosis via an ATP-sensitive K+ channel-independent action. Diabetes 51: S33-6, 2002. Roche E, Earfari S, Witter LA, Assimacopoulos-Jeannet F, Thumelin S, Brun T, Corkey BE, Saha AK, Prentki M. Long-term exposure of beta-INS cells to high glucose concentrations increases anaplerosis, lipogenesis, and lipogenic gene expression. Diabetes 47: 1086-94, 1998. Roe MW, Worley JF 3rd, Mittal AA, Kuznetsov A, DasGupta S, Mertz RJ, Witherspoon SM 3rd, Blair N, Lancaster ME, McIntyre MS, Shehee WR, Dukes ID, Philipson LH. Expression and function of pancreatic β-cell delayed rectifier K+ channels. J Biol Chem 271: 32241-6, 1996. Rogawski MA. K+ channels as therapeutic drug targets. Pharmacol Ther 94: 157-82, 2002. Saltiel AR, Olefsky JM. Thiazolidinediones in the treatment of insulin resistance and type II diabetes. Diabetes 45: 1661-9, 1996. Saltiel AR, Kahn CR. Insulin signaling and the regulation of glucose and lipid metabolism. Nature 414: 799-806, 2001. Sheppard MS, Meda P. Tetraethylammonium modifies gap junctions between pancreatic beta-cell. Am J Physiol 240: C116-20, 1998. Shepherd PR, Nave BT, O'Rahilly S. The role of phosphoinositide 3-kinase in insulin signalling. J Mol Endocrinol 17: 175-84, 1996. Shiota C, Rocheleau JV, Shiota M, Piston DW, Magnuson MA. Impaired glucagon secretory responses in mice lackng the type 1 sulfonylurea receptor. Am J Physiol Endocrinol Metab 289: E570-7, 2005. Shyng SL, Ferrigni T, Shepard JB, Nestorowicz A, Glaser B, Permutt MA, Nichols CG. Functional analyses of novel mutations in the sulfonylurea receptor 1 associated with persistent hyperinsulinemic hypoglycemia of infancy. Diabetes 47: 1145-51, 1998. Sturgess NC, Kozlowski RZ, Carrington CA, Hales CN, Ashford MLJ. Effects of sulphonylureas and diazoxide on secretion and nucleotide-sensitive channels in an insulin-secreting cell line. Br J Pharmacol 95: 83-94, 1988. Suter SL, Nolan JJ, Wallance P, Gumbiner B, Olefsky JM. Metabolic effects of new oral hypoglycemic agent CS-045 in NIDDM subjects. Diabetes Care 15: 193-203, 1992. Suzuki K, Kono T. Evidence that insulin causes translocation of glucose transport activity to the plasma membrane from an intracellular storage site. Proc Natl Acad Sci U S A 77: 2542-5, 1980. Tamarina NA, Kuznetsov A, Fridlyand LE, Philipson LH. Delayed-rectifier (KV2.1) regulation of pancreatic β-cell calcium responses to glucose: inhibitor specificity and modeling. Am J Physiol Endocrinol Metab 289: E578-85, 2005. Tamemoto H, Kadowaki T, Tobe K, Yagi T, Sakura H, Hayakawa T, Terauchi Y, Ueki K, Kaburagi Y, Satoh S, Sekihara H, Yoshioka S, Horikoshi H, Furuta Y, Ikawa Y, Kasuga M, Yazaki Y, Aizawa S. Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature 372: 182-6, 2002. Traxinger RR, Marshall S. Role of amino acids in modulating glucose-induced desensitization of the glucose transport system. J Biol Chem 264: 20910-6, 1989. Trube G, Rorsman P, Ohno-Shosaku T. Opposite effects of tolbutamide and diazoxide on the ATP-dependent K+ channel in mouse pancreatic beta-cells. Pflugers Arch 407: 493-9, 1986. Tsuruzoe K, Emkey RE, Kriauciunas KM, Ueki K, Kahn CR. Insulin receptor substrate 3 (IRS-3) and IRS-4 impair IRS-1- and IRS-2-mediated signaling. Mol Cell Biol 21: 26-38, 2001. Walsh KB, Kass RS. Regulation of a heart potassium channel by protein kinase A and C. Science 242: 67-9, 1998. Walsh KB, Begenisich TB, Kass RS. Beta-adrenergic modulation of cardiac ion channels. Differential temperature sensitivity of potassium and calcium currents. J Gen Physiol 93: 841-54, 1989. Withers DJ, Gutierrez JS, Towery H, Burks DJ, Ren JM, Previs S, Zhang Y, Bernal D, Pons S, Shulman GI, Bonner-Weir S, Whote MF. Disruption of IRS-2 causes type 2 diabetes in mice. Nature 391: 900-4, 1998. Wood IS, Trayhurn P. Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. Br J Nutr 89: 3-9, 2003. Xu J, Koni PA, Wang P, Li G, Kaczmarek L, Wu Y, Li Y, Flavell RA, Desir GV. The voltage-gated potassium channel Kv1.3 regulates energy homeostasis and body weight. Hum Mol Genet 12: 551-9, 2003. Yan L, Figueroa DJ, Austin CP, Liu Y, Bugianesi RM, Slaughter RS, Kaczorowski GJ, Kohler MG. Expression of voltage-ated potassium channels in human and rhesus pancreatic islets. Diabetes 53: 597-607, 2004. Yaney GC, Korchak HM, Corkey BE. Long-chain acyl CoA regulation of protein kinase C and fatty acid potentiation of glucose-stimulated insulin secretion in clonal beta-cells. Endocrinology 141: 1989-98, 2000. Yang WS, Jeng CY, Wu TJ, Tanaka S, Funahashi T, Matsuzawa Y, Wang JP, Chen CL, Tai TY, Chuang LM. Synthetic peroxisome proliferator-activated receptor-gamma agonist, rosiglitazone, increases plasma levels of adiponectin in type 2 diabetic patients. Diabetes Care 25: 376-80, 2002. Yellen G. The voltage-gated potassium channels and their relatives. Nature 419: 35-42, 2002. Young PW, Cawthorne MA, Coyle PJ, Holder JC, Holman GD, Kozka IJ, Kirkham DM, Lister CA, Smith SA. Repeat treatment of obese mice with BRL 49653, a new potent insulin sensitizer, enhances insulin action in white adipocytes. Association with increased insulin binding and cell-surface GLUT4 as measured by photoaffinity labeling. Diabetes 44: 1087-92, 1995. Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature 414: 782-7, 2001. Zisman A, Peroni OD, Abel ED, Michael MD, MAuvais-Jarvis F, Lowell BB, Wojtaszewski JF, Hirshaman MF, Virkamaki A, Goodyear LJ, Kahn CR, Kahn BB. Targeted disrupton of the glucose transporter 4 selectively in muscle cause insulin resistance and glucose intolerance. Nat Med 6: 924-8, 2000.zh_TW
dc.description.abstract第2型糖尿病通常源自於營養代謝的異常,且伴隨著胰島素阻抗及胰島素分泌不良的情形。Sulfonylurea類藥物則是現今廣泛用於治療非胰島素依賴型糖尿病患者的口服藥物,其作用主為關閉ATP-sensitive K+(KATP)通道,造成細胞膜電位的去極化,從而開啟電位控制的鈣離子通道,細胞外鈣離子流入細胞內,使細胞內鈣離子濃度上升,因而導致胰島素之釋放。本實驗以活體灌流大白鼠胰臟的模式來探討glibenclamide與tetraethylammonium(TEA)合併或單獨使用,對大白鼠胰臟胰島素分泌之影響。結果發現glibenclamide與TEA皆可直接刺激胰臟分泌胰島素,同時也皆能增強葡萄糖刺激胰島素分泌的作用,但兩者胰島素的釋放趨勢並不相同。實驗濃度範圍之glibenclamide(15—100 nM)或TEA(1—100 mM)之下,其刺激作用與其劑量呈正比。Diazoxide是KATP通道的活化劑,能夠有效阻斷葡萄糖所刺激β細胞的胰島素釋放,結果發現diazoxid能夠抑制glibenclamide及TEA所刺激的胰島素釋放。研究指出TEA能夠阻斷voltage-dependent K+(KV)通道,延緩再極化及延長動作電位的持續時間,並增強葡萄糖所刺激的胰島素釋放。比較單獨使用glibenclamide,與glibenclamide合併TEA灌流的反應,結果顯示TEA在0—30 mM的濃度範圍能夠增強glibenclamide(15 nM)所引起的胰島素釋放,且呈現劑量依賴反應關係。故由實驗得知TEA可以直接刺激胰島素之分泌,並對glibenclamide刺激胰島素之分泌有增強的效果,這些作用可能是經由抑制KATP通道與KV通道所達成。因此我們推測KV通道對於調節β細胞電位活性,與胰島素之釋放扮演著一定的作用。zh_TW
dc.description.abstractType 2 diabetes mellitus was an abnormal nutritional metabolic symptom associated with insulin resistance and impaired insulin secretion. Sulfonylureas were the most common therapeutic agents used orally in patients with non-insulin-dependent diabetes mellitus. Sulfonylureas enhanced β-cell insulin secretion by blocking ATP-sensitive K+ (KATP) channels, depolarizing membrane, and stimulating Ca2+ influx through voltage-gated Ca2+ channels. By using pancreatic perfusion technique, glibenclamide and tetraethylammonium (TEA) were perfused together or alone into rat pancreas. We found that glibenclamide and TEA were able to stimulate insulin secretion and enhanced 10 mM glucose-induced insulin secretion, but their secretion patterns were different. In addition, both glibenclamide (15-100 nM) and TEA (1-100 mM) stimulated insulin secretion in a dose-dependent manner. The KATP channel activator diazoxide blocked the effect of glucose on β-cell insulin release. In addition, the application of diazoxide into perfusate also inhibited glibenclamide- and TEA-induced insulin secretion. It was recognized that TEA blocked voltage-dependent K+ (KV) channels, prevented the repolarization, prolonged β-cell action potentials and enhanced insulin secretion in a glucose-dependent manner. By comparing the stimulatory response of glibenclamide with or without TEA, TEA (1-30 mM) potentiated the glibenclamide (15 nM)-induced insulin secretion in a dose-dependent manner. These results suggested that TEA had a direct effect on insulin secretion and potentiated glibenclamide-stimulated insulin secretion that was mediated through the inhibition of KATP and KV channels. In addition, KV channels were active participants in the regulation of β-cell electrical activity and insulin secretion.en_US
dc.description.tableofcontents中文摘要 ............................................. i 英文摘要 ............................................. ii 目錄 ................................................. iv 圖次 第一章 緒言 ..........................................01 第二章 文獻探討 ......................................03 第一節 糖尿病簡介 ................................03 第二節 胰島素訊息傳遞與作用 ......................06 第三節 胰臟β細胞之胰島素分泌 .....................09 第四節 Voltage-dependent K+(KV)通道與胰臟β細胞 .18 第五節 口服治療第2型糖尿病之藥物 .................22 第六節 Sulfonylureas .............................26 第三章 材料與方法 ....................................32 實驗動物 ..........................................32 灌流系統 ..........................................32 灌流方法 ..........................................33 實驗一:不同劑量之glibenclamide對大白鼠胰臟胰島素分 泌之影響 ..................................34 實驗二:Glibenclamide對葡萄糖刺激大白鼠胰臟胰島素分 泌之影響 ..................................35 實驗三:不同劑量之tetraethylammonium(TEA)對大白鼠 胰臟胰島素分泌之影響 ......................36 實驗四:TEA對葡萄糖刺激大白鼠胰臟胰島素分泌之影響 .36 實驗五:KATP通道活化劑diazoxide對葡萄糖刺激胰島素分 泌作用之影響 ..............................37 實驗六:KATP通道活化劑diazoxide對glibenclamide刺激 胰島素分泌作用之影響 ......................38 實驗七:KATP通道活化劑diazoxide對TEA刺激胰島素分泌 作用之影響 ................................39 實驗八:TEA與glibenclamide合併使用對胰島素分泌之影 響 ........................................39 胰島素之測定 ......................................40 資料分析與統計 ....................................41 第四章 結果 ..........................................42 實驗一:不同劑量之glibenclamide對大白鼠胰臟胰島素分 泌之影響 ..................................42 實驗二:Glibenclamide對葡萄糖刺激大白鼠胰臟胰島素分 泌之影響 ..................................44 實驗三:不同劑量之tetraethylammonium(TEA)對大白鼠 胰臟胰島素分泌之影響 ............ .........47 實驗四:TEA對葡萄糖刺激大白鼠胰臟胰島素分泌之影響 .49 實驗五:KATP通道活化劑diazoxide對葡萄糖刺激胰島素分 泌作用之影響 ..............................51 實驗六:KATP通道活化劑diazoxide對glibenclamide刺激 胰島素分泌作用之影響 ......................54 實驗七:KATP通道活化劑diazoxide對TEA刺激胰島素分泌 作用之影響 ................................57 實驗八:TEA與glibenclamide合併使用對胰島素分泌之影 響 ........................................60 第五章 討論 ..........................................63 第六章 結論 ..........................................71 參考文獻 ..............................................72zh_TW
dc.titleThe effects of non-specific potassium channel blocker tetraethylammonium on insulin secretion in perfused rat pancreasen_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:獸醫學系所


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.