Please use this identifier to cite or link to this item:
標題: 乳鐵蛋白與鉻元素於肥胖小鼠肝臟、肌肉及脂肪組織變化之研究
Study of Lactoferrin and Chromium Variations in Liver, Muscle, and Adipose Tissue in Obese Mice
作者: 吳盈瑩
Wu, Ying-Ying
關鍵字: lactoferrin
出版社: 獸醫學系暨研究所
引用: 1. Ainscough EW, Brodic AM, Plowman JM. The chromium , manganese, cobalt and copper complexes of human lactoferrin. Inorg Chim Acta 33: 149-153, 1979. 2. Aiston S, Agius L. Leptin enhances glycogen storage in hapatocytes by inhibition of phosphorylase and exerts an additive effect with insulin. Diabetes 48: 15-20, 1999. 3. Alberti KG, Zimmet P. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med 15: 539-53, 1998. 4. Alberti KG, Zimmet P, Shaw J; IDF Epidemiology Task Force Consensus Group. The Metabolic syndrome - a new worldwide definition. Lancet 366: 1059-62, 2005. 5. Anderson RA. Chromium as an essential nutrient for humans. Regul Toxicol Pharmacol 26: S35-S41, 1997. 6. Anderson RA. Chromium in the prevention and control of diabetes. Diabetes Metab 26: 22-27, 2000. 7. Anderson RA. Chromium and insulin resistance. Nutrition Research Reviews 16: 267-275, 2003. 8. Anderson RA. Recent advances in the clinical and biochemical effects of chromium deficiency. Prog Clin Biol Res 380: 221-234, 1993. 9. Andersson Y, Lindquist S, Lagerqvist C, Hernell O. Lactoferrin is responsible for the fungistatic effect of human milk. Early Hum Dev 59: 95-105, 2000. 10. Appelmelk BJ, An YQ, Geerts M, Thijs BG, de Boer HA, MacLaren DM, de Graaff J, Nuijens JH. Lactoferrin is a lipid A-binding protein. Infect Immun 62: 2628-2632, 1994. 11. Avogaro P, Crepaldi G, Enzi G. Associazione di iperlipemia, diabete mellito e obesità di medio grado. Acta diabetol Lat 4: 36-41,1967. 12. Baker EN, Baker HM, Kidd RD. Lactoferrin and transferring: functional variations on a common structural framework. Biochem Cell Biol 80: 27-34, 2002. 13. Balthasar N, Dalgaard LT, Lee CE, Yu J, Funahashi H, Williams T, Ferreira M, Tang V, McGovern RA, Kenny DC, Christiansen LM, Edelstein E, Choi B, Boss O, Aschkenasi C, Zhang CY, Mountjoy K, Kishi T, Elmquist JK, Lowell BB. Divergence of melanocortin pathways in the control of food intake and energy expenditure. Cell 123: 493-505, 2005. 14. Baveye S, Elass E, Mazurier J, Spik G, Legrand D. Lactoferrin: a multifunctional glycoprotein involved in the modulation of the inflammatory process. Clin Chem Lab Med 37: 281-286, 1999. 15. Belfort R, Mandarino L, Kashyap S, Wirfel K, Pratipanawatr T, Berria R, Defronzo RA, Cusi K. Dose-response effect of elevated plasma free fatty acid on insulin signaling. Diabetes 54:1640 -1648, 2005. 16. Brand CL, Jorgensen PN, Svendsen I, Holst JJ. Evidence for a major role for glucagon in regulation of plasma glucose in conscious, nondiabetic, and alloxan-induced diabetic rabbits. Diabetes 45: 1076-1083, 1996. 17. Brock JH. Lactoferrin in human milk: its role in iron absorption and protection against enteric infection in the newborn infant. Arch Dis Child 55: 417-421, 1980. 18. Brockmann GA, Bevova MR. Using mouse models to dissect the genetics of obesity. Trends Genet 18: 367-376, 2002. 19. Brodie AM, Ainscough EW, Baker EN, Baker HM, Shongwe MS, Smith CA. Synergism and substitution in the lactoferrins. Adv Exp Med Biol 357: 33-44, 1994. 20. Buettner R, Scholmerich J, Bollheimer LC. High-fat diets: Modeling the metabolic disorders of human obesity in rodents. Obesity 15: 798-808, 2007. 21. Bullen JJ, Rogers HJ, Griffiths E. Role of iron in bacterial infection. Curr Top Microbiol Immunol 80: 1-35, 1978. 22. Bunger L, Hill WG. Inbred lines derived from long-term divergent selection on fat content and body weight. Mamm Genome 10: 645-648, 1999. 23. Caccavo D, Pellegrino NM, Altamura M, Rigon A, Amati L, Amoroso A, Jirillo E. Antimicrobial and immunoregulatory functions of lactoferrin and its potential therapeutic application. J Endotoxin Res 8: 403-417, 2002. 24. Chu MR, Wang SR, Weng CN, Pursal VG. Isolation and characterization of porcine milk lactoferrin. Am J Vet Res 9: 71-78, 1993. 25. Chuang LM, Mao FC, Tai TY. Effect of chromium chloride GTF milk powder supplement on gene expression of insulin signaling molecules in KK/HIJ diabetic mice. 25th Annual Meeting The Endocrinology Society and Diabetes Association of the Republic of China 89. 26. Clodfelder BJ, Upchurch RG, Vincent JB. A comparison of the insulin0sensitive transport of chromium in healthy and model diabetic rats. J Inor Biochem 98: 522-533, 2004. 27. Considine RV, Considine EL, Williams CJ, Hyde TM, Caro JF. The hypothalamic leptin receptor in humans: identification of incidental sequence polymorphisms and absence of the db/db mouse and fa/fa rat mutations. Diabetes 45: 992-992, 1996. 28. Crepaldi G, Maggi S. The metabolic syndrome: a historical context. Diabetes Voice 51: 8-10, 2006. 29. Crouch SP, Slater KJ, Fletcher J. Regulation of cytokine release from mononuclear cells by the iron-binding protein lactoferrin. Blood 80: 235-240, 1992. 30. Dallas-Yang Q, Shen X, Strowski M, Brady E, Saperstein R, Gibson RE, Szalkowski D, Qureshi SA, Candelore MR, Fenyk-Melody JE, Parmee ER, Zhang BB, Jiang G. Hepatic glucagon receptor binding and glucose-lowering in vivo by peptidyl and non-peptidyl glucagons receptor antagonists. Eur J Pharmacol 501: 225-234, 2004. 31. Davis CM, Vincent JB. Chromium oligopeptide activates insulin receptor tyrosine kinase activity. Biochemistry 36: 4382-4385, 1997. 32. Davis-Whitenack ML, Adeleye BO, Rolf LL, Stoecker BJ. Biliary excretion of 51 chromium in bile-duck cannulated rats. Nutr Res 16: 1009-1015, 1996. 33. Eckel RH, Grundy SM. Insensitivity to insulin and obesity: the underlying cause. Diabetes Voice 51: 28-30, 2006. 34. Finkelstein RA, Sciortino CV, McIntosh MA. Role of iron in microbe-host interactions. Rev Infect Dis 5 Suppl 4: S759-777, 1983. 35. Flier JS. Leptin expression and action: new experimental paradigms. Proc Natl Acad Sci USA 94: 4242-4245, 1997. 36. Freychet L, Rizkalla SE, Desplanque N, Basdevant A, Zirinis P, Tchobroutsky G, Slama G. Effect of intranasal glucagon on blood glucose levels in healthy subjects and hypoglycaemic patients with insulin-dependent diabetes. Lancet 1: 1364-1366, 1988. 37. Friedman JM. The function of leptin in nutrition, weight, and physiology. Nutr Rev 60: S1-S14, 2002. 38. Furmanski P, Li ZP, Fortuna MB, Swamy CV, Das MR. Multiple molecular forms of human lactoferrin. Identification of a class of lactoferrins that possess ribonuclease activity and lack iron-binding capacity. J Exp Med 170: 415-429, 1989. 39. Goretzki L, Mueller BM. Low-density-lipoprotein-receptor-related protein (LRP) interacts with a GTP-binding protein. Biochem J 336: 381-386, 1998. 40. Green AR, Aiston S, Greenberg CC, Freeman S, Poucher SM, Brady MJ, Agius L. The glycogenic action of protein targeting to glycogen in hepatocytes involves multiple mechanisms including phosphorylase inactivation and glycogen synthase translocation. J Biol Chem 279: 46474-46482, 2004. 41. Groves ML. The isolation of a red protein from milk. J Am Chem Soc 82: 3345-3350, 1960. 42. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, Gordon DJ, Krauss RM, Savage PJ, Smith SC, Spertus JA, Costa F. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 112: 2735-2752, 2005. 43. Guillen C, McInnes IB, Vaughan D, Speekenbrink AB, Brock JH. The effects of local administration of lactoferrin on inflammation in murine autoimmune and infectious arthritis. Arthritis Rheum 43: 2073-2080, 2000. 44. Hamrick MW, Pennington C, Newton D, Xie D, Isales C. Leptin deficiency produces contrasting phenotypes in bones of the limb and spine. Bone 34: 376-383, 2004. 45. Hastings IM, Bootland LH, Hill WG. The role of growth hormone in lines of mice divergently selected on body weight. Genet Res 61: 101-106, 1993. 46. Hastings IM, Hill WG. A Note on the effect of different selection criteria on carcass composition in mice. Anim Prod 48: 229-233, 1989. 47. Himms-Hagen J. On raising energy expenditure in ob/ob mice. Science 276: 1132-1133, 1997. 48. Hurley WL, Grieve RCJ, Magura CE, Hegarty HM, Zou S. Electrophoretic comparisons of lactoferrin from bovine mammary secretions, milk neutrophils, and human milk. J Dairy Sci 76: 377-387, 1993. 49. Indyk HE, Filonzi EL, Gapper LW. Determination of minor proteins of bovine milk and colostrum by optical biosensor analysis. J AOAC Int 89: 898-902, 2006. 50. Ivers RQ, Cumming RG, Mitchell P, Peduto AJ. Diabetes and risk of fracture: The Blue Mountains Eye Study. Diabetes Care 24: 1198-1203, 2001. 51. Ishida BY, Blanche PJ, Nichols AV, Yashar M, Paigen B. Effects of atherogenic diet consumption on lipoproteins in mouse strains C57BL/6 and C3H. J Lipid Res 32: 559-568, 1991. 52. Jandeleit-Dahm KA, Tikellis C, Reid CM, Johnston CI, Cooper ME. Why blockade of the renin-angiotensin system reduces the incidence of new-onset diabetes. J Hypertens 23:463- 473, 2005. 53. Jiang G, Zhang BB. Glucagon and regulation of glucose metabolism, Am J Physiol Endocrinol Metab 284: 671-678, 2003. 54. Johanson B. Isolation of an iron-containing red protein from human milk. Acta Chem Scand 14: 510-512, 1960. 55. Johnson DG, Goebel CU, Hruby VJ, Bregman MD, Trivedi D. Hyperglycemia of diabetic rats decreased by a glucagons receptor antagonist. Science 215: 1115-1116, 1982. 56. Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 89: 2548 -2556, 2004. 57. Kirkpatrick CH, Green I, Rich RR, Schade AL. Inhibition of growth of Candida albicans by iron-unsaturated lactoferrin: relation to host-defense mechanisms in chronic mucocutaneous candidiasis. J Infect Dis 124: 539-544, 1971. 58. Kopelman PG. Obesity as a medical problem. Nature 404: 635-643, 2000. 59. Kurtz TW, Morris RC, Pershadsingh HA. The Zucker fatty rat as a genetic model of obesity and hypertension. Hypertension 13: 896-901, 1989. 60. Kussendrager K. Lactoferrin and lactoperoxydase bio-active milk proteins. Food Tech Europe 2: 39-43, 1996. 61. Lambert R. Caracterization of DIO model is refined. JAX Notes 502: 4-5, 2006. 62. Leech CA, Habener JF. Regulation of glucagons-like peptide-1 receptor and calcium-sensing receptor signaling by L-histidine. Endocrinology 144: 4851-4818, 2003. 63. Levay PF, Viljoen M. Lactoferrin: a general review. Haematologica 80: 252-267, 1995. 64. Levin N, Nelson C, Gurney A, Vandlen R, De Sauvage F. Decreased food intake does not completely account for adiposity reduction after ob protein infusion. Proc Natl Acad Sci USA 93: 1726-1730, 1996. 65. Lonnerdal B, Iyer S. Lactoferrin: molecular structure and biological function. Annu Rev Nutr 15: 93-110, 1995. 66. Lukaski HC. Chromium as a supplement. Annu Rev Nutr 9: 279-302, 1999. 67. Maffei M, Halaas J, Ravussin E, Pratley RE, Lee GH, Zhang Y, Fei H, Kim S, Lallone R, Ranganathan S. Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med 1: 1155-1161, 1995. 68. Maneva A, Taleva B, Maneva L. Lactoferrin-protector against oxidative stress and regulator of glycolysis in human erythrocytes. Z Naturforsch 58: 256-262, 2003. 69. Masson PL, Heremans JF. Lactoferrin in milk from different species. Comp Biochem Physiol B 39: 119-129, 1971. 70. Mertz W, Toepfer EW, Roginski EE, Polansky MM. Present knowledge of the role of chromium. Fed Proc 33: 2275-2280, 1974. 71. Metz-Boutigue MH, Jolles J, Mazurier J, Schoentgen F, Legrand D, Spik G, Montreuil J, Jolles P. Human lactotransferrin: amino acid sequence and structural comparison with other transferrins. Eur J Biochem 145: 659-676, 1984. 72. Montreuil J, Tonnelat J, Mullet S. Preparation and prosperities of lactotransferrin of human milk. Biochim Biophys Acta 45: 413-421, 1960. 73. Morris BW, Gray TA, MacNeil S. Glucose-dependent uptake of chromium in human and rat insulin-sensitive tissues. Clin Sci 84: 477-482, 1993. 74. Morris BW, MacNeil S, Hardisty CA. Chromium homeostasis in patients with type II (NIDDM) diabetes. J Trace Elem Med Biol 13: 57-61, 1999. 75. Nielsen FH. Chromium. In: Shils ME, Olson JA, Shike M, eds. Mondern nutrition in health and disease. Philadelphia: Lea and Febiger. 264-268, 1994. 76. Nielsen MK, Freking BA, Jones LD, Nelson SM, Vorderstrasse TL, Hussey BA. Divergent selection for heat loss in mice. II. Correlated responses in feed intake, body mass, body composition and number born through fifteen generations. J Anim Sci 75: 1469-1476, 1997. 77. Okar DA, Lange AJ. Fructose-2, 6-bisphosphate and control of carbohydrate metabolism in eukaryotes. Biofactors 10: 1-14, 1999. 78. Ong KK, Emmett PM, Noble S, Ness A, Dunger DB. ALSPAC Study Team. Dietary energy intake at the age of 4 months predicts postnatal weight gain and childhood body mass index. Pediatrics 117: 503-508, 2006. 79. Parker JC, McPherson RK, Andrews KM, Levy CB, Dubins JS, Chin JE, Perry PV, Hulin B, Perry DA, Inagaki T, Dekker KA, Tachikawa K, Sugie Y, Treadway JL. Effects of skyrin, a receptor-selective glucagon antagonist, in rat and human hepatocytes. Diabetes 49: 2079-2086, 2000. 80. Pelleymounter MA, Cullen MJ, Baker MB, Hecht R, Winters D, Boone T, Collins F. Effects of the obese gene product on body weight regulation in ob/ob mice. Science 269: 540-543, 1995. 81. Pietrantoni A, Di Biase AM, Tinari A, Marchetti M, Valenti P, Seganti L, Superti F. Bovine lactoferrin inhibits adenovirus infection by interacting with viral structural polypeptides. Antimicrob Agents Chemother 47: 2688-2691, 2003. 82. Post SR, Rubinstein PG, Tager HS. Mechanism of action of Des-His1-[Glu9] glucagons amide, a peptide antagonist of the glucagons receptor system .Proc Natl Acad Sci USA 90: 1662-1666, 1993. 83. Qureshi SA, Rios Candelore M, Xie D, Yang X, Tota LM, Ding VD, Li Z, Bansal A, Miller C, Cohen SM, Jiang G, Brady E, Saperstein R, Duffy JL, Tata JR, Chapman KT, Moller DE, Zhang BB. A novel glucagons receptor antagonist inhibits glucagon-mediated biological effects. Diabetes 53: 3267-3273, 2004. 84. Rado TA, Bollekens J, Laurent GS, Parker L, Benz EJ. Lactoferrin biosynthesis during granulocytopoiesis. Blood 64: 1103-1109, 1984. 85. Rajala MW, Scherer PE. Minireview: The adipocyte- At the crossroads of energy homeostasis, inflammation, and atherosclerosis. Endocrinology 144: 37765-37773, 2003. 86. Riebe D, Blissmer B, Greene G, Caldwell M, Ruggiero L, Stillwell KM, Nigg CR. Long-term maintenance of exercise and healthy eating behaviors in overweight adults. Prev Med 40: 769-778, 2005. 87. Rosen ED, Spiegelman BM. Adipocytes as regulators of energy balance and glucose homeostasis. Nature 444: 847-853, 2006. 88. Schwarz K, Metz W. A glucose tolerance factor and its differentiation from factor 3. Arch Biochem Biophys 72: 515-518, 1957. 89. Sekine K, Ushida Y, Kuhara T, Iigo M, Toriyama-Baba H, Morre MA, Murakoshi M, Satomi Y, Nishino H, Kakizoe T, Tsuda H. Inhibition of initiation and early stage development of aberrant crypt foci and enhanced natural killer activity in male rats administered bovine lactoferrin concomitantly with azoxymethane. Cancer Lett 121:211-216, 1997. 90. Senesi S, Marcolongo P, Kardon T, Bucci G, Sukhodub A, Burchell A, Benedetti A, Fulceri R. Immunodetection of the expression of microsomal proteins encoded by the glucose 6-phosphate transporter gene. Biochem J 2389: 57-62, 2005. 91. Sharp G, Hill WG, Robertson A. Effects of selection on growth, body composition and food intake in mice. Genet Res 43: 75-92, 1984. 92. Shaw J. Diabetes, the metabolic syndrome and the epidemic of cardiovascular disease. Diabetes Voice 51: 25-27, 2006. 93. Shipp J, Opie LH, Challoner DR. Fatty acid and glucose metabolism in the perfused heart. Nature 189: 1018 -1019, 1961. 94. Siebert PD, Huang BC. Identification of an alternative form of human lactoferrin mRNA that is expressed differentially in normal tissues and tumor-derived cell lines. Proc Natl Acad Sci USA 94: 2198-2203, 1997. 95. Stearns DM. Is chromium a trace essential metal? Biofactors 11: 149-162, 2000. 96. Steijns JM, Hooijdonk ACM. Occurrence, structure, biochemical properties and technological characteristics of lactoferrin. Br J Nutr Suppl 1: S11-17, 2000. 97. Stoecker BJ. Chromium. In: Brown ML, ed. Present knowledge in nutrition. International Life Sciences Institute Nutrition Foundation. Washington, USA. Pp. 287-293, 1990. 98. Swallow JG, Koteja P, Carter PA, Garland T Jr. Food consumption and body composition in mice selected for high wheel-running activity. J Comp Physiol B 171: 651-659, 2001. 99. Syvanne M, Taskinen MR. Lipids and lipoproteins as coronary risk factors in noninsulin-dependent diabetes mellitus. Lancet 350 (suppl 1): SI20 -S123, 1997. 100. Tanaka T, Omata Y, Saito A, Shimazaki K, Igarashi I, Suzuki N. Growth inhibitory effects of bovine lactoferrin to Toxoplasma gondii parasites in murine somatic cells. J Vet Med Sci 58: 61-65, 1996. 101. Trif M, Guillen C, Vaughan DM, Telfer JM, Brewer JM, Roseanu A, Brock JH. Liposome as possible carriers for lactoferrin in the local treatment of inflammatory diseases. Exp Biol Med (Maywood) 226: 559-564, 2001. 102. Tsuda H, Sekine K, Fjuita K, Iigo M. Cancer prevention by bovine lactoferrin and underlying mechanisms-a review of experimental and clinical studies. Biochem Cell Biol 80: 131-136, 2002. 103. Tsuda H, Sekine K, Takasuka N, Toriyama-Baba H, Iigo M. Prevention of colon carcinogenesis and carcinoma metastasis by orally administered bovine lactoferrin in animals. Biofactors 12: 83-88, 2000. 104. Vague J. Lac differenciation sexuelle, facteur determinant des formes de I'obesite. Presse Med 30: 339-340, 1947. 105. van der Strate BW, Beljaars L, Molema G, Harmsen MC, Meijer DK. Antiviral activities of lactoferrin. Antiviral Res 52: 225-239, 2001. 106. Van Tine BA, Azizeh By, Trivedi D, Phelps JR, Houslay MD, Johnson DG, Hruby Vj. Low level cyclic adenosine 3', 5'-monophosphated accumulation analysis of [des-His1, des-Phe6, Glu9] glucagon-NH2 identifies glucagon antagonists from weak partial agonists/antagonists. Endocrinology 137: 3316-3322, 1996. 107. Veneziale CM, Deering NG, Thompson HJ. Gluconeogenesis in isolated rat hepatic parenchymal cells. IX. Differential effects of glucagon and epinephrine on phosphofructokinase and pyruvate kinase. Mayo Clin Proc 51: 624-631, 1976. 108. Vercellotti G, Stroncek D, Jacob HS. Granulocyte oxygen radicals as potential suppressors of hemopoiesis: potentiating roles of lactoferrin and elastase; inhibitory role of oxygen radical scavengers. Blood Cells 13: 199-206, 1987. 109. Vincent JB. The biochemistry of chromium. J Nutr 130: 715-718, 2000. 110. Wajchenberg BL. Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev 21: 697-738, 2000. 111. Weinberg ED. Iron withholding: a defense against infection and neoplasia. Physiol Rev 64: 65-102, 1984. 112. White JM, Legates JE, Eisen EJ. Maternal effects among lines of mice selected for body weight. Genetics 60: 395-408, 1968. 113. Yach D, Leeder SR, Bell J, Kistnasamy B. Global chronic diseases. Science 307: 317, 2005. 114. Yamamoto A, Wada O, Ono T. Isolation of a biologically active low-molecular-mass chromium compound from rabbit liver. Eur J Biochem 165: 627-631, 1987. 115. Yamauchi K, Tomita M, Giehl TJ, Ellison RT, 3rd. Antibacterial activity of lactoferrin and a pepsin-derived lactoferrin peptide fragment. Infect Immun 61: 719-728, 1993. 116. Ye XY, Wang HX, Liu F, Ng TB. Ribonuclease, cell-free translation-inhibitory and superoxide radical scavenging activities of the iron-binding protein lactoferrin from bovine milk. Int J Biochem Cell Biol 32: 235-241, 2000. 117. Zhang BB, Moller DE. New approaches in the treatment of type 2 diabetes. Curr Opin Chem Biol 4: 461-467, 2000. 118. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature 372: 425-432, 1994.
摘要: 乳鐵蛋白普遍存在於乳汁中,其具有調節動物之免疫系統及抑制炎症反應的功能。而肥胖,因脂肪細胞能分泌許多與炎症反應有關的細胞素而導致炎症反應,然而乳鐵蛋白與肥胖之間的關係尚未有文獻探討,因此本研究即利用高脂飼糧餵飼C57BL/6JNarl (B6)小鼠作為飲食誘導肥胖 (Diet induced obesity, DIO) 動物模式來探討肝臟、肌肉與脂肪中乳鐵蛋白之含量。結果發現高脂飼糧造成B6小鼠其肝臟、肌肉與脂肪中乳鐵蛋白含量高於一般飼糧的B6小鼠。另外,先天遺傳基因缺陷之肥胖 (B6.V-Lepob/J, ob) 及糖尿病 (BKS.Cg-+Leprdb/+Leprdb, db) 小鼠於代謝組織中也有乳鐵蛋白含量較高的情形。此外,乳鐵蛋白可與微量金屬元素相結合,而其中的鉻元素能參與糖的代謝,因此本研究也探討乳鐵蛋白對於微量元素鉻含量的分佈狀況,發現在DIO之B6小鼠與一般飼糧的ob及db小鼠脂肪中鉻元素的含量皆較低。這些結果顯示了肥胖與糖尿病的動物模式會導致乳鐵蛋白及鉻元素分佈的改變,推測肥胖造成乳鐵蛋白代償性的增加,進而影響鉻元素的恆定,但其作用機制仍待深入研究。
Lactoferrin is derived from milk, and has an extended role in the body's defense mechanism through its immune modulatory actions. In obesity, the production of many inflammation-related adipokines increase markedly and adipose tissue is in the effect of ‘inflamed'. However, the mechanism by the relationships between lactoferrin and obesity is not clear. High fat fed C57BL/6JNarl (B6) mice were used in this study as a diet-induced obese (DIO) model to examine lactoferrin level in liver, muscle, and adipose tissue. The results showed significant increase lactoferrin level between DIO B6 mice and control B6 mice in liver, muscle, and adipose tissue. Moreover, lactoferrin level were also abundant in B6.V-Lepob/J (ob) and BKS.Cg-+Leprdb/+Leprdb (db) mice. Since lactoferrin is important in trace element binding, and chromium is essential in glucose metabolism, the variations of chromium were also examined. The adipose chromium contents in DIO B6, ob and db mice were lower compared with B6 mice. These results suggested that obesity and diabetes probably reflect changes in lactoferrin level and chromium content, and the increase of lactoferrin may result in changes of chromium content in metabolic tissues. However, a further mechanism has yet been explored.
其他識別: U0005-0108200720114200
Appears in Collections:獸醫學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.