Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/13379
標題: 胰島素對基因缺陷及高脂飼料餵食小鼠Akt活性之影響
Effects of Insulin on Akt Activities in Gene Deficient and High-Fat Diet Fed Mice
作者: 邱宜昕
Chiu, Yi-Shin
關鍵字: Akt
Akt
insulin resistance
high-fat diet
gene deficient
ob/ob
db/db
胰島素阻抗
高脂飼料
基因缺陷
ob/ob
db/db
出版社: 獸醫學系暨研究所
引用: 1. Anderson RA. Chromium in the prevention and control of diabetes. Diabetes Metab 26: 22-27, 2000. 2. Andreelli F, Laville M, Vega N, Riou JP and Vidal H. Regulation of gene expression during severe caloric restriction: lack of induction of p85 alpha phosphatidylinositol 3-kinase mRNA in skeletal muscle of patients with type II (non-insulin-dependent) diabetes mellitus. Diabetologia 43: 356-363, 2000. 3. Arner P, Pollare T, Lithell H and Livingston JN. Defective insulin receptor tyrosine kinase in human skeletal muscle in obesity and type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 30: 437-440, 1987. 4. Banerjee RR, Rangwala SM, Shapiro JS, Rich AS, Rhoades B, Qi Y, Wang J, Rajala MW, Pocai A, Scherer PE, Steppan CM, Ahima RS, Obici S, Rossetti L and Lazar MA. Regulation of fasted blood glucose by resistin. Science 303: 1195-1198, 2004. 5. Baron AD. Impaired glucose tolerance as a disease. Am J Cardiol Sep 88: 16-19, 2001. 6. Beckman JA, Creager MA and Libby P. Diabetes and atherosclerosis: epidemiology, pathophysiology and management. JAMA 287: 2570-2581, 2002. 7. Berti L, Kellerer M, Capp E and Haring HU. Leptin stimulates glucose transport and glycogen synthesis in C2C12 myotubes: evidence for a P13-kinase mediated effect. Diabetologia 40: 606-609, 1997. 8. Bjorbaek C, Uotani S, da Silva B and Flier JS. Divergent signaling capacities of the long and short isoforms of the leptin receptor. J Biol Chem 272: 32686-32695, 1997. 9. Brockmann GA and Bevova MR. Using mouse models to dissect the genetics of obesity. Trends in Genetics 18: 367-376, 2002. 10. Cameron AJ, Shaw JE and Zimmet PZ. The metabolic syndrome: prevalence in worldwide populations. Endocrinol Metab Clin North Am 33: 351-375, 2004. 11. Cheatham B and Kahn CR. Insulin action and the insulin signaling network. Endocr Rev 16: 117-142, 1995. 12. Cheng N, Zhu X, Shi H, Wu W, Cheng J and Anderson RA. Follow-up survey of people in China with type 2 diabetes mellitus consuming supplemental chromium. The Journal of Trace Elements in Experimental Medicine 12: 55-60, 1999. 13. Cohen B, Novick D and Rubinstein M. Modulation of Insulin Activities by Leptin. Science 274: 1185-1188, 1996. 14. Cong LN, Chen H, Li Y, Zhou L, McGibbon MA, Taylor SI and Quon MJ. Physiological role of Akt in insulin-stimulated translocation of GLUT4 in transfected rat adipose cells. Mol Endocrinol 11: 1881-1890, 1997. 15. Considine RV. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med 334: 324-325, 1996. 16. Corporeau C, Foll CL, Taouis M, Gouygou JP, Berge JP and Delarue J. Adipose tissue compensates for defect of phophatidylinositol 3-kinase induced in liver and muscle by dietary fish oil in fed rats. Am J Physiol Endocrinol Metab 290: E78-E86, 2006. 17. Cusi K, Maezono K, Osman A, Pendergrass M, Patti ME, Pratipanawatr T, DeFronzo RA, Kahn CR and Mandarino LJ. Insulin resistance differentially affects the PI 3-kinase- and MAP kinase-mediated signaling in human muscle. J Clin Invest 105: 311-20, 2000. 18. Czech MP and Corvera S. Signaling mechanisms that regulate glucose transport. J Biol Chem 274: 1865-1868, 1999. 19. Dagogo-Jack S, Fanelli C, Paramore D, Brothers J and Landt M. Plasma leptin and insulin relationships in obese and nonobese humans. Diabetes 45: 695-698, 1996. 20. Damsbo P, Vaag A, Hother-Nielsen O, Beck-Nielsen H. Reduced glycogen synthase activity in skeletal muscle from obese patients with and without type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 34: 239-245, 1991. 21. Deitel M. Overweight and obesity worldwide now estimated to involve 1.7 billion people. Obes Surg 13: 329-330, 2003. 22. Eckel RH, Grundy SM and Zimmet PZ. The metabolic syndrome. Lancet 365: 1415-1428, 2005. 23. Engelgau MM, Geiss LS, Saaddine JB, Boyle JP, Benjamin SM, Gregg EW, Tierney EF, Rios-Burrows N, Mokdad AH, Ford ES, Imperatore G and Narayan KM. The evolving diabetes burden in the United States. Ann Intern Med 140: 945-950, 2004. 24. Flier JS. Leptin expression and action: new experimental paradigms. Proc Natl Acad Sci 94: 4242-4245, 1997. 25. Folli F, Saad MJA, Backer JM and Kahn CR. Regulation of phosphatidylinositol 3-kinase activity in liver and mouse of animal models of insulin-resistant and insulin-deficient diabetes mellitus. J Clin Invest 92: 1787-1794, 1993. 26. Franke TF, Yang SI, Chan TO, Datta K, Kazlauskas A, Morrison DK, Kaplan DR and Tsichlis PN. The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell 81: 727-736, 1995. 27. Friedman JM and Halaas JL. Leptin and the regulation of body weight in mammals. Nature 395: 763-770, 1998. 28. Garvey WT, Maianu L, Huecksteadt TP, Birnbaum MJ, Molina JM and Ciaraldi TP. Pretranslational suppression of a glucose transporter protein causes insulin resistance in adipocytes from patients with non-insulin-dependent diabetes mellitus and obesity. J Clin Invest 87: 1072-1081, 1991. 29. Gettys TW, Harkness PJ and Watson PM. The beta 3-adrenergic receptor inhibits insulin-stimulated leptin secretion from isolated rat adipocytes. Endocrinol 137: 4054-4057, 1996. 30. Ghilardi N and Skoda RC. The leptin receptor activates janus kinase 2 and signals for proliferation in a factor-dependent cell line. Mol Endocrinol 11: 393-399, 1997. 31. Goodyear LJ, Giorgino F, Sherman LA, Carey J, Smith RJ and Dohm GL. Insulin receptor phosphorylation, insulin receptor substrate-1 phosphorylation, and phosphatidylinositol 3-kinase activity are decreased in intact skeletal muscle strips from obese subjects. J Clin Invest 95: 2195-2204, 1995. 32. Haffner SM, Ruilope L, Dahlof B, Abadie E, Kupfer S and Zannad F. Metabolic syndrome, new onset diabetes, and new end points in cardiovascular trials. J Cardiovasc Pharmacol 47: 469-475, 2006. 33. Hanson RL, Imperatore G, Bennett PH and Knowler WC. Components of the "metabolic syndrome" and incidence of type 2 diabetes. Diabetes 51: 3120-3127, 2002. 34. Havel PJ, Kasim-Karakas S, Mueller W, Johnson PR, Gingerich RL and Stern JS. Relationship of plasma leptin to plasma insulin and adiposity in normal weight and overweight women: effects of dietary fat content and sustained weight loss. J Clin Endocrinol Metab 81: 4406-4416, 1996. 35. Hill MM, Clark SF, Tucker DF, Birnbaum MJ, James DE and Macaulay SL. A role of protein kinase Bbeta/Akt2 in insulin-stimulated GLUT4 translocation in adipocytes. Mol Cell Biol 19: 7771-7781, 1999. 36. Himms-Hagen J. On raising energy expenditure in ob/ob mice. Science 276: 1132-1133, 1997. 37. Hubbard SR, Wei L, Ellis L and Hendrickson WA. Crystal structure of the tyrosine kinase domain of the human insulin receptor. Nature 372: 746-754, 1994. 38. Hubbard SR. Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog. EMBO J 16: 5572-5581, 1997. 39. Hummel KP, Dickie MM and Coleman DL. Diabetes, a new mutation in the mouse. Science 153: 1127-1128, 1966. 40. Ishida BY, Blanche PJ, Nichols AV, Yashar M and Paigen B. Effects of atherogenic diet consumption on lipoproteins in mouse strains C57BL/6 and C3H. J Lipid Res 32: 559-568, 1991. 41. Jazet IM, Pijl H, Frolich M, Romijn JA and Meinders AE. Two days of a very low calorie diet reduces endogenous glucose production in obese type 2 diabetic patients despite the withdrawal of blood glucose-lowering therapies including insulin. Metabolism 54: 705-712, 2005. 42. Jequier E and Tappy L. Regulation of body weight in humans. Physiol Rev 79: 451-480, 1999. 43. Jovanovic L, Gutierrze M and Peterson CM. Chromium supplementation for women with gestational diabetes mellitus. The Journal of Trace Elements in Experimental Medicine 12: 91-97, 1999. 44. Kahn CR. Insulin action, diabetogenes, and the cause of type II diabetes. Diabetes 43: 1066-1084, 1994. 45. Kahn CR, Neville DM and Roth J. Insulin receptor interaction in the obese hyperglycemic mouse. A model of insulin resistance. J Biol Chem 248: 244-250, 1973. 46. Kamohara S, Bumann R, Halaas JL, Friedman JM and Charron MJ. Acute stimulation of glucose metabolism in mice by leptin treatment. Nature 389: 374-377, 1997. 47. Kerouz NJ, Hörsch D, Pons S and Kahn CR. Differential regulation of insulin receptor substrates-1 and -2 (IRS-1 and IRS-2) and phosphatidylinositol 3-kinase isoforms in liver and muscle of the obese diabetic (ob/ob) mouse. J Clin Invest 100: 3164-3172, 1997. 48. Kim YB, Nikoulina SE, Ciaraldi TP, Henry RR and Kahn BB. Normal insulin-dependent activation of Akt/protein kinase B, with diminished activation of phosphoinositide 3-kinase, in muscle in type 2 diabetes. J Clin Invest 104: 733-741, 1999. 49. Kirk EA, Moe GL, Caldwell MT, Lernmark JA, Wilson DL and LeBoeuf RC. Hyper- and hypo-responsiveness to dietary fat and cholesterol among inbred mice: searching for level and variability genes. J Lipid Res 36: 1522-1532, 1995. 50. Kodama H, Fujita M and Yamaguchi I. Development of hyperglycaemia and insulin resistance in conscious genetically diabetic (C57BL/KsJ-db/db) mice. Diabetologia 37: 739-744, 1994. 51. Kohn AD, Takeuchi F and Roth RA. Akt, a pleckstrin homology domain containing kinase, is activated primary by phosphorylation. J Biol Chem 271: 21920-21926, 1996. 52. Kohn AD, Summers SA, Birnbaum MJ and Roth RA. Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J Biol Chem 271: 31372-31378, 1996. 53. Kopelman PG. Obesity as a medical problem. Nature 404: 635-643, 2000. 54. Kovacs and Stumvoll. Fatty acids and insulin resistance in muscle and liver. Best Pract Res Clin Endocrinol Metab 19: 625-635, 2005. 55. Krook A, Roth RA, Jiang XJ, Zierath JR and Wallberg-Henriksson H. Insulin-stimulated Akt kinase activity is reduced in skeletal muscle from NIDDM subjects. Diabetes 47: 1281-1286, 1998. 56. Kupriyanova TA and Kandror KV. Akt-2 binds to Glut4-containing vesicles and phosporylates their component proteins in response to insulin. L Biol Chem 274: 1458-1464, 1999. 57. Kurowski TG, Lin Y, Luo Z, Tsichlis PN, Buse MG, Heydrick SJ and Ruderman NB. Hyperglycemia inhibits insulin activation of Akt/protein kinase B but not phosphatidylinositol 3-kinase in rat skeletal muscle. Diabetes 48: 658-663, 1999. 58. Kurtz TW, Morris RC and Pershadsingh HA. The Zucker fatty rat as a genetic model of obesity and hypertension. Hypertension 13: 896-901, 1989. 59. Lebovitz HE. Rationale for and role of thiazolidinediones in type 2 diabetes mellitus. Am J Cardiol 90: 34G-41G, 2002. 60. Lee GH, Proenca R, Montez JM, Carroll KM, Darvishzadeh JG, Lee JI and Friedman JM. Nature 379: 632-635, 1996. 61. Leonard WJ and O'Shea JJ. Jaks and STATs: biological implications. Annu Rev Immunol 16: 293-322, 1998. 62. Leroy P, Dessolin S, Villageois P, Moon BC, Friedman JM, Ailhaud G and Dani C. Expression of ob gene in adipose cells. Regulation by insulin. J Biol Chem 271: 2365-2368, 1996. 63. MacDougald OA, Hwang CS, Fan H and Lane MD. Regulated expression of the obese gene product (leptin) in white adipose tissue and 3T3-L1 adipocytes. Proc natl Acad Sci USA 92: 9034-9037, . 64. Maffei MJ, Hallaas E, Ravussin RE, Pratley GH, Lee Y, Zhang H, Fei S, Kim R, Lallone S and Ranganathan S. Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med 1: 1155-1161, 1995. 65. Magliano DJ, Shaw JE and Zimmet PZ. How to best define the metabolic syndrome. Ann Med 38: 34-41, 2006. 66. Malmstrom R, Taskinen MR, Karonen SL and Yki-Jarvinen H. Insulin increases plasma leptin concentrations in normal subjects and patients with NIDDM. Diabetologia 39: 993-996, 1996. 67. Mantzoros CS. The role of leptin in human obesity and disease: A review of current evidence. Ann Intern Med 130: 671-680, 1999. 68. Montague CT, Farooqi IS, Whitehead JP, Soos MA, Rau H, Wareham NJ, Sewter CP, Digby JE, Mohammed SN, Hurst JN, Cheetham CH, Earley AR, Barnett AH, Prins JB and O''Rahilly S. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature: 387, 903-908, 1997. 69. Munzberg H, Huo L, Nillni EA, Hollenberg AN and Bjorbaek C. Role of signal transducer and activator of transcription 3 in regulation of hypothalamic proopiomelanocortin gene expression by leptin. Endocrinol 144: 2121-2131, 2003. 70. Myers MG and White MF. The molecular basis of insulin action. 4: 712-727, 2002. 71. Nishina PM, Verstuyft J and Paigen B. Synthetic low and high fat diets for the study of atherosclerosis in the mouse. J Lipid Res 31: 859-869, 1990. 72. Niswender KD, Morton GJ, Stearns WH, Rhodes CJ, Myers MG and Schwartz MW. Intracellular signaling. Key enzyme in leptin-induced anorexia. Nature 413: 794-795, 2001. 73. Ortmeyer HK, Bodkin NL and Hansen BC. Insulin-mediated glycogen synthase acitivity in muscle of spontaneously insulin-resistant and diabetes monkey. Am J Physiol 334: 292-295, 1993. 74. Pessin JE and Saltiel AR. Signaling pathways in insulin action: molecular targets of insulin resistance. J Clin Invest 106: 165-169, 2000. 75. Prentice AM. Obesity and its potential mechanistic basis. British Medical Bulletin 60: 51-67, 2001. 76. Reaven GM. Role of insulin resistance in human disease. Diabetes 37: 1595-1607, 1988. 77. Rentsch J and Chiesi M. Regulation of ob gene mRNA levels in cultured adipocytes. FEBS Lett 376: 55-59, 1996. 78. Roglic G, Unwin N, Bennett PH, Mathers C, Tuomilehto J, Nag S, Connolly V and King H. The Burden of mortality attributable to diabetes: realistic estimates for the year 2000. Diabetes Care Sep 28: 2130-2135, 2005. 79. Rondinone CM, Wang LM, Lonnroth P, Wesslau C, Pierce JH and Smith U. Insulin receptor substrate (IRS) 1 is reduced and IRS-2 is the main docking protein for phosphatidylinositol 3-kinase in adipocytes from subjects with non-insulin-dependent diabetes mellitus. Proc Natl Acad Sci USA 94: 4171-4175, 1997. 80. Rossmeisl M, Rim JS, Koza RA and Kozak LP. Variation in type 2 diabetes-related traits in mouse strains susceptible to diet-induced obesity. Diabetes 52: 1958-1966, 2003. 81. Saladin R, De Vos P, Guerre-Millo M, Leturque A, Girard J, Staels B and Auwerx J. Transient increase in obese gene expression after food intake or insulin administration. Nature 377: 527-529, 1995. 82. Saltiel AR. New perspectives into the molecular pathogenesis and treatment of type 2 diabetes. Cell 104: 517-529, 2001. 83. Saltiel AR and Kahn C. Insulin signaling and the regulation of glucose and lipid metabolism. Nature (London) 414: 799-806, 2001. 84. Sanger F. The terminal peptides of insulin. Biochem J 45: 563-574, 1949. 85. Shao J, Yamashita H, Qiao L and Friedman JE. Decreased Akt kinase activity and insulin resistance in C57BL/KsJ-Leprdb/db mice. J Endocrinol 167: 107-115, 2000. 86. Sharma AM. The obese patient with diabetes mellitus: from research targets to treatment options. Am J Med 119: 17-23, 2006. 87. Shepherd PR, Withers DJ and Siddle K. Phosphoinositide 3-kinase: the key switch mechanism in insulin signaling. Biochem J 333: 471-490, 1998. 88. Shimabukuro M, Zhou YT, Levi M and Unger RH. Fatty acid-induced beta cell apoptosis: a link between obesity and diabetes. Proc Natl Acad Sci USA 95: 2498-2502, 1998. 89. Shulman GI. Cellular mechanisms of insulin resistance. J Clin Invest 106: 171-176, 2000. 90. Soll AH, Kahn CR, Neville DM and Roth J. Insulin receptor deficiency in genetic and acquired obesity. J Clin Invest 56: 769-780, 1975. 91. Storz P, Doppler H, Werning A, Pfizenmaier K and Muller L. Cross-talk mechanisms in the development of insulin resistance of skeletal muscle cells. Palmitate rather than tumor necrosis factor inhibits insulin-dependent protein kinase B (PKB)/Akt stimulation and glucose uptake. Euro J Biochem 266: 17-25, 1999. 92. Szanto I and Kahn CR. Selective interaction between leptin and insulin signaling pathways in a hepatic cell line. Proc Natl Acad Sci USA 97: 2355-2360, 2000. 93. Taniguchi CM, Emanuelli B and Kahn CR. Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 7: 85-96, 2006. 94. Tanti JF, Grillo S, Gremeaux T, Coffer PJ, Van Obberghen E and Le Marchand-Brustel Y. Potential role of protein kinase B in glucose transporter 4 translocation in adipocytes. Endocrinology 138: 2005-2010, 1997. 95. Ueki K, Yamamoto-Honda R, Kaburagi Y, Yamauchi T, Tobe K, Burgering BM, Coffer PJ, Komuro I, Akanuma Y, Yazaki Y and Kadowaki T. Potential role of protein kinase B in insulin-induced glucose transport, glycogen snthesis, and protein synthesis. J Biol Chem 273: 5315-5322, 1998. 96. Vessby B, Unsitupa M, Hermansen K, riccardi G, Rivellese AA, Tapsell LC, Nalsen C, Berglund L, Louheranta A, Rasmussen BM, Calvert GD, Maffetone A, Pedersen E, Gustafsson IB and Storlien LH. Substituting dietary saturated for monounsaturated fat impairs insulin sensitivity in healthy men and women: the KANWU study. Diabetologia 44: 312-319, 2001. 97. Vestergaard H, Bjorbaek C, Hansen T, Larsen FS, Granner DK and Pedersen O. Impaired activity and gene expression of hexokinase II in muscle from non-insulin-dependent diabetes mellitus patients. J Clin Invest 96: 2639-2645, 1995. 98. Vestergaard H, Lund S, Larsen FS, Bjerrum OJ and Pedersen O. Glycogen synthase and phosphofructokinase protein and mRNA levels in skeletal muscle from insulin-resistant patients with non-insulin-dependent diabetes mellitus. J Clin Invest 91: 2342-2350, 1993. 99. Wabitsch M, Jensen PB, Blum WF, Christoffersen CT, Englaro P, Heinze E, Rascher W, Teller W, Tornqvist H and Hauner H. Insulin and cortisol promote leptin production in cultured human fat cells. Diabetes 45: 1435-1438, 1996. 100. Walker KS, Deak M Paterson A, Hudson K, Cohen P and Alessi DR. Activation of protein kinase B beta and gamma isoforms by insulin in vivo and 3-phosphoinositide-dependent protein kinase-1 in vitro: comparison with protein kinase B alpha. Biochem J 331: 299-308, 1998. 101. Wang Y, Kuropatwinski KK, White DW, Hawley TS, Hawley RG, Tartaglia LA and Baumann H. Leptin receptor action in hepatic cells. J Biol Chem 272: 16216-16223, 1997. 102. Wei JN, Sung FC, Lin CC, Lin RS, Chiang CC and Chuang LM. National surveillance for type 2 diabetes mellitus in Taiwanese children. JAMA 290: 1345-1350, 2003. 103. White DW, Kuropatwinski KK, Devos R, Baumann H and Tartaglia LA. Leptin receptor (OB-R) signaling. Cytoplasmic domain mutational analysis and evidence for receptor homo-oligomerization. J Biol Chem 272: 4065-4071, 1997. 104. White MF and Kahn CR. The insulin signaling system. J Biol Chem 269: 1-4, 1994. 105. Whiteman EL, Cho H and Birnbaum MJ. Role of Akt/protein kinase B in metabolism. Trends Endocrinol Metab 13: 444-451, 2002. 106. Wild S, Roglic G, Green A, Sicree R and King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27: 1047-1053, 2004. 107. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L and Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature 372: 425-432, 1994. 108. Zimmet P, Alberti KG and Shaw J. Global and societal implications of the diabetes epidemic. Nature 414: 782-787, 2001.
摘要: Akt是胰島素訊息路徑中的重要一環,位於PI 3-kinase下游,直接影響標的器官的葡萄糖運輸,缺乏Akt或Akt活性降低的臨床表現為胰島素阻抗,一旦出現胰島素阻抗,將有引發第二型糖尿病及心血管疾病等代謝症候群的高度危險性,而肥胖與胰島素阻抗又息息相關,其中以遺傳因子及飲食所導致的肥胖最為重要。本研究利用C57BL/6JNarl mice,餵飼一般飼料及高脂飼料六週,在給予一針胰島素(2 IU/kg)後犧牲,探討飲食造成的肥胖與胰島素阻抗之間的關聯性。結果顯示,經高脂飲食誘導之C57BL/6JNarl小鼠,禁食體重及血糖與一般飼料組沒有明顯差異,但高脂飼料組具有葡萄糖耐受性不良及胰島素敏感性不良之情形,且犧牲後高脂飲食組副睪脂肪總重顯著高於一般飼料組 ( P < 0.05);而在胰島素刺激後ㄧ小時的胰島素訊息路徑中, Akt總量及Akt磷酸化Thr308在肝臟、肌肉皆與一般飼料組沒有差異,然而在脂肪,不論是Akt總量或磷酸化Thr308,高脂飲食組皆顯著高於一般飼料組,故推測高脂飲食誘導肥胖初期,胰島素阻抗情形不嚴重,並且在脂肪會代償性的增加Akt總量及磷酸化Thr308的活性,以利胰島素訊息傳遞的進行;本研究亦利用B6.V-Lepob/J及BKS.Cg-+ Leprdb /+ Leprdb/J小鼠,餵飼ㄧ般飼料,探討遺傳因子與胰島素阻抗的關連性,結果顯示兩者禁食體重及血糖皆顯著高於C57BL/6JNarl小鼠 ( P < 0.001 );在胰島素刺激後ㄧ小時的胰島素訊息路徑中,兩者在肝臟、肌肉及脂肪的Akt總量表現不一致,而Akt磷酸化Thr308表現量在肝臟、肌肉及脂肪皆顯著低於C57BL/6JNarl小鼠(P < 0.05),顯示B6.V-Lepob/J及BKS.Cg-+ Leprdb /+ Leprdb/J小鼠在主要代謝器官中胰島素刺激之Akt訊息低下,與高脂飲食誘導C57BL/6JNarl小鼠胰島素阻抗初期的訊息表現不盡相同。因此,選擇適當的代謝症候群動物模式,有助於肥胖及第二型糖尿病機制之深入研究。
Insulin resistance is a common factor in type 2 diabetes, obesity and cardiovascular disease, which results from genetic background and/or environmental factors (especially diet). Akt stands as the furthest known downstream component of the insulin-signaling pathway that direct leads to glucose transport. In this study, C57BL/6JNarl (B6) mice were fed with high fat diet for 6 weeks. Mice were sacrificed an hour after acute insulin (2 IU/kg) administration. Mice fed with high fat diet showed impaired glucose tolerance. However, the levels of Akt and Akt-phosphorylated Thr308 in epididymis adipose tissue increased significantly. These results indicated that the expression of Akt increased in adipose tissue may act to compensate insulin resistance. Insulin signaling of B6.V-Lepob/J (ob/ob) and BKS.Cg-+ Leprdb /+ Leprdb/J (db/db) mice fed with normal diet were also examined. The fasting body weight and blood glucose in ob/ob and db/db mice were significantly higher than B6 mice. After insulin stimulation, the levels of Akt-phosphorylated Thr308 in liver, muscle and adipose tissue were significantly decreased compared with B6 mice. These results indicated that the pattern of Akt expression and activation in ob/ob and db/db mice are different from high-fat diet fed B6 mice. Therefore, it is important to select an appropriate animal model to study insulin resistance and metabolic syndrome.
URI: http://hdl.handle.net/11455/13379
其他識別: U0005-1707200715572200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1707200715572200
Appears in Collections:獸醫學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.