Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/13482
標題: 血漿中鈣、磷、基質金屬蛋白酵素-2與-9於骨折犬之變化
The Changes of Plasma Calcium, Phosphorus, and Matrix Metalloproteinases -2 and -9 in Dogs with Bone Fracture
作者: 蔡忠翰
Tsai, Chung-Han
關鍵字: Calcium

Phosphorus
Matrix Metalloproteinase
MMP
Gelatinase
Bone fracture
dog
canine

基質金屬蛋白酵素
骨折

出版社: 獸醫學系暨研究所
引用: 沈永紹。獸醫實驗診斷學提要。華香園出版社。485-90, 2002. Egger EL, Whittick WG. Principles of fracture management. In: Whittick WG, ed. Canine orthopedics, 2nd Lea & Febiger, Pennsylvania, 215-296, 1990. Gartland JJ. Fracture. In: Fundamental of orthopedics, 3rd WB Saunders, Philadelphia, 238-58, 1996. Johnson AL, Hulse DA. Fundamental of orthopedic surgery and fracture management. In: Fossum TW, ed. Small Animal Surgery, 2nd Mosby, Missouri, 821-900, 2000. Kealy JK. Bone and joints. In: Kealy JK, ed. Diagnostic radiology and ultrasonography of the dog and cat, 3rd WB Saunders, Pennsylvania, 253-338, 2000. Newton CD. Etiology, classification, and diagnosis of fracture. In: Newton CD, ed. Textbook of small animal orthopaedics, 1st JB Lippincott, Pennsylvania, 185-93, 1985. Agren MS. Gelatinase activity during wound healing. Br J Dermatol 131: 634-640, 1994. Baker AH, Edwards DR, Murphy G. Metalloproteinase inhibitors: biological actions and therapeutic opportunities. J Cell Sci 115: 3719-3727, 2002. Blumenfeld I, Srouji S, Peled M, Livne E. Metalloproteinases (MMPs -2, -3) are involved in TGF-beta and IGF-1-induced bone defect healing in 20-month-old female rats. Arch Gerontol Geriatr 35: 59-69, 2002. Brinckerhoff CE, Matrisian LM. Matrix metalloproteinases: a tail of a frog that became a prince. Nat Rev Mol Cell Biol 3: 207-214, 2002. Cha H, Kopetzki E, Huber R, Lanzendorfer M, Brandstetter H. Structural basis of the adaptive molecular recognition by MMP9. J Mol Biol 2002 26;320: 1065-1079. Colnot C, Thompson Z, Miclau T Werb Z, Helms JA. Altered fracture repair in the absence of MMP-9. Development 130: 4123-4133, 2003. Colnot CI, Helms JA. A molecular analysis of matrix remodeling and angiogenesis during long bone development. Mech Dev 100: 245-250, 2001. Dangelo M, Sarment DP, Billings PC, Pacifici M. Activation of transforming growth factor beta in chondrocytes undergoing endochondral ossification. J Bone Miner Res 16:2339-2347, 2001. Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression Nat Rev Cancer 2: 161-174, 2003. Einhorn TA, Majeska RJ, Rush EB, Levine PM, Horowitz MC. The expression of cytokine activity by fracture callus. J Bon Miner Res 10: 1272-81, 1995. Engsig MT, Chen QJ, Vu TH, Pedersen AC, Therkidsen B, Lund LR, Henriksen K, Lenhard T, Foged NT, Werb Z, Delaisse JM. Matrix metalloproteinase 9 and vascular endothelial growth factor are essential for osteoclast recruitment into developing long bones. J Cell Biol 151:879-889, 2000. Ferguson C, Alpern E, Miclau T, Helms JA. Does adult fracture repair recapitulate embryonic skeletal formation? Mech Dev 87: 57-66, 1999. Ferguson C, Miclau T, Hu D, Alpern E, Helms JA. Common molecular pathways in skeletal morphogenesis and repair. Ann N Y Acad Sci 857: 33-42, 1998. Folgueras AR, Pendas AM, Sanchez LM, Lopez-Otin C. Matrix metalloproteinases in cancer: from new functions to improved inhibition strategies. Int J Dev Biol 48: 411-424, 2004. Gerber HP, Vu TH, Ryan AM, Kowalski J, Werb Z, Ferrara N. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med 5: 623-628, 1999. Gustilo R,Merkow RL, Templeman D. The management of open fractures. J Bone Joint Surg Am 72: 299-304, 1990. Harper J, Klagsbrun M. Cartilage to bone--angiogenesis leads the way. Nat Med 5: 617-618, 1999 Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR, Crystal RG, Besmer P, Lyden D, Moore MA, Werb Z, Rafii S. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109: 625-637, 2002. Henle P, Zimmermann G, Weiss S. Matrix metalloproteinases and failed fracture healing. Bone 37: 791-798, 2005 Inoue K, Mikuni-Takagaki Y, Oikawa K, Itoh T, Inada M, Noguchi T, Park JS, Onodera T, Krane SM, Noda M, Itohara S. A crucial role for matrix metalloproteinase 2 in osteocytic canalicular formation and bone metabolism. J Biol Chem. 281: 33814-33824, 2006. Itoh T, Tanioka M, Yoshida H, Yoshioka T, Nishimoto H, Itohara S. Reduced angiogenesis and tumor progression in gelatinase A-deficient mice. Cancer Res 58: 1048-1051, 1998. Jung K. Serum or plasma: what kind of blood sample should be used to measure circulating matrix metalloproteinases and their inhibitors? J Neuroimmunol 162: 1-2, 2005. Komnenou A, Karayannopoulou M, Polizopoulou TC, Dessiris A. Correlation of serum alkaline phosphatase activity with the healing process of long bone fractures in dogs. Vet Clin Pathol 34: 35-38, 2005 Komnenou A, Karayannopoulou M, Polizopoulou TC, Dessiris A. Correlation of serum alkaline phosphatase activity with the healing process of long bone fractures in dogs. Vet Clin Pathol 34: 35-38, 2005 Kusano K, Miyaura C, Inada M, Tamura T, Ito A, Nagase H, Kamoi K, Suda T. Regulation of matrix metalloproteinases (MMP-2, -3, -9, and -13) by interleukin-1 and interleukin-6 in mouse calvaria: association of MMP induction with bone resorption. Endocrinology 139:1338-1345, 1998. Lane JM, Betts F, Posner AS, Yue DW. Mineral parameters in early fracture repair. J Bone Joint Surg Am 66: 1289-1293, 1984. Lauer-Fields JL, Juska D, Fields GB. Matrix metalloproteinases and collagen catabolism. Biopolymers 66: 19-32, 2002. Lauer-Fields JL, Sritharan T, Stack MS, Nagase H, Fields GB. Selective hydrolysis of triple-helical substrates by matrix metalloproteinase-2 and -9. J Biol Chem 278: 18140-18145, 2003. Le AX, Miclau T, Hu D, Helms JA. Molecular aspects of healing in stabilized and non-stabilized fracture. J Orthop Res 19: 78-84, 2001. Lee S, Jilani SM, Nikolova GV, Carpizo D, Iruela-rispe ML. Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J Cell Biol 169: 681-91, 2005. Meller Y, Kestenbaum RS, Mozes M, Mozes G, Yagil R, Shany S. Mineral and endocrine metabolism during fracture healing in dogs. Clin Orthop Relat Res 187: 289-295, 1984. Mosig RA, Dowling O, Difeo A, Ramirez MC, Parker IC, Abe E, Diouri J, Aqeel AA, Wylie JD, Oblander SA, Madri J, Bianco P, Apte SS, Zaidi M, Doty SB, Majeska RJ, Schaffler MB, Martignetti JA. Loss of MMP-2 disrupts skeletal and craniofacial development, and results in decreased bone mineralization, joint erosion, and defects in osteoblast and osteoclast growth. Hum Mol Genet 16: 1113-1123, 2007. Nakagawa M, Kaneda T, Arakawa T, Morita S, Sato T, Yomada T, Hanada K, Kumegawa M, Hakeda Y. Vascular endothelial growth factor (VEGF) directly enhances osteoclastic bone resorption and survival of mature osteoclasts. FEBS Lett 473: 161-164, 2000. Ortega N, Behonick D, Stickens D, Werb Z. How proteases regulate bone morphogenesis. Ann N Y Acad Sci 995: 109-116, 2003. Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 8: 221-233, 2007. Probst A, Spiegel HU. Cellular mechanisms of bone repair. J inest Surg 10: 77-86, 1997. Rouy D, Ernens I, Jeanty C, Wagner DR. Plasma storage at -80 degrees C does not protect matrix metalloproteinase-9 from degradation. Anal Biochem. 338:294-8, 2005. Seeback P, Bail HJ, Exner C, Schell H, Michel R, Amthauer H, Bragulla H, Duda GN. Do serological turnover markers represent callus formation during fracture healing? Bone 37: 699-677, 2005 Seebeck P, Bail HJ, Exner C, Schell H, Michel R, Amthauer H, Bragulla H, Duda GN. Do serological tissue turnover markers represent callus formation during fracture healing? Bone 37: 669-677, 2005. Seltzer JL, Eisen AZ, Bauer EA, Morris NP, Glanville RW, Burgeson RE, Cleavage of type VII collagen by interstitial collagenase and type IV collagenase (Gelatinase) derived from human skin. J Biol Chem 264: 3822-3826, 1989. Spinale FG, Coker ML, Bond BR, Zellner JL. Myocardial matrix degradation and metalloproteinase activation in the failing heart: a potential therapeutic target. Cardiovasc Res 46: 225-238, 2000. Tillson DM. Open fracture management. Vet Clin North Am Small Anim Pract 25: 1093-1110, 1995. Tyagi SC, Kumar S, Voelker DJ, Reddy HK, Janicki JS, Curtis JJ. Differential gene expression of extracellular matrix components in dilated cardiomyopathy. J Cell Biochem 63: 185-98, 1996. Uusitalo H, Hiltunen A, Soderstrom M, Aro HT, Vuorio E. Expression of cathepsins B, H, K, L, and S and matrix metalloproteinases 9 and 13 during chondrocyte hypertrophy and endochondral ossification in mouse fracture callus. Calcif Tissue Int. 67: 382-390, 2000. Van Hinsbergh VW, Engelse MA, Quax PH. Pericellular proteases in angiogenesis and vasculogenesis. Arterioscler Thromb Vasc Biol 26: 716-728, 2006. Vu TH, Shipley JM, Berger G, Berger JE, Helms JA, Hanahan D, Shapiro SD, Seniro RM, Werb Z. MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 93: 411-422, 1998. Vu TH, Werb Z. Matrix metalloproteinases: effectors of development and normal physiology. Genes Dev 14: 2123-2133, 2000. Wu CY, Wu MS, Chiang EP, Chen YJ, Chen CJ, Chi NH, Shih YT, Chen GH, Lin JT. Plasma matrix metalloproteinase-9 level is better than serum matrix metalloproteinase-9 level to predict gastric cancer evolution. Clin Cancer Res 13:2054-2060, 2007 Zucker S, Lysik RM, Zarrabi MH, Moll U. M(r) 92,000 type IV collagenase is increased in plasma of patients with colon cancer and breast cancer. Cancer Res 53: 140-146, 1993.
摘要: 骨骼是活的器官,在骨折後會自行修復,然而骨組織瘉合與其他組織相比較有截然不同的過程,而骨折癒合的過程,就是指新骨質的形成以及鈣化。當骨折發生時,纖維母細胞與骨母細胞分泌type II collagen形成骨痂的最初結構,血漿中的鈣與磷會形成複合物積聚在癒合部位形成骨痂,以利支撐以及癒合;在癒合過程中,由炎症細胞所誘發的基質金屬蛋白酵素 (matrix metalloproteinases; MMPs) 釋放以及活化,會造成MMPs活性上升,加強降解細胞外基質,因而重塑骨痂的形狀,並形成新骨質。這個有趣的過程引起著者之興趣,著者發現在早期的癒合過程中,血漿中鈣、磷與基質金屬蛋白的資訊仍然是缺乏的,因而進行此方面的研究。在本研究中,著者收集24隻骨折的狗與3隻正常狗每天的血漿進行分析,結果發現骨折狗血漿中的鈣在骨折當天迅速降低,之後上升,在第5天時達到高點,在第10天時有第二個高峰;血漿中的磷在第3天時達到低點,之後上升,在第10天時達到最高點;血漿中MMP-2則是在第5天時觀察到一個高值,在第8天時有第二個高峰。血漿中的MMP-9則較無次序,但是在第5天有一個明顯的高值。我們推測,鈣的變化與內分泌系統有關,磷則是因為骨母細胞活性增強而上升,而MMP-2與MMP-9受炎症反應刺激而活性增強。總結,本研究成果釐清了骨折初期的鈣、磷、MMP-2與MMP-9的變化,這些血液中的離子與基質金屬蛋白酵素在骨折癒合過程中扮演重要的角色,因而加入這些檢驗可能可以判定骨折癒合的程度。
Bone is an animate organ that it will be under the processing of heal while the bone suffered fracture. However, the procedure of bone healing is different to other organs, for example, the procedure of bone healing is involving new bone formation and calcification. When bone fracture occurred, fibroblast and osteoblast release type II collagen that form the primary structure of callus, and then plasma calcium ([Ca2+]) and phosphorus ([P+]) will work together to form callus. During the process of healing, matrix metalloproteinases (MMPs) induced by inflammatory cell may play an important role. In fact, MMPs will degrade most components of the extra-cellular matrix that will remodel callus and form new bone after long term observation in dogs. However, the innate activity of MMPs and the plasma levels of [Ca2+] and [P+] are still lacking. In the present study, plasma samples were collected daily from 24 hospitalized dogs with bone fracture and 3 normal dogs. The result of this study indicated that [Ca2+] was decreased at day 0 and then increased from day 0 to day 5 in comparison to control group. Also we could observe a second tiptop at day 10. Phosphorus was decreased from day 0 to day 3, and then increased until day 10. As for the activity of MMPs, the level of MMP-2 was increased from day 0 to day 5. A second peak at day 8 was noted. Otherwise, the level of MMP-9 was irregular, but there was still a peak at day 5. In conclusion, the result of this study indicated that the changes of plasma [Ca2+], [P+], MMP-2, and MMP-9 in the early stage of bone fracture. It was suggested that the change of [Ca2+] was associated with endocrine system and the increment of [P+] might be associated with the increasing osteoblast activity, as well as the bone healing procedure might stimulate the increased activity of MMP-2 and MMP-9. In addition, MMPs were shown the importance of the procedure of fractured bone healing in this study, thus these parameters might serve as the decisive checkpoint.
URI: http://hdl.handle.net/11455/13482
其他識別: U0005-3107200716394900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-3107200716394900
Appears in Collections:獸醫學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.