Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/13485
標題: 黃連素對大白鼠胰臟分泌胰島素之影響
Effects of Berberine Chloride on Insulin Secretion in Perfused Rat Pancreas
作者: 王鐘漢
Wang, Chung-Hanm
關鍵字: berberine
黃連素
insulin
胰島素
出版社: 獸醫學系暨研究所
引用: 冉先德(1988)。金匱要略。中外文化,北京市。 林政宏(2005)。黃帝內經一學就通。智林文化,台北縣。 吳華強(1997)。糖尿病的家庭療養。書泉出版社,台北市。 蔡嘉ㄧ、楊美都及中國醫藥大學附設醫院臨床營養科合著(2006)。糖尿病自療事典。三采文化出版事業有限公司,台北市。 朱靜維(2004)。黃連素再臨床上的新用途。西藏科技。 傅涵嫈(2007)。黃連及其方劑之液相層析與薄層層析定量分析探討。中國醫藥大學中國藥學研究所碩士班碩士論文。 Andersson U, Filipsson K, Abbott CR, Woods A, Smith K, Bloom SR, Carling D, Small CJ. AMP-activated protein kinase plays a role in the control of food intake. J Biol Chem 279: 12005-12008, 2004. Angel I, Niddam R, Langer SZ. Involvement of alpha-2 adrenergic receptor subtypes in hyperglycemia. J Pharmacol Exp Ther 254: 877-882, 1990. Arayen MS, Sultana N, Bahadur SS. The berberis story: berberis vulgaris in therapeutics. Pak J Pharm Sci 20: 83-92, 2007. Aronne LJ, Segal KR. Adiposity and fat distribution outcome measures: assessment and clinical implications. Obes Res 1: 14S-21S, 2002. Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes 40: 405-412, 1991. Berg AH, Combs TP, Scherer PE. ACRP30/adiponectin: an adipokine regulating glucose and lipid metabolism. Trends Endocrinol Metab 13: 84-89, 2002. Bergeron R, Russell RR, Young LH, Ren JM, Marcucci M, Lee A, Shulman GI. Effect of AMPK activation on muscle glucose metabolism in conscious rats. Am J Physiol 276: E938-E944, 1999. Bergeron R, Previs SF, Cline GW, Perret P, Russell RR, Young LH, Shulman GI. Effect of 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside infusion on in vivo glucose and lipid metabolism in lean and obese Zucker rats. Diabetes 50: 1076-1082, 2001. Brownlee M. Advanced protein glycosylation in diabetes and aging. Annu Rev Med 46: 223-234, 1995. Buchanan TA, Xiang AH, Peters RK, Kjos SL, Berkowitz K, Marroquin A, Goico J, Ochoa C, Azen SP. Response of pancreatic beta-cells to improved insulin sensitivity in women at high risk for type 2 diabetes. Diabetes 49: 782-788, 2000. Buhl ES, Jessen N, Schmitz O, Pedersen SB, Pedersen O, Holman GD, Lund S. Chronic treatment with 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside increases insulin-stimulated glucose uptake and GLUT4 translocation in rat skeletal muscles in a fiber type-specific manner. Diabetes 50: 12-27, 2001. Canadian Diabetes Association 2003 Clinical Practice Guidelines for the Prevention and Management of Diabetes in Canada. Can J Diabetes 27, 2003. Cao JW, Luo HS, Yu BP, Huang XD, Sheng ZX, Yu JP. Effects of berberine on intracellular free calcium in smooth muscle cells of Guinea pig colon. Digestion 64: 179-183, 2001. Carlson M, Osmond BC, Botstein D. Mutants of yeast defective in sucrose utilization. Genetics 98: 25-40, 1981. Chan SL, Perrett CW, Morgan NG. Differential expression of α 2-adrenoceptor subtypes in purified rat pancreatic islet A- and B-cells. Cell Signal 9: 71-78, 1997. Chen QM, Xie MZ. Studies on the hypoglycemic effect of Coptis chinensis and berberine. Yao Xue Xue Bao 21: 401-406, 1986. Cheng Z, Pang T, Gu M, Gao AH, Xie CM, Li JY, Nan FJ, Li J. Berberine-stimulated glucose uptake in L6 myotubes involves both AMPK and p38 MAPK. Biochim Biophys Acta 1760: 1682-1689, 2006. Cheung PC, Salt IP, Davies SP, Hardie DG, Carling D. Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding. : Biochem J 346: 659-669, 2000. Curry DL, Bennett LL, Grodsky GM. Dynamics of insulin secretion by the perfused rat pancreas. Endocrinology 83: 572-84, 1968. Dagon Y, Avraham Y, Berry EM. AMPK activation regulates apoptosis, adipogenesis, and lipolysis by eIF2alpha in adipocytes. Biochem Biophys Res Commun 340: 43-47, 2006. Davies SP, Helps NR, Cohen PT, Hardie DG. 5''-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2C alpha and native bovine protein phosphatase-2AC. FEBS Lett 377: 421-425, 1995. Del Prato S, Leonetti F, Simonson DC, Sheehan P, Matsuda M, DeFronzo RA. Effect of sustained physiologic hyperinsulinaemia and hyperglycaemia on insulin secretion and insulin sensitivity in man. Diabetologia 37: 1025-1035, 1994. Derave W, Lund S, Holman GD, Wojtaszewski J, Pedersen O, Richter EA. Contraction-stimulated muscle glucose transport and GLUT-4 surface content are dependent on glycogen content. Am J Physiol 277: E1103-E1110, 1999. Devedjian JC, Pujol A, Cayla C, George M, Casellas A, Paris H, Bosch F. Transgenic mice overexpressing α2A-adrenoceptors in pancreatic β-cells show altered regulation of glucose homeostasis. Diabetologia 43: 899-906, 2000. Drucker DJ. Enhancing incretin action for the treatment of type 2 diabetes. Diabetes Care 26: 2929-2940, 2003. Fruebis J, Tsao TS, Javorschi S, Ebbets-Reed D, Erickson MR, Yen FT, Bihain BE, Lodish HF. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc Natl Acad Sci USA 98: 2005-2010, 2001. Fryer LG, Parbu-Patel A, Carling D. The Anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways. J Biol Chem 277: 25226-25232, 2002. Fukuda K, Hibiya Y, Mutoh M, Koshiji M, Akao S, Fujiwara H. Inhibition by berberine of cyclooxygenase-2 transcriptional activity in human colon cancer cells. J Ethnopharmacol 66: 227-233, 1999. Ganong WF. Endocrine functions of the pancreas & regulation of carbohydrate metabolism. In Riew of medical physiology. 18th ed., W.F. Ganong (ed.), Appleton & Lange, Stamford, Connecticut, USA, pp. 324-326, 1997. Goodyear LJ, Giorgino F, Balon TW, Condorelli G, Smith RJ. Effects of contractile activity on tyrosine phosphoproteins and PI 3-kinase activity in rat skeletal muscle. Am J Physiol 268:E987-E995, 1995. Hardie DG, Carling D. The AMP-activated protein kinase--fuel gauge of the mammalian cell? Eur J Biochem 246: 259-273, 1997. Hardie DG, Hawley SA. AMP-activated protein kinase: the energy charge hypothesis revisited. Bioessays 23: 1112-1119, 2001. Hawley SA, Selbert MA, Goldstein EG, Edelman AM, Carling D, Hardie DG. 5''-AMP activates the AMP-activated protein kinase cascade, and Ca2+/calmodulin activates the calmodulin-dependent protein kinase I cascade, via three independent mechanisms. J Biol Chem 270: 27186-27191, 1995. Hawley SA, Boudeau J, Reid JL, Mustard KJ, Udd L, Mäkelä TP, Alessi DR, Hardie DG. Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol 2:28, 2003. Hayashi T, Hirshman MF, Kurth EJ, Winder WW, Goodyear LJ. Evidence for 5'' AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport. Diabetes 47: 1369-1373, 1998. Haystead TA, Moore F, Cohen P, Hardie DG. Roles of the AMP-activated and cyclic-AMP-dependent protein kinases in the adrenaline-induced inactivation of acetyl-CoA carboxylase in rat adipocytes. Eur J Biochem 187: 199-205, 1990. Huang C, Zhang Y, Gong Z, Sheng X, Li Z,Zhang W, Qin Y. Berberine inhibits 3T3-L1 adipocyte differentiation through the PPARγ pathway. Biochem Biophys Res Commun 348: 571 – 578, 2006. Hudson ER, Pan DA, James J, Lucocq JM, Hawley SA, Green KA, Baba O, Terashima T, Hardie DG. A novel domain in AMP-activated protein kinase causes glycogen storage bodies similar to those seen in hereditary cardiac arrhythmias. Curr Biol 13: 861-866, 2003 Hunter SJ, Garvey WT. Insulin action and insulin resistance: diseases involving defects in insulin receptors, signal transduction, and the glucose transport effector system. Am J Med 105: 331-345, 1998. Inzucchi SE. Oral antihyperglycemic therapy for type 2 diabetes. JAMA 287: 360-372, 2002. Ivanovska N, Philipov S. Study on the anti-inflammatory action of Berberis vulgaris root extract, alkaloid fractions and pure alkaloids. Int J Immunopharmacol 18: 553-561, 1996. Jenkins DJ, Taylor RH, Goff DV, Fielden H, Misiewicz JJ, Sarson DL, Bloom SR, Alberti KG. Scope and specificity of acarbose in slowing carbohydrate absorption in man. Diabetes 30:951-954, 1981. Jørgensen SB, Viollet B, Andreelli F, Frøsig C, Birk JB, Schjerling P, Vaulont S, Richter EA, Wojtaszewski JF. Knockout of the alpha2 but not alpha1 5''-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranosidebut not contraction-induced glucose uptake in skeletal muscle. J Biol Chem 279: 1070-1079, 2004. Kappes A, Löffler G. Influences of ionomycin, dibutyryl-cycloAMP and tumour necrosis factor-alpha on intracellular amount and secretion of apM1 in differentiating primary human preadipocytes. Horm Metab Res 32: 548-554, 2000. Kasuga M. Insulin resistance and pancreatic β cell failure. J Clin Invest 116: 1756-1760, 2006. Kelly M, Keller C, Avilucea PR, Keller P, Luo Z, Xiang X, Giralt M, Hidalgo J, Saha AK, Pedersen BK, Ruderman NB. AMPK activity is diminished in tissues of IL-6 knockout mice: the effect of exercise. Biochem Biophys Res Commun 320: 449-454, 2004. Knecht KJ, Feather MS, Baynes JW. Detection of 3-deoxyfructose and 3-deoxyglucosone in human urine and plasma: evidence for intermediate stages of the Maillard reaction in vivo. Arch Biochem Biophys 294: 130-137, 1992. Ko BS, Choi SB, Park SK, Jang JS, Kim YE, Park S. Insulin sensitizing and insulinotropic action of berberine form cortidis rhizoma. Biol Pharm Bull 28: 1431-1437, 2005. Kong W, Wei J, Abidi P, Lin M, Inaba S, Li C, Wang Y, Wang Z, Si S, Pan H, Wang S, Wu J, Wang Y, Li Z, Liu J, Jiang JD. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins. Nat Med 10: 1344-1351, 2004. Lacey RJ, Chan SL, Cable HC, James RF, Perrett CW, Scarpello JH, Morgan NG. Expression of α2- and β-adrenoceptor subtypes in human islets of Langerhans. J Endocrinol 148: 531-543, 1996. Lankas GR, Leiting B, Roy RS, Eiermann GJ, Beconi MG, Biftu T, Chan CC, Edmondson S, Feeney WP, He H, Ippolito DE, Kim D, Lyons KA, Ok HO, Patel RA, Petrov AN, Pryor KA, Qian X, Reigle L, Woods A, Wu JK, Zaller D, Zhang X, Zhu L, Weber AE, Thornberry NA. Dipeptidyl peptidase IV inhibition for the treatment of type 2 diabetes: potential importance of selectivity over dipeptidyl peptidases 8 and 9. Diabetes 54: 2988-2994, 2005. Lee YS, Kim WS, Kim KH, Yoon MJ, Cho HJ, Shen Y, Ye JM, Lee CH, Oh WK, Kim CT, Hohnen-Behrens C, Gosby A, Kraegen EW, James DE, Kim JB. Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistance states. Diabetes 55: 2256-2264, 2006. Lefebvre DL, Bai Y, Shahmolky N, Sharma M, Poon R, Drucker DJ, Rosen CF. Identification and characterization of a novel sucrose-non-fermenting protein kinase/AMP-activated protein kinase-related protein kinase, SNARK. Biochem J 355: 297-305, 2001. Leng SH, Lu FE, Xu LJ. Therapeutic effects of berberine in impaired glucose tolerance rats and its influence on insulin secretion. Acta Pharmacol Sin 25: 496 -502, 2004. Lihn AS, Jessen N, Pedersen SB, Lund S, Richelsen B. AICAR stimulates adiponectin and inhibits cytokines in adipose tissue. Biochem Biophys Res Commun 316: 853-858, 2004. Mayer JP, Zhang F, DiMarchi RD. Insulin structure and function. Biopolymers 88 :687-713, 2007. McGarry JD. Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes 51: 7-18, 2002. Milan D, Jeon JT, Looft C, Amarger V, Robic A, Thelander M, Rogel-Gaillard C, Paul S, Iannuccelli N, Rask L, Ronne H, Lundström K, Reinsch N, Gellin J, Kalm E, Roy PL, Chardon P, Andersson L. A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle. Science 288: 1248-1251, 2000. Miles PD, Li S, Hart M, Romeo O, Cheng J, Cohen A, Raafat K, Moossa AR, Olefsky JM. Mechanisms of insulin resistance in experimental hyperinsulinemic dogs. J Clin Invest 101: 202-211, 1998. Minokoshi Y, Kim YB, Peroni OD, Fryer LG, Müller C, Carling D, Kahn BB. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 415: 339-343, 2002. Musi N. AMP-activated protein kinase and type 2 diabetes. Curr Med Chem 13: 583-589,2006. Ni YX. Therapeutic effect of berberine on 60 patients with type II diabetes mellitus and experimental research. Zhong Xi Yi Jie He Za Zhi 8:711-713, 1988. Ni YX, Yang J, Fan S. Clinical study on jiang tang san in treating non-insulin dependent diabetes mellitus patients. Zhongguo Zhong Xi Yi Jie He Za Zhi 14: 650-652, 1994. Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP, Giardino I, Brownlee M. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404: 787-790, 2000. Ojuka EO, Nolte LA, Holloszy JO. Increased expression of GLUT-4 and hexokinase in rat epitrochlearis muscles exposed to AICAR in vitro. J Appl Physiol 88: 1072-1075, 2000. Pan GY, Huang ZJ, Wang GJ, Fawcett JP, Liu XD, Zhao XC, Sun JG, Xie YY. The antihyperglycaemic activity of berberine arises from a decrease of glucose absorption. Planta Med 69: 632-636, 2003. Park H, Kaushik VK, Constant S, Prentki M, Przybytkowski E, Ruderman NB, Saha AK. Coordinate regulation of malonyl-CoA decarboxylase, sn-glycerol-3-phosphate acyltransferase, and acetyl-CoA carboxylase by AMP-activated protein kinase in rat tissues in response to exercise. J Biol Chem 277: 32571-32577, 2002. Perdue WC, Stone LA, Gostin LO. The built environment and its relationship to the public''s health: the legal framework. Am J Public Health 93: 1390-1394, 2003. Perfetti R, Ahmad A. Novel sulfonylurea and non-sulfonylurea drugs to promote the secretion of insulin. Trends Endocrinol Metab 11: 218-223, 2000. Prigeon RL, Kahn SE, Porte D J. Effect of troglitazone on B cell function, insulin sensitivity, and glycemic control in subjects with type 2 diabetes mellitus. J Clin Endocrinol Metab 83: 819-823, 1998. Rahman S, Rahman T, Ismail AA, Rashid AR. Diabetes-associated macrovasculopathy: pathophysiology and pathogenesis. Diabetes Obes Metab 9: 767-780, 2007. Resjö S, Göransson O, Härndahl L, Zolnierowicz S, Manganiello V, Degerman E. Protein phosphatase 2A is the main phosphatase involved in the regulation of protein kinase B in rat adipocytes. Cell Signal 14: 231-238, 2002. Ruderman NB, Saha AK, Vavvas D, Witters LA. Malonyl-CoA, fuel sensing, and insulin resistance. Am J Physiol 276: E1-E18, 1999. Rutter GA, Da Silva Xavier G, Leclerc I. Roles of 5''-AMP-activated protein kinase (AMPK) in mammalian glucose homoeostasis. Biochem J 375: 1-16, 2003. Ryle AP, Sanger F, Smith LF, Kitai R. The disulphide bonds of insulin. Biochem J 60: 541-556, 1995. Saha AK, Avilucea PR, Ye JM, Assifi MM, Kraegen EW, Ruderman NB. Pioglitazone treamtment activates AMP-activated protein kinase in rat liver and adipose tissue in vivo. Biochem Biophys Res Commun 314: 580-585, 2004. Sakamoto K, Göransson O, Hardie DG, Alessi DR. Activity of LKB1 and AMPK-related kinases in skeletal muscle: effects of contraction, phenformin, and AICAR. Am J Physiol Endocrinol Metab 287: E310-E317, 2004. Sambandam N, Lopaschuk GD. AMP-activated protein kinase (AMPK) control of fatty acid and glucose metabolism in the ischemic heart. Prog Lipid Res 42: 238-256, 2003. Savontaus E, Fagerholm V, Rahkonen O, Scheinin M. Reduced blood glucose levels, increased insulin levels and improved glucose tolerance in α2A-adrenoceptor knockout mice. Eur J Pharmacol 578: 359-364, 2008. Schimmack G, Defronzo RA, Musi N. AMP-activated protein kinase: Role in metabolism and therapeutic implications. Diabetes Obes Metab 8: 591-602, 2006. Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA, Cantley LC. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci USA 101: 3329-3335, 2004. Spiegelman BM. PPAR-γ: adipogenic regulator and thiazolidinedione receptor. Diabetes 47: 507-514, 1998. Stapleton D, Mitchelhill KI, Gao G, Widmer J, Michell BJ, Teh T, House CM, Fernandez CS, Cox T, Witters LA, Kemp BE. Mammalian AMP-activated protein kinase subfamily. J Biol Chem 271: 611-614, 1996. Sullivan JE, Brocklehurst KJ, Marley AE, Carey F, Carling D, Beri RK. Inhibition of lipolysis and lipogenesis in isolated rat adipocytes with AICAR, a cell-permeable activator of AMP-activated protein kinase. FEBS Lett 353: 33-36, 1994. Tang LQ, Wei w, Chen LM, Liu S. Effects of berberine on diabetes induced by alloxan and a high-fat/high-cholesterol diet in rats. J Ethnopharmacol 108: 109-115, 2006. Tan Y, Tang Q, Hu BR, Xiang JZ. Antioxidant properties of berberine on cultured rabbit corpus cavernosum smooth muscle cells injured by hydrogen peroxide. Acta Pharmacol Sin 28: 1914-1918, 2007. Taylor CT, Winter DC, Skelly MM, O''Donoghue DP, O''Sullivan GC, Harvey BJ, Baird AW. Berberine inhibits ion transport in human colonic epithelia. Eur J Pharmacol 368: 111-118, 1999. Tsao TS, Lodish HF, Fruebis J. ACRP30, a new hormone controlling fat and glucose metabolism. Eur J Pharmacol 440: 213-221, 2002. Velasco G, Geelen MJ, Guzmán M. Control of hepatic fatty acid oxidation by 5''-AMP-activated protein kinase involves a malonyl-CoA-dependent and a malonyl-CoA-independent mechanism. Arch Biochem Biophys 337: 169-175, 1997. Vincent MF, Erion MD, Gruber HE, Van den Berghe G. Hypoglycaemic effect of AICAriboside in mice. Diabetologia 39: 1148-1155, 1996. Viollet B, Andreelli F, Jørgensen SB, Perrin C, Flamez D, Mu J, Wojtaszewski JF, Schuit FC, Birnbaum M, Richter E, Burcelin R, Vaulont S. Physiological role of AMP-activated protein kinase (AMPK): insights from knockout mouse models. Biochem Soc Trans 31:216-219, 2003. Viollet B, Andreelli F, Jørgensen SB, Perrin C, Geloen A, Flamez D, Mu J, Lenzner C, Baud O, Bennoun M, Gomas E, Nicolas G, Wojtaszewski JF, Kahn A, Carling D, Schuit FC, Birnbaum MJ, Richter EA, Burcelin R, Vaulont S. The AMP-activated protein kinase alpha2 catalytic subunit controls whole-body insulin sensitivity. J Clin Invest 111: 91-98, 2003. Virtanen KA, Iozzo P, Hällsten K, Huupponen R, Parkkola R, Janatuinen T, Lönnqvist F, Viljanen T, Rönnemaa T, Lönnroth P, Knuuti J, Ferrannini E, Nuutila P. Increased fat mass compensates for insulin resistance in abdominal obesity and type 2 diabetes: a positron-emitting tomography study. Diabetes 54: 2720-2726, 2005. Wang YX, Zheng YM, Zhou XB. Inhibitory effects of berberine on ATP-sensitive K+ channels in cardiac myocytes. Eur J Pharmacol 316: 307-315, 1996. Watanabe RM, Black MH, Xiang AH, Allayee H, Lawrence JM, Buchanan TA. Genetics of gestational diabetes mellitus and type 2 diabetes. Diabetes Care 30: S134-140, 2007. Weyer C, Hanson RL, Tataranni PA, Bogardus C, Pratley RE. A high fasting plasma insulin concentration predicts type 2 diabetes independent of insulin resistance: evidence for a pathogenic role of relative hyperinsulinemia. Diabetes 49: 2094-2101, 2000. Wojtaszewski JF, Higaki Y, Hirshman MF, Michael MD, Dufresne SD, Kahn CR, Goodyear LJ. Exercise modulates postreceptor insulin signaling and glucose transport in muscle-specific insulin receptor knockout mice. J Clin Invest 104: 1257-1264, 1999. Woods A, Cheung PC, Smith FC, Davison MD, Scott J, Beri RK, Carling D. Characterization of AMP-activated protein kinase beta and gamma subunits. Assembly of the heterotrimeric complex in vitro. J Biol Chem 271: 10282-10290, 1996. Wu SN, Yu HS, Jan CR, Li HF, Yu CL. Inhibitory effects of berberine on voltage- and calcium-activated potassium currents in human myeloma cells. Life Sci 62: 2283-2294, 1998. Yale JF. Oral antihyperglycemic agents and renal disease: new agents, new concepts. J Am Soc Nephrol 16: S7-S10, 2005. Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K, Eto K, Akanuma Y, Froguel P, Foufelle F, Ferre P, Carling D, Kimura S, Nagai R, Kahn BB, Kadowaki T. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 8:1288-1295, 2002. Yi P, Lu FE, Xu LJ, Chen G, Dong H, Wang KF. Berberine reverses free-fatty-acid-induced insulin resistance in 3T3-L1 adipocytes through targeting IKKβ. World J Gastroenterol 14: 876-883, 2008. Yin J, Gao Z, Liu D, Liu Z, Ye J. Berberine improves glucose metabolism through induction of glycolysis. Am J Physiol Endocrinol Metab 294: 148-156, 2008. Yin J, Hu R, Chen M, Tang J, Li F, Yang Y, Chen J. Effects of berberine on glucose metabolism in vitro. Metabolism 51: 1439-1443, 2002. Yin J, Xing H, Ye J. Efficacy of berberine in patients with type 2 diabetes mellitus. Metabolism 57: 712-717, 2008. Yin W, Mu J, Birnbaum MJ. Role of AMP-activated protein kinase in cyclic AMP-dependent lipolysis In 3T3-L1 adipocytes. J Biol Chem 278:43074-43080, 2003. Zhang F, Sjöholm K, Zhang Q. Pioglitazone acutely influences glucose-sensitive insulin secretion in normal and diabetic human islets. Biochem Biophys Res Commun 351: 750-755, 2006. Zhang BJ, Xu D, Guo Y, Ping J, Chen LB, Wang H. Protection by and anti-oxidant mechanism of berberine against rat liver fibrosis induced by multiple hepatotoxic factors. Clin Exp Pharmacol Physiol 35: 303-309, 2008. Zhang Y, Li X, Zou D, Liu W, Yang J, Zhu N, Huo L, Wang M, Hong J, Wu P, Ren G, Ning G. Treatment of type 2 diabetes and dyslipidemia with the natural plant alkaloid berberine. J Clin Endocrinol Metab 2008. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108: 1167-1174, 2001. Zhou L, Yang Y, Wang X, Liu S, Shang W, Yuan G, Li F, Tang J, Chen M, Chen J. Berberine stimulates glucose transport through a mechanism distinct from insulin. Metabolism 56: 405-412, 2007. Zimmerman BR. Sulfonylureas. Endocrinol Metab Clin North Am 26:511-22, 1997. Zuo F, Nakamura N, Akao T, Hattori M. Pharmacokinetics of berberine and its main metabolites in conventional and pseudo germ-free rats determined by liquid chromatography/ion trap mass spectrometry. Drug Metab Dispos 34: 2064-2072, 2006.
摘要: 目前用於治療糖尿病的藥物有磺醯尿類、雙胍類、α-glucosidase抑制劑、thiazolidinedione、胰島素以及最新的dipeptidyl peptidase 4抑制劑,對於控制血糖之療效有限且有許多不良副作用。近年來許多學者研究尋找更有效的藥物來治療糖尿病,黃連素(berberine chloride)在1988年被中國大陸學者發表具有控制血糖的效果,這幾年內其他學者證明黃連素確實可以改善血糖、胰島素阻抗及脂肪代謝異常,但是黃連素對胰島素的分泌與否仍有異議。本研究以黃連素灌流大白鼠胰臟進行短時間性的刺激胰島素分泌,以及長時間口服黃連素對胰臟胰島素分泌之影響。結果發現黃連素刺激胰島素之分泌且其分泌程度與所給予之劑量有關,其分泌過程主為先增加後抑制胰島素之分泌,停止給藥後仍可抑制胰島素分泌,當與葡萄糖一同刺激胰島素分泌,可以抑制葡萄糖所誘發第二階段胰島素之分泌。於長期口服黃連素的大白鼠灌流葡萄糖之後,結果發現黃連素明顯的提升葡萄糖刺激胰島素之分泌效果,且與口服時間成正比,而且並不會影響老鼠體重之成長。
The treatment drugs of diabetic involved sulfonylurea, biquanide, α-glucosidase inhibitor, thiazolidinedione, insulin, and the new drug dipeptidyl peptidase 4 inhibitors, were limited in the efficacy of control blood glucose and their side effects. In order to find a more effective drug to treat diabetes, berberine in 1988 was reported to have the lower glucose effect by the Chinese scholars. Furthermore, it was proved that berberine can improve blood glucose, insulin resistance and abnormal lipid metabolism in the past few years. However, the effect of berberine on insulin secretion is still unknown. There were reports found that berberine inhibited insulin secretion in 2002, whereas, berberine stimulated insulin secretion was reported in 2004. By using rat pancreatic perfusion technique and oral berberine for 1 or 3 months, berberine chloride dose-dependently stimulated insulin secretion in a biphasic secretion manner. Berberine temporarily increased insulin secretion for 10 minutes, and then inhibited insulin secretion. In addition, the pretreatment with berberine for 30 minutes, the insulin secretion response was delayed for 15 minutes after 10 mM glucose stimulation test. Berberine totally blocked glucose-induced second insulin secretion phase. After the rats were administered orally berberine for 1 or 3 months, berberine enhanced glucose-stimulated insulin secretion in a time- dependent manner.
URI: http://hdl.handle.net/11455/13485
其他識別: U0005-0107200815403400
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0107200815403400
Appears in Collections:獸醫學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.