Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/13711
標題: 胰島素對肥胖糖尿病小鼠代謝組織內鉻及運鐵蛋白之影響
The Effect of Insulin on Chromium and Transferrin in Metabolic Tissues in Obese Diabetic Mice
作者: 楊莉婷
Yang, Li-Ting
關鍵字: obesity
肥胖
diabetes mellitus
insulin resistance
chromium
transferrin
糖尿病
胰島素阻抗

運鐵蛋白
出版社: 獸醫學系暨研究所
引用: 吳盈瑩(2007)。乳鐵蛋白與鉻元素於肥胖小鼠肝臟、肌肉及脂肪組織變化之研究。國立中興大學獸醫學系暨研究所碩士論文。 林自強(2007)。咖啡因與高脂飲食對C57BL/6JNarl小鼠血糖、Akt活性與鉻元素含量之影響。國立中興大學獸醫學系暨研究所碩士論文。 邱俊龍(2007)。Acetaminophen與Ibuprofen對KK/HlJ肥胖小鼠血糖及組織鉻元素分佈之影響。國立中興大學獸醫學系暨研究所碩士論文。 邱宜昕(2007)。胰島素對基因缺陷及高脂飼料餵食小鼠Akt活性之影響。國立中興大學獸醫學系暨研究所碩士論文。 孫繼清 (2006)。升糖素與胰島素對肥胖小鼠體內鉻元素分布之影響。國立中興大學獸醫學系暨研究所碩士論文。 陳郁淳(2008)。鉻與乳鐵蛋白對C57BL/6JNarl小鼠醣類及脂質代謝之影響。國立中興大學獸醫學系暨研究所碩士論文。 陳文英(2009)。鉻對胰島素訊息傳遞及肝損傷之研究。國立中興大學獸醫學系暨研究所博士論文。 劉文凱 (2006)。運動與Beta腎上腺素藥物對血糖及肝臟鉻元素之影響。 國立中興大學獸醫學系暨研究所碩士論文。 戴巧雯 (2006)。高油脂飲食加重Dexamethasone與Aspirin造成代謝組織中鉻元素含量的減少。 國立中興大學獸醫學系暨研究所碩士論文。 Aguirre V, Werner ED, Giraud J, et al. Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J Biol Chem 2002; 277:1531-1537. Anderson RA. Chromium, glucose intolerance and diabetes. J Am Coll Nutr 1998; 17:548-555. Anderson RA. Chromium in the prevention and control of diabetes. Diabetes Metab 2000; 26:22-27. Arner P, Pollare T, Lithell H, et al. Defective insulin receptor tyrosine kinase in human skeletal muscle in obesity and type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 1987; 30:437-440. Cheatham B, Kahn CR. Insulin action and the insulin signaling network. Endocr Rev 1995; 16:117-142. Chen G, Liu P, Pattar GR, et al. Chromium activates glucose transporter 4 trafficking and enhances insulin-stimulated glucose transport in 3T3-L1 adipocytes via a cholesterol-dependent mechanism. Mol Endocrinol 2006; 20:857-870. Chen WY, Chen CJ, Liu CH, et al. Chromium supplementation enhances insulin signalling in skeletal muscle of obese KK/HlJ diabetic mice. Diabetes Obes Metab 2009; 11:293-303. Clodfelder BJ, Vincent JB. The time-dependent transport of chromium in adult rats from the bloodstream to the urine. J Biol Inorg Chem 2005; 10:383-393. Conner SD, Schmid SL. Regulated portals of entry into the cell. Nature 2003; 422:37-44. Cusi K, Maezono K, Osman A, et al. Insulin resistance differentially affects the PI 3-kinase- and MAP kinase-mediated signaling in human muscle. J Clin Invest 2000; 105:311-320. Davis CM, Vincent JB. Chromium oligopeptide activates insulin receptor tyrosine kinase activity. Biochemistry 1997; 36:4382-4385. Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet 2005; 365: 1415-1428. Ekmekcioglu C, Prohaska C, Pomazal K, et al. Concentrations of seven trace elements in different hematological matrices in patients with type 2 diabetes as compared to healthy controls. Biol Trace Elem Res 2001; 79:205-219. Goodyear LJ, Giorgino F, Sherman LA, et al. Insulin receptor phosphorylation, insulin receptor substrate-1 phosphorylation, and phosphatidylinositol 3-kinase activity are decreased in intact skeletal muscle strips from obese subjects. J Clin Invest 1995; 95:2195-2204. Hubbard SR, Wei L, Ellis L, et al. Crystal structure of the tyrosine kinase domain of the human insulin receptor. Nature 1994; 372:746-754. Jazet IM, Pijl H, Frolich M, et al. Two days of a very low calorie diet reduces endogenous glucose production in obese type 2 diabetic patients despite the withdrawal of blood glucose-lowering therapies including insulin. Metabolism 2005; 54:705-712. Kahn SE, Prigeon RL, McCulloch DK, et al. The contribution of insulin-dependent and insulin-independent glucose uptake to intravenous glucose tolerance in healthy human subjects. Diabetes 1994; 43:587-592. Katz SA. The analytical biochemistry of chromium. Environ Health Perspect 1991; 92:13-16. Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 2004; 89:2548-2556. Kopelman PG. Obesity as a medical problem. Nature 2000; 404:635-643. Krook A, Roth RA, Jiang XJ, et al. Insulin-stimulated Akt kinase activity is reduced in skeletal muscle from NIDDM subjects. Diabetes 1998; 47:1281 -1286. Lukaski HC. Chromium as a supplement. Annu Rev Nutr 1999; 19:279-302. Mertz W. Chromium in human nutrition: a review. J Nutr 1993; 123:626-633. Mertz W, Toepfer EW, Roginski EE, et al. Present knowledge of the role of chromium. Fed Proc 1974; 33:2275-2280. Morris BW, Gray TA, Macneil S. Glucose-dependent uptake of chromium in human and rat insulin-sensitive tissues. Clin Sci (Lond) 1993; 84:477-482. Pessin JE, Saltiel AR. Signaling pathways in insulin action: molecular targets of insulin resistance. J Clin Invest 2000; 106:165-169. Rosen ED, Spiegelman BM. Adipocytes as regulators of energy balance and glucose homeostasis. Nature 2006; 444:847-853. Roussel AM, Andriollo-Sanchez M, Ferry M, et al. Food chromium content, dietary chromium intake and related biological variables in French free-living elderly. Br J Nutr 2007; 98:326-331. Saltiel AR, Kahn CR. Insulin signaling and the regulation of glucose and lipid metabolism. Nature 2001; 414:799-806. Schwarz K, Mertz W. Chromium (III) and the glucose tolerance factor. Arch Biochem Biophys 1959; 85:292-295. Seidell JC. Obesity, insulin resistance and diabetes--a worldwide epidemic. Br J Nutr 2000;83 Suppl 1:S5-8. Shimabukuro M, Zhou YT, Levi M, et al. Fatty acid-induced beta cell apoptosis: a link between obesity and diabetes. Proc Natl Acad Sci USA 1998; 95:2498 -2502. Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 2006;7:85-96. Vincent JB. The biochemistry of chromium. J Nutr 2000; 130:715-718. Wang CC, Goalstone ML, Draznin B. Molecular mechanisms of insulin resistance that impact cardiovascular biology. Diabetes 2004; 53:2735-2740. Yamamoto A, Wada O, Ono T. Isolation of a biologically active low-molecular-mass chromium compound from rabbit liver. Eur J Biochem 1987; 165:627-631. Yang X, Palanichamy K, Ontko AC, et al. A newly synthetic chromium complex --chromium(phenylalanine)3 improves insulin responsiveness and reduces whole body glucose tolerance. FEBS Lett 2005; 579:1458-1464. Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature 2001;414:782-787.
摘要: 隨著非胰島素依賴型糖尿病的發生率及盛行率快速增加,使其成為最常見的慢性疾病之ㄧ。鉻元素為體內葡萄糖及脂質代謝所必須之微量元素。近年來實驗室及臨床研究報告中均指出鉻的補充可藉由增加胞內訊息傳遞作用,改善胰島素敏感性。運鐵蛋白是體內主要運送鉻元素的蛋白質載體。然而,有關運鐵蛋白及鉻元素在胰島素訊息傳遞路徑中的確切功能仍是未知。在本研究中,我們假設主要運送鉻元素之運鐵蛋白在胰島素訊息傳遞路徑中扮演著重要的角色。在研究中,B6.V-Lepob/J(ob/ob)小鼠及BKS. Cg-m+/+ Leprdb /J(db/db)小鼠被用來作為肥胖的第二型糖尿病動物模式,並以C57BL/6JNarl(B6)小鼠作為健康正常小鼠控制組,進行脂肪、肝臟及股四頭肌等代謝組織內鉻元素及運鐵蛋白的變化之探討。在禁食血糖數據中,可發現db/db小鼠具有顯著高於ob/ob小鼠及B6小鼠的血糖值。而在鉻元素測定結果中也顯示db/db小鼠代謝組織內鉻含量均顯著高於ob/ob小鼠及B6小鼠。在使用高劑量的胰島素(2 IU/kg BW)注射處理30分鐘後,可以發現在db/db小鼠代謝組織內鉻元素含量均呈現下降的現象,然而,在B6小鼠其脂肪及肝臟內鉻元素皆為顯著增加。在胰島素處理60分鐘組中,B6小鼠代謝組織內鉻元素含量,相較於30分鐘處理組皆呈現下降的趨勢;但在ob/ob小鼠脂肪組織內鉻元素分析中,卻是顯著增加的。另一方面,在小鼠代謝器官內運鐵蛋白表現分析的結果中,皆沒有顯著差異。目前仍然沒有證據可以說明運鐵蛋白及鉻元素含量變化間的關係。因此,有待進一步實驗,以探討糖尿病小鼠及正常小鼠代謝組織內運鐵蛋白運送鉻元素在胰島素訊息傳遞中的確切功能。
Non-insulin dependent diabetes mellitus(NIDDM)is one of the most important chronic diseases with increasing prevalence and complications. Chromium(Cr3+)is an essential nutrient required for glucose and lipid metabolism. Laboratory and clinical evidences indicate that chromium supplementation can improve insulin sensitivity by enhancing intracellular signaling. Transferrin is the major physiological chromium transport agent. However, the mechanism of chromium and transferrin in insulin signaling are unknown. In this study, we hypothesized the major chromium carrier protein, transferrin, play an important role in insulin signaling pathway. C57BL/6JNarl(B6)、B6.V-Lepob/J(ob/ob)and BKS. Cg-m+/+ Leprdb /J(db/db)mice were used to examine the variation of chromium and transferrin in metabolic tissue. Fasting blood glucose in db/db mice were significantly higher than ob/ob and B6 mice. Chromium concentrations were significantly higher in metabolic tissues in db/db mice than ob/ob and B6 mice. After a high dose insulin challenge at 30 min, chromium level decreased significantly in metabolic tissues in db/db mice. However, in B6 mice, chromium increased significantly in fat and liver tissues after insulin challenge. Moreover, chromium level decreased significantly in metabolic tissues in B6 mice after insulin challenge at 60 min. However in ob/ob mice, chromium level increased significantly in fat tissue. Transferrin levels varied in metabolic tissues after insulin challenge and no significant differences were found. There are no direct evidences to prove correlations between transferrin and chromium variations in this study. Further investigations are needed to unveil the detail mechanisms of transferrin on chromium transportation in diabetic and normal mice.
URI: http://hdl.handle.net/11455/13711
其他識別: U0005-0508200916520500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0508200916520500
Appears in Collections:獸醫學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.