Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/13784
標題: 使用預力玻纖補強R.C.樑及圓形壓力構件之研究
Strengthening of R.C. Beams and Circular Compressive Structures Using Prestressed Glass Fiber Reinforced Polymer
作者: 洪建興
Hung, Chien-Hsing
關鍵字: glass fiber
玻璃纖維
prestressed glass fiber
strengthening
reinforced concrete
theoretical analysis
預力玻璃纖維
補強
鋼筋混凝土
理論分析
出版社: 土木工程學系
摘要: 中文摘要 本論文研究主題為使用預力玻璃纖維(Prestressed Glass Fiber Reinforced Polymers-PGFRP)對鋼筋混凝土樑及空心圓形構件進行補強研究。近來,碳纖維複合材料已經被廣泛應用於受損害之鋼筋混凝土結構物之補強,但是因為碳纖維材料與混凝土材料之勁度相差太大,所以碳纖維複合材料對於 構件之預力轉移效果反而比較差,本篇論文選用玻璃纖維複合材料之原因是因為其彈性模數 與混凝土非常接近,對預力轉移效果極佳。本篇論文分二大主軸,第一主題為使用PGFRP對 樑之補強研究,第二主題為使用PGFRP對空心圓形構件之補強研究。 第一主題為採用玻纖及預力玻纖對 樑補強後之極限載重能力及變形性之試驗結果及理論比較。樑之型式採用T型及倒T型樑,當成是在壓力控制及拉力控制下之樑而進行試驗比較。試驗之預力玻纖布將被施加預拉力,其大小為其材料極限強度之一半。T型及倒T型樑在使用預力玻纖PGFRP之U型圍束補強後,其極限抗壓強度提高了2倍以上。而且使用PGFRP補強後之 樑將會拱起,但在拉力面不會產生裂縫。試驗結果顯示, T型樑在使用玻纖(GFRP)及預力玻纖(PGFRP)補強下,其極限抗彎矩強度分別提升至55%及100%;另倒T型樑在玻纖(GFRP)及預力玻纖(PGFRP)補強下,其極限抗彎矩強度分別提升至97%及117%;在相同的外加載重下,PGFRP 補強之樑比GFRP 補強之樑,其撓曲變形較小,顯示施加預力PGFRP補強之樑其變形會獲得較有效之控制。本研究之理論分析公式推導,先不受試驗結果之影響情況下獨立去探討前述各項補強之理論分析公式,並將理論分析公式與試驗結果比較,兩者之接近程度應可接受,在建議之安全係數下此理論公式可廣泛應用於GFRP及PGFRP對 樑之補強分析及設計。 第二主題為採用GFRP及PGFRP對空心及實心圓形構件之補強研究。本研究目的以實心及空心圓形構件模擬大型空心圓形管道結構,在遭受損壞後之補強研究。試驗結果顯示,包裹玻纖GFRP對 圓形實心或空心構件壓壞強度之提升效果非常顯著,即使是包裹事先已經被壓壞之試體,仍然可展現可觀之壓壞強度,例如GFRP包裹圓形實心試體,約略可提升200%強度,GFRP包裹圓形空心試體,更可提升至400%強度;PGFRP圍束補強相較於GFRP圍束補強, PGFRP對於構件之極限強度並無再提升作用,但對圓管側向勁度之提升卻有明顯效果,亦即PGFRP可控制圓形構件之側向變形性。理論分析所推導之各項公式,都與試驗結果頗為契合,在假設混凝土強度為210 情況下,試驗結果都比理論分析結果大,其差值約在10%之內。
ABSTRACT The main topic of this dissertation is to use prestressed glass fiber reinforced polymers (PGFRP) to strengthen beams and hollow circular specimens. In these years, carbon fiber- reinforced polymer (CFRP) material has been popular used to repair or rehabilitate in deteriorated reinforced concrete ( ) structures. However, the stiffness variation between CFRP and concrete material lowers the effort in transferring the prestress from CFRP sheets to member. The reason for why this study chose glass fiber- reinforced polymers (GFRP) material was the Young's modulus of GFRP material being quite close to concrete material. This dissertation was divided into two parts, Part I to study the strengthening of reinforced concrete ( ) beams using prestessed glass fiber-reinforced polymer (PGFRP) and Part Ⅱ to study the strengthening of hollow circular specimens using PGFRP. The main subject of part Ⅰ of this dissertation is to compare the test and theoretical analysis strengthening results in using GFRP and PGFRP sheets for the load-carrying capacities (ultimate loads) and deflections of beams. Two beams shapes, T and -shaped, were used as the under-strengthened and over-strengthened beams. The GFRP sheets were prestressed to one-half their tensile capacities before bonded to the T and -shaped R. C. beams. The prestressed tensions in the PGFRP sheets caused cambers in R.C. beams without cracking on the tensile faces. The PGFRP sheets also enhanced the load-carrying capacities. The test results indicate that T-shaped beams with GFRP sheets exhibit an increase of load-carrying capacity by 55% while the same beams with PGFRP sheets can increase 100%. The -shaped beams with GFRP sheets can increase the load-carrying capacity by 97% while the same beams with PGFRP sheets increase the capacity by 117%. Under the same external loads, beams with GFRP sheets produce larger deflections than beams with PGFRP sheets. In the theoretical part, the equations obtained by theory match the test results quite well. It is suggested that this analytical method can be widely used for analyzing and designing beams strengthened using GFRP or PGFRP sheets. The main subject of part Ⅱ of this dissertation is to study the strengthening of hollow and solid circular specimens using PGFRP. The purpose of this study is to strengthen the damaged solid and hollow circular specimens which were used to simulate the structures of large hollow circular pipes. The test results show that GFRP can increase a great deal of strength for specimens, even for the broken specimens. For instance, the solid specimens wrapped by GFRP can increase the strength around 200% and the hollow specimens wrapped by GFRP can even increase 400%. The results also show that PGFRP can't increase more strength than GFRP. But PGFRP can increase the lateral stiffness of the specimens. In the theoretical part, the equations obtained by theory match the test results very well. In this study, all the test results are greater than the theoretical results within a range of 10%.
URI: http://hdl.handle.net/11455/13784
Appears in Collections:土木工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.