Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/13927
標題: 台灣牧場腸桿菌群抗藥性之表現及以聚合酶鏈鎖反應檢測產志賀毒素大腸桿菌之研究
Study of Antimicrobial Resistance in Coliform Bacteria Isolates and Application of PCR to Detect Shiga Toxin-producing E. coli in Dairy Farms in Taiwan
作者: 隆美爾
Ling, Mei-Era
關鍵字: dairy farms
牧場
antimicrobial resistance
PCR
coliforms
Shiga toxin-producing Escherichia coli
腸桿菌
抗藥性
聚合
產志賀毒素大腸桿菌之研究
出版社: 獸醫學系暨研究所
引用: 參考文獻 江禎偉。金黃色葡萄球菌於臺灣乳房炎牛隻抗藥性及流行病學分型之研究。碩士論文。國立中興大學獸醫學研究所。台中。中華民國。2005。 行政院衛生署疾病管制局。中華民國。2009。http://www.cdc.gov.tw/。 吳義興、陳素貞、蕭終融、張惟茗。牛乳房炎乳汁中病原細菌分離鑑定及其在周圍環境之分佈。台灣省家畜衛生試驗所研究報告。23:7-11,1987。 邱朝齊、林光榮、黎南榮、黃士則。臺灣省乳牛乳房炎主要病原菌之頻度分佈研究。台灣省家畜衛生試驗所研究報告。9:73-78,1972。 Anderson AD, Nelson JM, Rossiter S, Angulo FJ. Public health consequences of use of antimicrobial agents in food animals in the United States. Microb Drug Resist 9: 373-379, 2003. Asai T, Kojima A, Harada K, Ishihara K, Takahashi T, Tamura Y. Correlation between the usage volume of veterinary therapeutic antimicrobials and resistance in Escherichia coli isolated from the feces of food-producing animals in Japan. Jpn J Infect Dis 58: 369-372, 2005. Bennett AR, MacPhee S, Betts RP. Evaluation of methods for the isolation and detection of Escherichia coli O157 in minced beef. Lett Appl Microbiol 20: 375-379, 1995. Berge ACB, Epperson WB. Pritchard RH. Assessing the effect of a single dose florfenicol treatment in feedlot cattle on the antimicrobial resistance patterns in faecal Escherichia coli. Vet Res 36: 723-734, 2005. Bettelheim KA. Studies of Escherichia coli cultured on Rainbow Agar O157 with particular reference to enterohaemorrhagic Escherichia coli (EHEC). Microbiol Immunol 42: 265-269, 1998. Bettelheim KA. Development of a rapid method for the detection of verocytotoxin-producing Escherichia coli (VTEC). Lett Appl Microbiol 33: 31-35, 2001. Bettelheim KA, Beutin L. Rapid laboratory identification and characterization of verocytotoxigenic (Shiga toxin producing) Escherichia coli (VTEC/STEC). J Appl Microbiol. 95: 205-217, 2003. Beutin L, Geier D, Steinrück H, Zimmermann S, Scheutz F. Prevalence and some properties of verotoxin (Shiga-like toxin)-producing Escherichia coli in seven different species of healthy domestic animals. J Clin Microbiol 31: 2483-2488, 1993. Beutin L, Miko A, Krause G, Identification of human-pathogenic strains of Shiga toxin-producing Escherichia coli from food by a combination of serotyping and molecular typing of shiga toxin genes. Appl Environ Microbiol 15: 4769-4775, 2007a. Beutin L, Montenegro MA, Orskov I, Orskov F, Prada J, Zimmermann S, Stephan R. Close association of verotoxin (Shiga-like toxin) production with enterohemolysin production in strains of Escherichia coli. J Clin Microbiol 27: 2559-2664, 1989. Beutin L, Steinrück H, Krause G, Steege K, Haby S, Hultsh G, Appel B. Comparative evaluation of the Ridascreen® Verotoxin enzyme immunoassay for detection of Shiga-toxin producing strains of Escherichia coli (STEC) from food and other sources. J Appl Microbiol 102: 630-639, 2007b Beutin L, Zimmermann S, Gleier K. Evaluation of the VTEC-Screen "Seiken" test for detection of different types of Shiga toxin (verotoxin)-producing Escherichia coli (STEC) in human stool samples. Diagn Microbiol Infect Dis 42: 1-8, 2002. Bielaszewska M, Friedrich AW, Aldick T, Schürk-Bulgrin R, Karch H. Shiga toxin activatable by intestinal mucus in Escherichia coli isolated from humans: predictor for a severe clinical outcome. Clin Infect Dis 9: 1160-1167, 2006. Blanco M, Blanco JE, Mora A. Serotypes, virulence genes, and intimin types of Shiga toxin (verotoxin)-producing Escherichia coli isolates from healthy sheep in Spain. J Clin Microbiol 4: 1351-1356, 2003. Bradley AJ, Leach KA, Breen JE, Green LE, Green MJ. Survey of the incidence and aetiology of mastitis on dairy farms in England and Wales. Vet Rec 160: 253-258, 2007. Borriello SP, Murray PR, Funke G. Topley & Wilson''s microbiology & microbial infections volume 2: bacteriology. 10th ed. ASM Press, USA, 2005. Briñas L, Moreno MA, Teshager T, Sáenz Y, Porrero MC, Domínguez L, Torres C. Monitoring and characterization of extended-spectrum beta-lactamases in Escherichia coli strains from healthy and sick animals in Spain in 2003. Antimicrob Agents Chemother 49: 1262-1264, 2007. Brooks JT, Sowers EG, Wells JG, Greene KD, Griffin PM, Hoekstra RM, Strockbine NA. Non-O157 Shiga toxin-producing Escherichia coli infections in the United States, 1983-2002. J Infect Dis 192: 1422-1429, 2005. Bürk C, Dietrich R, Açar G, Moravek M, Bülte M, Märtlbauer E. Identification and characterization of a new variant of Shiga toxin 1 in Escherichia coli ONT:H19 of bovine origin. J Clin Microbiol 5: 2106-2112, 2003. Caprioli A, Morabito S, Brugère H, Oswald E. Enterohaemorrhagic Escherichia coli: emerging issues on virulence and modes of transmission. Vet Res 3: 289-311, 2005. Carattoli A. Animal reservoirs for extended spectrum beta-lactamase producers. Clin Microbiol Infect 14: 117-123, 2008. Chiueh LC, Liu FM, Shih DYC. Prevalence of Shiga toxin-producing Escherichia coli in feces and raw milk of domestic cattle and sheep. J Food Drug Anal 10: 39-46, 2002. CLSI. Performance standards for antimicrobial disk and dilution susceptibility tests for bacterial isolated from animals; approved standards-third edition. Clinical and Laboratory Standards Institute, USA, 2008. Cobbold R, Desmarchelier P. A longitudinal study of Shiga-toxigenic Escherichia coli (STEC) prevalence in three Australian diary herds. Vet Microbiol 71: 125-137, 2000. Dean-Nystrom EA, Bosworth BT, Cray WC Jr, Moon HW. Pathogenicity of Escherichia coli O157:H7 in the intestines of neonatal calves. Infect Immun 65: 1842-1848, 1997. Eklund M, Leino K. Siitonen A. Clinical Escherichia coli strains carrying stx genes: stx variants and stx-positive virulence profiles. J Clin Microbiol 12: 4585-4593, 2002. Elliott EJ, Robins-Browne RM, O''Loughlin EV, Bennett-Wood V, Bourke J, Henning P, Hogg GG, Knight J, Powell H, Redmond D; Contributors to the Australian Paediatric Surveillance Unit. Nationwide study of haemolytic uraemic syndrome: clinical, microbiological, and epidemiological features. Arch Dis Child 85: 125-131, 2001. Erskine RJ, Cullor J, Schaellibaum M, Yancey R, Zecconi A. Bovine mastitis pathogens and trends in resistance to antimicrobial drugs. National Mastitis Council. http://www. nmconline .org/docs/ResPaper.pdf, 2004 Fairbrother JM, Nadeau E. Escherichia coli: on-farm contamination of animals. Rev Sci Tech 25: 555-569, 2006. Fagan PK, Hornitzky MA, Bettelheim KA, Djordjevic SP. Detection of Shiga-like toxin (stx1 and stx2), intimin (eaeA), and enterohemorrhagic Escherichia coli (EHEC) hemolysin (EHEC hlyA) genes in animal feces by multiplex PCR. Appl Environ Microbiol 65: 868-872, 1999. Fratamico PM, DebRoy C, Strobaugh TP Jr, Chen CY. DNA sequence of the Escherichia coli O103 O antigen gene cluster and detection of enterohemorrhagic E. coli O103 by PCR amplification of the wzx and wzy genes. Can J Microbiol 51: 515-522, 2005. Friedrich AW, Bielaszewska M, Zhang WL, Pulz M, Kuczius T, Ammon A, Karch H. Escherichia coli harboring Shiga toxin 2 gene variants: frequency and association with clinical symptoms. J Infect Dis 185: 74-84, 2002. Foster G, Hopkins GF, Gunn GJ, Ternent HE, Thomson-Carter F, Knight HI, Graham DJ, Edge V, Synge BA. A comparison of two pre-enrichment media prior to immunomagnetic separation for the isolation of E. coli O157 from bovine faeces. J Appl Microbiol 95: 155-159, 2003 Gyles CL. Shiga toxin-producing Escherichia coli: an overview. J Anim Sci 85: E45-62, 2007. Hopkins KL, Davies RH, Threlfall EJ. Mechanisms of quinolone resistance in Escherichia coli and Salmonella: recent developments. Int J Antimicrob Agents 25: 358-373, 2005. Hornitzky MA, Mercieca K, Bettelheim KA, Djordjevic SP. Bovine feces from animals with gastrointestinal infections are a source of serologically diverse atypical enteropathogenic Escherichia coli and Shiga toxin-producing E. coli strains that commonly possess intimin. Appl Environ Microbiol 71: 3405-3412, 2005. Hornitzky MA, Vanselow BA, Walker K, Bettelheim KA, Corney B, Gill P, Bailey G, Djordjevic SP. Virulence properties and serotypes of Shiga toxin-producing Escherichia coli from healthy Australian cattle. Appl Environ Microbiol 12: 6439-6445, 2002. Hussein HS, Sakuma T. Prevalence of Shiga toxin-producing Escherichia coli in dairy cattle and their products. J Dairy Sci 88: 450-465, 2005. Hyatt DR, Galland JC, Gillespie JR. Usefulness of a commercially available enzyme immunoassay for Shiga-like toxins I and II as a presumptive test for the detection of Escherichia coli O157:H7 in cattle feces. J Vet Diagn Invest 13: 71-73, 2001. Johnson KE, Thorpe CM. Sears CL. The emerging clinical importance of non-O157 Shiga toxin-producing Escherichia coli. Clin Infect Dis. 12: 1587-1595, 2006. Kaper JB, Nataro JP, Mobley HL. Pathogenic Escherichia coli. Nat Rev Microbiol 2: 123-140, 2004. Kang SJ, Ryu SJ, Chae JS, Eo SK, Woo GJ, Lee JH. Occurrence and characteristics of enterohemorrhagic Escherichia coli O157 in calves associated with diarrhoea. Vet Microbiol 98: 323-328, 2004. Karch H, Bielaszewska M, Bitzan M, Schmidt H. Epidemiology and diagnosis of Shiga toxin-producing Escherichia coli infections. Diagn Microbiol Infect Dis 34: 229-243, 1999. Karch H, Tarr PI. Bielaszewska M. Enterohaemorrhagic Escherichia coli in human medicine. Int J Med Microbiol 6-7: 405-418, 2005. Khan IU, Gannon V, Kent R, Koning W, Lapen DR, Miller J, Neumann N, Phillips R, Robertson W, Topp E, van Bochove E, Edge TA. Development of a rapid quantitative PCR assay for direct detection and quantification of culturable and non-culturable Escherichia coli from agriculture watersheds. J Microbiol Methods 69: 480-488, 2007. Kijima-Tanaka M, Ishihara K, Kojima A, Morioka A, Nagata R, Kawanishi M, Nakazawa M, Tamura Y, Takahashi T. A national surveillance of Shiga toxin-producing Escherichia coli in food-producing animals in Japan. J Vet Med B 52: 230-237, 2005. Kobayashi H, Shimada J, Nakazawa M, Morozumi T, Pohjanvirta T, Pelkonen S, Yamamoto K. Prevalence and characteristics of shiga toxin-producing Escherichia coli from healthy cattle in Japan. Appl Environ Microbiol 67: 484-489, 2001. Law D. Virulence factors of Escherichia coli 0157 and other Shiga toxin-producing E. coli. J Appl Microbiol 5: 729-745, 2000. Lee JH, Hur J, Stein BD. Occurrence and characteristics of enterohemorrhagic Escherichia coli O26 and O111 in calves associated with diarrhea. Vet J 176: 205-209, 2008. LeJeune JT, Hancock DD, Besser TE. Sensitivity of Escherichia coli O157 detection in bovine feces assessed by broth enrichment followed by immunomagnetic separation and direct plating methodologies. J Clin Microbiol 44: 872-875, 2006. Lim SK, Lee HS, Nam HM, Cho YS, Kim JM, Song SW, Park YH, Jung SC. Antimicrobial resistance observed in Escherichia coli strains isolated from fecal samples of cattle and pigs in Korea during 2003–2004. Int J Food Microbiol 166: 283-286, 2007. Lin YL, Chou CC. Pan TM. Screening procedure from cattle feces and the prevalence of Escherichia coli O157:H7 in Taiwan dairy cattle. J Microbiol Immunol Infect 1: 17-24, 2001. Lipman LJA, de Nijs A. Gaastra W. Isolation and identification of fimbriae and toxin production by Escherichia coli strains from cows with clinical mastitis. Vet Microbiol 1-2: 1-7, 1995. Lira WM, Macedo C, Marin JM. The incidence of Shiga toxin-producing Escherichia coli in cattle with mastitis in Brazil. J Appl Microbiol 97: 861-866, 2004. Lundin JI, Dargatz DA, Wagner BA, Lombard JE, Hill AE, Ladely SR, Fedorka-Cray PJ. Antimicrobial drug resistance of fecal Escherichia coli and Salmonella spp. isolates from United States dairy cows. Foodborne Pathog Dis 5: 7-19, 2008. Ma YP, Chang SK, Chou, CC. Characterization of bacterial susceptibility isolates in sixteen dairy farms in Taiwan. J Dairy Sci 12: 4573-4582, 2006. Makovec JA, Ruegg PL. Antimicrobial resistance of bacteria isolated from dairy cow milk samples submitted for bacterial culture: 8,905 samples (1994-2001). J Am Vet Med Assoc 222: 1582-1589, 2003. March SB, Ratnam S. Sorbitol-MacConkey medium for detection of Escherichia coli O157:H7 associated with hemorrhagic colitis. J Clin Microbiol 23: 869-872, 1986. McEwen SA, Fedorka-Cray PJ. Antimicrobial use and resistance in animals. Clin Infect Dis 34: 93-106, 2002. Molbak K. Spread of resistant bacteria and resistance genes from animals to humans--the public health consequences. J Vet Med B Infect Dis Vet Public Health 51: 364-369, 2004. Montenegro MA, Bülte M, Trumpf T, Aleksić S, Reuter G, Bulling E, Helmuth R. Detection and characterization of fecal verotoxin-producing Escherichia coli from healthy cattle. J Clin Microbiol 28: 1417-1421, 1990. Nemeth J, Muckle CA, Gyles CL. In vitro comparison of bovine mastitis and fecal Escherichia coli isolates. Vet Microbiol 40: 231:238, 1994. NMC. Laboratory handbook on bovine mastitis. revised edition. National Mastitis Council, Madison, USA, 1999. Ochman H, Lawrence JG, Groisman EA. Lateral gene transfer and the nature of bacterial innovation. Nature 405: 299-304, 2000. Orden JA, Ruiz-Santa-Quiteria JA, Cid D, Díez R, Martínez S, de la Fuente R. Quinolone resistance in potentially pathogenic and non-pathogenic Escherichia coli strains isolated from healthy ruminants. J Antimicrob Chemother 3: 421-424, 2001. Orden JA, Ruiz-Santa-Quiteria JA, García S, Cid D, De La Fuente R. In vitro activities of cephalosporins and quinolones against Escherichia coli strains isolated from diarrheic dairy calves. Antimicrob Agents Chemother 3: 510-513, 1999. Paton AW. Paton JC. Detection and characterization of Shiga toxigenic Escherichia coli by using multiplex PCR assays for stx 1, stx 2, eaeA, enterohemorrhagic E. coli hlyA, rfb O111, and rfb O157. J Clin Microbiol 2: 598-602, 1998a. Paton JC. Paton AW. Pathogenesis and diagnosis of Shiga toxin-producing Escherichia coli infections. Clin Microbiol Rev 3: 450-479, 1998b. Pickering LK. Antimicrobial resistance among enteric pathogens. Adv Exp Med Biol 609: 154-163, 2008. Pitkälä A, Haveri M, Pyörälä S, Myllys V, Honkanen-Buzalski T. Bovine mastitis in Finland 2001-prevalence, distribution of bacteria, and antimicrobial resistance. J Dairy Sci 8: 2433-2441, 2004. Prager R, Fruth A, Siewert U, Strutz U, Tschäpe H. Escherichia coli encoding Shiga toxin 2f as an emerging human pathogen. Int J Med Microbiol 299: 343-353, 2009. Ramachandran V, Brett K, Hornitzky MA, Dowton M, Bettelheim KA, Walker MJ, Djordjevic SP. Distribution of intimin subtypes among Escherichia coli isolates from ruminant and human sources. J Clin Microbiol 11: 5022-5032, 2003. Roe MT, Pillai SD. Monitoring and identifying antibiotic resistance mechanisms in bacteria. Poult Sci 82: 622-626, 2003. Safaríková M, Safarík I. Immunomagnetic separation of Escherichia coli O26, O111 and O157 from vegetables. Lett Appl Microbiol 33: 36-39, 2001. Sawant AA, Hegde NV, Straley BA, Donaldson SC, Love BC, Knabel SJ, Jayarao BM. Antimicrobial-resistant enteric bacteria from dairy cattle. Appl Environ Microbiol 73: 156-163, 2007. Sawant AA, Sordillo LM, Jayarao BM. A survey on antibiotic usage in dairy herds in Pennsylvania. J Dairy Sci 88: 2991-2999, 2005. Schoonderwoerd M, Clarke RC, van Dreumel AA, Rawluk SA. Colitis in calves: natural and experimental infection with a verotoxin-producing strain of Escherichia coli O111:NM. Can J Vet Res 52: 484–487, 1988. Srinivasan V, Gillespie BE, Lewis MJ, Nguyen LT, Headrick SI, Schukken YH, Oliver SP. Phenotypic and genotypic antimicrobial resistance patterns of Escherichia coli isolated from dairy cows with mastitis. Vet Microbiol 124: 319-328, 2007. Summers AO. Genetic linkage and horizontal gene transfer, the roots of the antibiotic multi-resistance problem. Anim Biotechnol 17: 125-135, 2006. Spano G, Beneduce L, Terzi V, Stanca AM, Massa S. Real-time PCR for the detection of Escherichia coli O157:H7 in dairy and cattle wastewater. Lett Appl Microbiol 40: 164-171, 2005. Tenover FC. Development and spread of bacterial resistance to antimicrobial agents: an overview. Clin Infect Dis 33: S108-115, 2001. von Baum H, Marre R. Antimicrobial resistance of Escherichia coli and therapeutic implications. Int J Med Microbiol 295: 503-511, 2005. Wang G, Clark CG, Rodgers FG. Detection in Escherichia coli of the genes encoding the major virulence factors, the genes defining the O157:H7 serotype, and components of the type 2 Shiga toxin family by multiplex PCR. J Clin Microbiol 40: 3613-3619, 2002. Welinder-Olsson C, Kaijser B. Enterohemorrhagic Escherichia coli (EHEC). Scand J Infect Dis 37: 405-416, 2005. White DG, Zhao S, Simjee S, Wagner DD, McDermott PF. Antimicrobial resistance of foodborne pathogens. Microbes Infect 4: 405-412, 2002. Witte W. Ecological impact of antibiotic use in animals on different complex microflora: environment. Int J Antimicrob Agents 14: 321-325, 2000. Wu FT, Tsai TY, Hsu CF, Pan TM, Chen HY, Su IJ. Isolation and identification of Escherichia coli O157:H7 in a Taiwanese patient with bloody diarrhea and acute renal failure. J Formosan Med Assoc 3: 206-209, 2005. Zhang W, Bielaszewska M, Pulz M, Becker K, Friedrich AW, Karch H, Kuczius T. New immuno-PCR assay for detection of low concentrations of Shiga toxin 2 and its variants. J Clin Microbiol 46: 1292-1297, 2008. Ziebell KA, Read SC, Johnson RP, Gyles CL. Evaluation of PCR and PCR-RFLP protocols for identifying Shiga toxins. Res Microbiol 153: 289-300, 2002.
摘要: 大腸桿菌(Escherichia coli)為動物腸道中的常在菌,但是其抗藥性與數種致病型大腸桿菌往往造成公共衛生的問題。產志賀毒素大腸桿菌(Shiga toxin-producing E. coli;STEC)在許多地區都曾造成人類的疾病,而反芻動物被認為是最主要的自然宿主,本研究之目的為調查乳牛場中腸桿菌群(coliforms)的抗藥性並且以聚合酶鏈鎖反應檢測STEC的存在。本研究自2006年12月至2009年2月,共由20個牧場之牛隻採集1674件乳汁樣本進行微生物檢測,此外亦由28頭可能受大腸桿菌感染的病牛進行採樣。所有分離出之腸桿菌群細菌以10種抗生素檢測藥物敏感性,鑑定後之大腸桿菌分離株則進一步檢測與STEC相關的毒力基因並做血清型檢查(O26、O111及O157)。乳汁樣本中共有555件檢測為微生物陽性,最主要的微生物按排序依次為革蘭氏陽性球菌、腸桿菌群與革蘭氏陽性桿菌(64.3%、11.7%及9.4%),而在腸桿菌群中最常分離出的菌種為大腸桿菌(63.1%;41/65)。整體而言,大部份的大腸桿菌分離株對ampicillin、neomycin、oxytetracycline及trimethoprim/sulfamexathazole有較高的抗藥性出現率(>30.0%)。大腸桿菌與其它的腸桿菌群分離菌株對於抗生素抗藥性有大致相同的表現,而由乳汁樣本與下痢牛隻分離出之大腸桿菌間的抗藥性僅對enrofloxacin有顯著的差異,對另外九種抗生素則沒有差異。分離出的69株大腸桿菌中,檢測出7株為STEC,2株來自乳汁樣本(2/1674;0.001%)、5株來自下痢牛隻(5/24;20.8%),且其中一株檢測為O111血清型。總結而言,檢測乳牛場中的大腸桿菌可以幫助暸解場中的抗藥性情形並提供治療的參考,繼續的對乳汁中微生物的份佈與抗藥性進行調查可提供乳房炎防治上的資訊。雖然乳汁樣本中STEC的檢出率非常低,但是牧場中榨乳與環境的衛生是值得注意,而下痢牛隻在STEC的保存中扮演重要的角色。
Escherichia coli is a natural inhabitant of the intestine of animals, but several pathogenic types of E. coli and their antibiotic resistance can cause threat to public heath. Shiga toxin-producing E. coli (STEC) has been identified as a world wide cause of human disease, and ruminants are recognized as the main natural reservoir. The present study was designed to investigate the antimicrobial resistance in coliform bacteria and the study of STEC by PCR in dairy farms. From December 2006 to February 2009, a total of 1,674 milk samples were obtained from cows at 20 farms to exam the microorganism. Additionally, another 28 E. coli isolates were obtained from clinically diseased cow. All coliform isolates were tested against 10 antimicrobial agents, and E. coli isolates were also examined for STEC related virulence genes and serotypes (O26, O111 and O157). From the milk samples with positive bacterial isolation (555/1,674), gram positive cocci were the most commonly isolated bacterial group (64.3%), followed by coliform bacteria (11.7%) and gram positive bacilli (9.4%). Among all isolated coliform bacteria, E. coli was the most commonly isolated bacteria (63.1%; 41/65). In general, most of E. coli isolates were resistant to ampicillin, neomycin, oxytetracycline, and trimethoprim/sulfamethoxazole (>30.0%). There was a consistent pattern of antimicrobial resistance in E. coli isolates comparing with non-E. coli isolates. Antimicrobial resistance of E. coli isolated from milk did not differ from isolates of cattle with diarrhea except for enrofloxacin. Among 69 E. coli isolates, 7 STEC were detected. Only 2 (0.001%) of 1674 raw milk sample was detected to be STEC positive. In terms of diarrhea cattle, 5 of STEC were isolated from 24, cattle feces and one isolate was examined as serotype O111. In conclusion, screening of E. coli could facilitate understanding of antimicrobial resistance and treatment decision in dairy cattle. To continue the study of prevalence, distribution, and antimicrobial resistance of microbials in milk samples can provide knowledge for mastitis control. Although the detection rate of STEC was very low from milk samples, we strongly recommend the importance of milking and environment hygiene. Cattle with diarrhea were identified as an important reservoir of STEC in dairy farms.
URI: http://hdl.handle.net/11455/13927
其他識別: U0005-2307200916291000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2307200916291000
Appears in Collections:獸醫學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.