Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/13935
標題: 在不同濃度鹼性纖維母細胞生長因子下脈衝電磁場對大鼠骨髓基質細胞之影響
Effects of Pulsed Electromagnetic Fields on Rat Bone Marrow Stromal Cell in Different Concentration of Basic Fibroblast Growth Factor
作者: 張佳玲
Chang, Jia-Ling
關鍵字: 脈衝電磁場
PEMFs
骨髓基質細胞
鹼性纖維母細胞生長因子
BMSC
bFGF
出版社: 獸醫學系暨研究所
引用: Aaron RK, Boyan BD, Ciombor DM, Schwartz Z, Simon BJ. Stimulation of growth factor synthesis by electric and electromagnetic fields. Clin Orthop Relat Res. 2004. 419:30-37. Aaron RK, Ciombor DM, Keeping H, Wang S, Capuano A, Polk C. Power frequency fields promote cell differentiation coincident with an increase in transforming growth factor-β1 expression. Bioelectromagnetics. 1999. 20:453-458. Aaron RK, Wang S, Ciombor DM. Upregulation of basal TGF beta1 levels by EMF coincident with chondrogenesis - implications for skeletal repair and tissue engineering. J Orthop Res. 2002. 20:233-240. Ahlbom IC, Cardis E, Green A, Linet M, Savitz D, Swerdlow A. Review of the epidemiologic literature on EMF and Health. Environ Health Perspect. 2001. 109: 911-933. Alison MR, Poulsom R, Jeffery R, Dhillon AP, Quaglia A, Jacob J, Novelli M, Prentice G, Williamson J, Wright NA. Hepatocytes from non-hepatic adult stem cells. Nature. 2000. 406:257. Anderson RA, Boronenkov IV, Doughman SD, Kunz J, Loijens JC. Phosphatidylinositol phosphate kinases, a multifaceted family of signaling enzymes. J Biol Chem. 1999. 274:9907-9910. Anokhina EB, Buravkova LB. Heterogeneity of stromal precursor cells isolated from rat bone marrow. Tsitologiia. 2007. 49:40-47. Aoki S, Toda S, Ando T, Sugihara H. Bone marrow stromal cells, preadipocytes, and dermal fibroblasts promote epidermal regeneration in their distinctive fashions. Mol Biol Cell. 2004. 15:4647-4657. Athanasiou A, Karkambounas S, Batistatou A, Lykoudis E, Katsaraki A, Kartsiouni T, Papalois A, Evangelou A. The effect of pulsed electromagnetic fields on secondary skin wound healing: an experimental study. Bioelectromagnetics. 2007. 28:362-368. Badiavas EV, Abedi M, Butmarc J, Falanga V, Quesenberry P. Participation of bone marrow derived cells in cutaneous wound healing. J Cell Physiol. 2003. 196: 245-250. Baris D, Armstrong BG, Deadman J, Thériault G. A case cohort study of suicide in relation to exposure to electric and magnetic fields among electrical utility workers. Occup Environ Med. 1996. 53:17-24. Barsyte-Lovejoy D, Galanis A, Sharrocks AD. Specificity determinants in MAPK signaling to transcription factors. J Biol Chem. 2002. 277:9896-9903. Bassett CA, Pawluk RJ, Pilla AA. Augmentation of bone repair by inductively coupled electromagnetic fields. Science. 1974. 184:575-577. Bawin SM, Kaczmarek LK, Adey WR. Effects of modulated VHF fields on the central nervous system. Ann N Y Acad Sci. 1975. 247:74-81. Becker RO, Spadaro JA, Marino AA. Clinical experiences with low intensity direct current stimulation of bone growth. Clin Orthop Relat Res. 1977. 124:75-83. Beenken A, Mohammadi M. The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov. 2009. 8:235-253. Bersani F, Marinelli F, Ognibene A, Matteucci A, Cecchi S, Santi S, Squarzoni S, Maraldi NM. Intramembrane protein distribution in cell cultures is affected by 50 Hz pulsed magnetic fields. Bioelectromagnetics. 1997. 18:463-469. Bianco P, Riminucci M, Gronthos S, Robey PG. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells. 2001. 19:180-192. Binhi VN, Goldman RJ. Ion-protein dissociation predicts ''windows'' in electric field- induced wound-cell proliferation. Biochim Biophys Acta. 2000. 1474:147-1456. Blackman CF, Benane SG, Kinney LS, Joines WT, House DE. Effects of ELF fields on calcium-ion efflux from brain tissue in vitro. Radiat Res. 1982. 92:510-520. Blank M, Goodman R. Biomedical applications of electromagnetic fields. In: Stavroulakis P, editor. Biological effects of electromagnetic fields: mechanisms, modeling, biological effects, therapeutic effects, international standards, exposure criteria. Berlin: Springer; 2003. Blank M, Goodman R. Initial interactions in electromagnetic field-induced biosynthesis. J Cell Physiol. 2004. 199:359-363. Blank M, Goodman R. A mechanism for stimulation of biosynthesis by electromagnetic fields: charge transfer in DNA and base pair separation. J Cell Physiol. 2008. 214:20-26. Blank M, Soo L. The treshold for Na,K-ATPase stimulation by electromagnetic fields. Bioelectrochem Bioenerg. 1995. 40:63-65. Boland A, Delapierre D, Mossay D, Dresse A, Seutin V. Effect of intermittent and continuous exposure to electromagnetic fields on cultured hippocampal cells. Bioelectromagnetics. 2002. 23:97-105. Bossé Y, Rola-Pleszczynski M. FGF2 in asthmatic airway-smooth-muscle-cell hyperplasia. Trends Mol Med. 2008. 14:3-11. Brazelton TR, Rossi FM, Keshet GI, Blau HM. From marrow to brain: Expression of neuronal phenotypes in adult mice. Science. 2000. 290: 1775-1779. Bromberg J, Chen X. STAT proteins: signal tranducers and activators of transcription. Methods Enzymol. 2001. 333:138-151. Cai D, Marty-Roix R, Hsu HP, Spector M. Lapine and canine bone marrow stromal cells contain smooth muscle actin and contract a collagen-glycosaminoglycan matrix. Tissue Eng. 2001. 7:829-841. Callaghan MJ, Chang EI, Seiser N, Aarabi S, Ghali S, Kinnucan ER, Simon BJ, Gurtner GC. Pulsed electromagnetic fields accelerate normal and diabetic wound healing by increasing endogenous FGF-2 release. Plast Reconstr Surg. 2008. 121: 130-141. Cantrell DA. Phosphoinositide 3-kinase signalling pathways. J Cell Sci. 2001. 114: 1439-1445. Carson JJ, Prato FS, Drost DJ. Time-varying magnetic fields increase cytosolic free Ca2+ in HL-60 cells. Am J Physiol. 1990. 259: C687- 692. Chang K, Chang WH, Wu ML, Shih C. Effects of different intensities of extremely low frequency pulsed electromagnetic fields on formation of osteoclast-like cells. Bioelectromagnetics. 2003. 24:431-439. Chang K, Hong-Shong Chang W, Yu YH, Shih C. Pulsed electromagnetic field stimulation of bone marrow cells derived from ovariectomized rats affects osteoclast formation and local factor production. Bioelectromagnetics. 2004. 25:134-141. Chan TO, Rittenhouse SE, Tsichlis PN. AKT/PKB and other D3 phosphoinositide- regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation. Annu Rev Biochem. 1999. 68:965-1014. Chen CJ, Ou YC, Liao SL, Chen WY, Chen SY, Wu CW, Wang CC, Wang WY, Huang YS, Hsu SH. Transplantation of bone marrow stromal cells for peripheral nerve repair. Exp Neurol. 2007. 204:443-453. Cheng K, Zou C. Electromagnetic field effect on separation of nucleotide sequences and unwinding of a double helix during DNA replication. Med Hypotheses. 2006. 66: 148-153. Chen J, Li Y, Wang L, Lu M, Zhang X, Chopp M. Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerebral ischemia in rats. J Neurol Sci. 2001. 189:49-57. Chen Y, Teng FY, Tang BL. Coaxing bone marrow stromal mesenchymal stem cells towards neuronal differentiation: progress and uncertainties. Cell Mol Life Sci. 2006. 63:1649-1657. Chiu RS, Stuchly MA. Electric fields in bone marrow substructures at power-line frequencies. IEEE Trans Biomed Eng. 2005. 52:1103-1109. Chong H, Vikis HG, Guan KL. Mechanisms of regulating the Raf kinase family. Cell Signal. 2003. 15:463-469. Ciombor DM, Lester G, Aaron RK, Neame P, Caterson B. Low frequency EMF regulates chondrocyte differentiation and expression of matrix proteins. J Orthop Res. 2002. 20:40-50. Cobb MH, Goldsmith EJ. Dimerization in MAP-kinase signaling. Trends Biochem Sci. 2000. 25:7-9. Colacicco G, Pilla AA. Electromagnetic modulation of biological processes: influence of culture media and significance of methodology in the Ca-uptake by embryonal chick tibia in vitro. Calcif Tissue Int. 1984. 36:167-174. Colter DC, Sekiya I, Prockop DJ. Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. Proc Natl Acad Sci U.S.A. 2001. 98:7841-7845. Cornacchia F, Fornoni A, Plati AR, Thomas A, Wang Y, Inverardi L, Striker LJ, Striker GE. Glomerulosclerosis is transmitted by bone marrow-derived mesangial cell progenitors. J Clin Invest. 2001. 108:1649-1656. Cuevas P, García-Calvo M, Carceller F, Reimers D, Zazo M, Cuevas B, Muñoz-Willery I, Martínez-Coso V, Lamas S, Giménez-Gallego G. Correction of hypertension by normalization of endothelial levels of fibroblast growth factor and nitric oxide synthase in spontaneously hypertensive rats. Proc Natl Acad Sci U.S.A. 1996. 93:11996-2001. De Biase P, Capanna R. Clinical applications of BMPs. Injury. 2005. 3:43-46. Delle Monache S, Alessandro R, Iorio R, Gualtieri G, Colonna R. Extremely low frequency electromagnetic fields (ELF-EMFs) induce in vitro angiogenesis process in human endothelial cells. Bioelectromagnetics. 2008. 29:640-648. De Pedro JA, Pérez-Caballer AJ, Dominguez J, Collía F, Blanco J, Salvado M. Pulsed electromagnetic fields induce peripheral nerve regeneration and endplate enzymatic changes. Bioelectromagnetics. 2005. 26:20-27. Dezawa M. Specific induction of neurons and Schwann cells from bone marrow stromal cells and application to neurodegenerative diseases. No Shinkei Geka. 2005. 33:645-649. Dezawa M, Takahashi I, Esaki M, Takano M, Sawada H. Sciatic nerve regeneration in rats induced by transplantation of in vitro differentiated bone-marrow stromal cells. Eur J Neurosci. 2001. 14:1771-1776. Dezawa M, Kanno H, Hoshino M, Cho H, Matsumoto N, Itokazu Y, Tajima N, Yamada H, Sawada H, Ishikawa H, Mimura T, Kitada M, Suzuki Y, Ide C. Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J Clin Invest. 2004. 113:1701-1710. Diniz P, Shomura K, Soejima K, Ito G. Effects of pulsed electromagnetic field (PEMF) stimulation on bone tissue like formation are dependent on the maturation stages of the osteoblasts. Bioelectromagnetics. 2002. 23:398-405. Diniz P, Soejima K, Ito G. Nitric oxide mediates the effects of pulsed electromagnetic field stimulation on the osteoblast proliferation and differentiation. Nitric Oxide. 2002. 7:18-23. Eraslan G, Bilgili A, Akdogan M, Yarsan E, Essiz D, Altintas L. Studies on antioxidant enzymes in mice exposed to pulsed electromagnetic fields. Ecotoxicol Environ Saf. 2007. 66:287-289. Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, Mavilio F. Muscle regeneration by bone marrow-derived myogenic progenitors. Science 1998. 279:1528-1530. Feychting M, Forssén U, Floderus B. Occupational and residential magnetic field exposure and leukemia and central nervous system tumors. Epidemiology. 1997. 8: 384-389. Feychting M, Pedersen NL, Svedberg P, Floderus B, Gatz M. Dementia and occupational exposure to magnetic fields. Scand J Work Environ Health. 1998. 24:46-53. Forssén UM, Feychting M, Rutqvist LE, Floderus B, Ahlbom A. Occupational and residential magnetic field exposure and breast cancer in females. Epidemiology. 2000. 11:24-29. Friedl P, Wolf K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer. 2003. 3:362-374. Funk RH, Monsees T, Ozkucur N. Electromagnetic effects - From cell biology to medicine. Prog Histochem Cytochem. 2009. 43:177-264. Gautschi OP, Frey SP, Zellweger R. Bone morphogenetic proteins in clinical applications. ANZ J Surg. 2007. 77:626-631. Gioeli D, Mandell JW, Petroni GR, Frierson HF Jr, Weber MJ. Activation of mitogen-activated protein kinase associated with prostate cancer progression. Cancer Res. 1999. 59:279-284. Girgin S, Gedik E, Ozturk H, Akbulut V, Kale E, Buyukbayram H, Celik S. Effects of combined pulse electromagnetic field stimulation plus glutamine on the healing of colonic anastomosis in rats. Dig Dis Sci. 2009. 4:745-750. Gobba F, Bargellini A, Scaringi M, Bravo G, Borella P. Extremely low frequency- magnetic fields (ELF-EMF) occupational exposure and natural killer activity in peripheral blood lymphocytes. Sci Total Environ. 2009. 407:1218-1223. Goodman R, Blank M. Insights into electromagnetic interaction mechanisms. J Cell Physiol. 2002. 192:16-22. Greenebaum B, Sutton CH, Vadula MS, Battocletti JH, Swiontek T, DeKeyser J, Sisken BF. Effects of pulsed magnetic fields on neurite outgrowth from chick embryo dorsal root ganglia. Bioelectromagnetics. 1996. 17:293-302. Grimm PC, Nickerson P, Jeffery J, Savani RC, Gough J, McKenna RM, Stern E, Rush DN. Neointimal and tubulointerstitial infiltration by recipient mesenchymal cells in chronic renal-allograft rejection. N Engl J Med. 2001. 345:93-97. Guerkov HH, Lohmann CH, Liu Y, Dean DD, Simon BJ, Heckman JD, Schwartz Z, Boyan BD. Pulsed electromagnetic fields increase growth factor release by nonunion cells. Clin Orthop Relat Res. 2001. 384:265-279. Gupta S, Verfaillie C, Chmielewski D, Kim Y, Rosenberg ME. A role for extrarenal cells in the regeneration following acute renal failure. Kidney Int. 2002. 62: 1285-1290. Gurney JG, Mueller BA, Davis S, Schwartz SM, Stevens RG, Kopecky KJ. Childhood brain tumor occurrence in relation to residential power line configurations, electric heating sources, and electric appliance use. Am J Epidemiol. 1996. 143:120-8. Hagemann C, Blank JL. The ups and downs of MEK kinase interactions. Cell Signal. 2001. 13:863-875. Han L, Lin H, Head M, Jin M, Blank M, Goodman R. Application of magnetic field-induced heat shock protein 70 for presurgical cytoprotection. J Cell Biochem. 1998. 71:577-583. Harwood PJ, Giannoudis PV. Application of bone morphogenetic proteins in orthopaedic practice: their efficacy and side effects. Expert Opin Drug Saf. 2005. 4:75-89. Hellmann MA, Panet H, Barhum Y, Melamed E, Offen D. Increased survival and migration of engrafted mesenchymal bone marrow stem cells in 6-hydroxydopamine- lesioned rodents. Neurosci Lett. 2006. 395:124-128. Hermann A, Gastl R, Liebau S, Popa MO, Fiedler J, Boehm BO, Maisel M, Lerche H, Schwarz J, Brenner R, Storch A. Efficient generation of neural stem cell-like cells from adult human bone marrow stromal cells. J Cell Sci. 2004. 117: 4411-4422. Herzog EL, Chai L, Krause DS. Plasticity of marrow-derived stem cells. Blood. 2003. 102:3483-3493. Hess D, Li L, Martin M, Sakano S, Hill D, Strutt B, Thyssen S, Gray DA, Bhatia M. Bone marrow-derived stem cells initiate pancreatic regeneration. Nat Biotechnol. 2003. 21:763-770. Horvath CM, Darnell JE. The state of the STATs: recent developments in the study of signal transduction to the nucleus. Curr Opin Cell Biol. 1997. 9:233-239. Hoshino R, Chatani Y, Yamori T, Tsuruo T, Oka H, Yoshida O, Shimada Y, Ari-i S, Wada H, Fujimoto J, Kohno M. Constitutive activation of the 41-/43-kDa mitogen-activated protein kinase signaling pathway in human tumors. Oncogene. 1999. 18:813-822. Howe A, Aplin AE, Alahari SK, Juliano RL. Integrin signaling and cell growth control. Curr Opin Cell Biol. 1998. 10:220-231. Hubbard SR, Till JH. Protein tyrosine kinase structure and function. Annu Rev Biochem. 2000. 69:373-398. Hughes S. Cardiac stem cells. J Pathol. 2002. 197:468-478. Ianus A, Holz GG, Theise ND, Hussain MA. In vivo derivation of glucose- competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J. Clin. Invest. 2003. 111:843-850. Imada K, Leonard WJ. The Jak-STAT pathway. Mol Immunol. 2000. 37:1-11. Irvine RF, Schell MJ. Back in the water: the return of the inositol phosphates. Nat Rev Mol Cell Biol. 2001. 2:327-338. Ito T, Suzuki A, Imai E, Okabe M, Hori M. Bone marrow is a reservoir of repopulating mesangial cells during glomerular remodeling. J Am Soc Nephrol. 2001. 12:2625-2635. Ivancsits S, Diem E, Jahn O, Rüdiger HW. Age-related effects on induction of DNA strand breaks by intermittent exposure to electromagnetic fields. Mech Ageing Dev. 2003. 124:847-850. Ivancsits S, Pilger A, Diem E, Jahn O, Rüdiger HW. Cell type-specific genotoxic effects of intermittent extremely low-frequency electromagnetic fields. Mutat Res. 2005. 583: 184-8. Jin M, Blank M, Goodman R. ERK1/2 phosphorylation, induced by electromagnetic fields, diminishes during neoplastic transformation. J Cell Biochem. 2000. 78:371- 379. Johansen C, Olsen JH. Mortality from amyotrophic lateral sclerosis, other chronic disorders, and electric shocks among utility workers. Am J Epidemiol. 1998. 148: 362-368. Jolley WB, Hinshaw DB, Knierim K, Hinshaw DB. Magnetic field effects on calcium efflux and insulin secretion in isolated rabbit islets of Langerhans. Bioelectromagnetics. 1983. 4:103-106. Jones PH, Harper S, Watt FM. Stem cell patterning and fate in human epidermis. Cell. 1995. 80:83-93. Kale S, Karihaloo A, Clark PR, Kashgarian M, Krause DS, Cantley LG. Bone marrow stem cells contribute to repair of the ischemically injured renal tubule. J Clin Invest. 2003. 112:42-49. Kaneko S, Motomura S, Ibayashi H. Differentiation of human bone marrow- derived fibroblastoid colony forming cells (CFU-F) and their roles in haemopoiesis in vitro. Br J Haematol. 1982. 51:217-225. Keilhoff G, Goihl A, Langnäse K, Fansa H, Wolf G. Transdifferentiation of mesenchymal stem cells into Schwann cell-like myelinating cells. Eur J Cell Biol. 2006. 85:11-24. Kohno M, Pouyssegur J. Pharmacological inhibitors of the ERK signaling pathway: application as anticancer drugs. Prog Cell Cycle Res. 2003. 5:219-224. Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev. 2001. 81:807-869. Lavoie JN, L''Allemain G, Brunet A, Müller R, Pouysségur J. Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J. Biol. Chem. 1996. 271:20608-20616. Levy YS, Merims D, Panet H, Barhum Y, Melamed E, Offen D. Induction of neuron-specific enolase promoter and neuronal markers in differentiated mouse bone marrow stromal cells. J Mol Neurosci. 2003. 21:121-132. Li CY, Thériault G, Lin RS. Residential exposure to 60-Hertz magnetic fields and adult cancers in Taiwan. Epidemiology. 1997. 8:25-30. Li DK, Odouli R, Wi S, Janevic T, Golditch I, Bracken TD, Senior R, Rankin R, Iriye R. A population-based prospective cohort study of personal exposure to magnetic fields during pregnancy and the risk of miscarriage. Epidemiology. 2002. 13:9-20. Liebmann C. Regulation of MAP kinase activity by peptide receptor signalling pathway: paradigms of multiplicity. Cell Signal. 2001. 13:777-785. Lin H, Blank M, Rossol-Haseroth K, Goodman R. Regulating genes with electromagnetic response elements. J Cell Biochem. 2001. 81:143-148. Locatelli F, Corti S, Donadoni C, Guglieri M, Capra F, Strazzer S, Salani S, Del Bo R, Fortunato F, Bordoni A, Comi GP. Neuronal differentiation of murine bone marrow Thy-1- and Sca-1-positive cells. J Hematother Stem Cell Res. 2003. 12: 727- 734. Lohmann CH, Schwartz Z, Liu Y, Guerkov H, Dean DD, Simon B, Boyan BD. Pulsed electromagnetic field stimulation of MG63 osteoblast-like cells affects differentiation and local factor production. J Orthop Res. 2000. 18:637-646. Lohmann CH, Schwartz Z, Liu Y, Li Z, Simon BJ, Sylvia VL, Dean DD, Bonewald LF, Donahue HJ, Boyan BD. Pulsed electromagnetic fields affect phenotype and connexin 43 protein expression in MLO-Y4 osteocyte-like cells and ROS 17/2.8 osteoblast-like cells. J Orthop Res. 2003. 21:326-334. Longo FM, Yang T, Hamilton S, Hyde JF, Walker J, Jennes L, Stach R, Sisken BF. Electromagnetic fields influence NGF activity and levels following sciatic nerve transection. J Neurosci Res. 1999. 55:230-237. Lu L, Chen X, Zhang CW, Yang WL, Wu YJ, Sun L, Bai LM, Gu XS, Ahmed S, Dawe GS, Xiao ZC. Morphological and functional characterization of predifferentiation of myelinating glia-like cells from human bone marrow stromal cells through activation of F3/Notch signaling in mouse retina. Stem Cells. 2008. 26:580-590. Lyle DB, Wang XH, Ayotte RD, Sheppard AR, Adey WR. Calcium uptake by leukemic and normal T-lymphocytes exposed to low frequency magnetic fields. Bioelectromagnetics. 1991. 12:145-156. Mandell JW, Hussaini IM, Zecevic M, Weber MJ, VandenBerg SR. In situ visualization of intratumor growth factor signaling: immunohistochemical localization of activated ERK/MAP kinase in glial neoplasms. Am. J. Pathol. 1998. 153:1411- 1423. Manni V, Lisi A, Rieti S, Serafino A, Ledda M, Giuliani L, Sacco D, D''Emilia E, Grimaldi S. Low electromagnetic field (50 Hz) induces differentiation on primary human oral keratinocytes (HOK). Bioelectromagnetics. 2004. 25:118-126. Manikonda PK, Rajendra P, Devendranath D, Gunasekaran B, Channakeshava, Aradhya RS, Sashidhar RB, Subramanyam C. Influence of extremely low frequency magnetic fields on Ca2+ signaling and NMDA receptor functions in rat hippocampus. Neurosci Lett. 2007. 413:145-149. Mayrovitz HN, Groseclose EE, Markov M, Pilla AA. Effects of permanent magnets on resting skin blood perfusion in healthy persons assessed by laser Doppler flowmetry and imaging. Bioelectromagnetics. 2001. 22:494-502. Mayrovitz HN, Larsen PB. Effects of pulsed electromagnetic fields on skin microvascular blood perfusion. Wounds. 1992. 4:197-202. Mayrovitz HN, Larsen PB. A preliminary study to evaluate the effect of pulsed radio frequency field treatment on lower extremity peri-ulcer skin microcirculation of diabetic patients. Wounds. 1995.7:90-93. Mazor R, Korenstein-Ilan A, Barbul A, Eshet Y, Shahadi A, Jerby E, Korenstein R. Increased levels of numerical chromosome aberrations after in vitro exposure of human peripheral blood lymphocytes to radiofrequency electromagnetic fields for 72 hours. Radiat Res. 2008. 169:28-37. McDonald PH, Chow CW, Miller WE, Laporte SA, Field ME, Lin FT, Davis RJ, Lefkowitz RJ. Beta-arrestin 2: a receptor-regulated MAPK scaffold for the activation of JNK3. Science. 2000. 290:1574-1577. McKay JC, Prato FS, Thomas AW. A literature review: the effects of magnetic field exposure on blood flow and blood vessels in the microvasculature. Bioelectromagnetics. 2007. 28:81-98. McLauchlan KA, Steiner UE. The spin-correlated radical pair has a reaction intermediate. Mol Phys. 1991. 241:73. Michaelis J, Schüz J, Meinert R, Menger M, Grigat JP, Kaatsch P, Kaletsch U, Miesner A, Stamm A, Brinkmann K, Kärner H. Childhood leukemia and electromagnetic fields: results of a population-based case-control study in Germany. Cancer Causes Control. 1997. 8:167-174. Michaelis J, Schüz J, Meinert R, Zemann E, Grigat JP, Kaatsch P, Kaletsch U, Miesner A, Brinkmann K, Kalkner W, Kärner H. Combined risk estimates for two German population-based case-control studies on residential magnetic fields and childhood acute leukemia. Epidemiology. 1998. 9:92-94. Morris C, Skalak T. Static magnetic fields alter arteriolar tone in vivo. Bioelectromagnetics. 2005. 26:1-9. Moutoussamy S, Kelly PA, Finidori J. Growth-hormone-receptor and cytokine- receptor-family signaling. Eur J Biochem. 1998. 255:1-11. Mullins JM, Penafiel LM, Juutilainen J, Litovitz TA. Dose-response of electromagnetic field-enhanced ornithine decarboxylase activity. Bioelectrochem Bioenerg. 1999. 48:193-199. Nie K, Henderson A. MAP kinase activation in cells exposed to a 60 Hz electromagnetic field. J Cell Biochem. 2003. 90:1197-1206. Oka H, Chatani Y, Hoshino R, Ogawa O, Kakehi Y, Terachi T, Okada Y, Kawaichi M, Kohno M, Yoshida O. Constitutive activation of mitogen-activated protein (MAP) kinases in human renal cell carcinoma. Cancer Res. 1995. 55:4182- 4187. Okamoto R, Yajima T, Yamazaki M, Kanai T, Mukai M, Okamoto S, Ikeda Y, Hibi T, Inazawa J, Watanabe M. Damaged epithelia regenerated by bone marrow- derived cells in the human gastrointestinal tract. Nat Med. 2002. 8:1011-1017. Okano H, Onmori R, Tomita N, Ikada Y. Effects of a moderate-intensity static magnetic field on VEGF-A stimulated endothelial capillary tubule formation in vitro. Bioelectromagnetics. 2006. 27:628-640. O''Neill E, Kolch W. Conferring specificity on the ubiquitous Raf/MEK signalling pathway. Br J Cancer. 2004. 90:283-288. Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, Quaini F, Nadal-Ginard B, Bodine DM, Leri A, Anversa P. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci U.S.A. 2001. 98:10344- 10349. Ortiz-Gonzalez XR, Keene CD, Verfaillie CM, Low WC. Neural induction of adult bone marrow and umbilical cord stem cells. Curr Neurovasc Res. 2004. 1:207-213. Patterson TE, Sakai Y, Grabiner MD, Ibiwoye M, Midura RJ, Zborowski M, Wolfman A. Exposure of murine cells to pulsed electromagnetic fields rapidly activates the mTOR signaling pathway. Bioelectromagnetics. 2006. 27:535-544. Pereira RC, Economides AN, Canalis E. Bone morphogenetic proteins induce gremlin, a protein that limits their activity in osteoblasts. Endocrinology. 2000. 141: 4558-4563. Persinger MA, Koren SA. A theory of neurophysics and quantum neuroscience: implications for brain function and the limits of consciousness. Int J Neurosci. 2007. 117:157-175. Pessina GP, Aldinucci C, Palmi M, Sgaragli G, Benocci A, Meini A, Pessina F. Pulsed electromagnetic fields affect the intracellular calcium concentrations in human astrocytoma cells. Bioelectromagnetics. 2001. 22:503-510. Petersen BE. Hepatic “stem” cells: Coming full circle. Blood Cells Mol Dis. 2001. 27:590-600. Pilla AA. Electrochemical information and energy transfer in vivo. In: Proceedings of seventh IECEC. Washington, DC: American Chemical Society. 1972. p. 761-764. Poulsom R, Forbes SJ, Hodivala-Dilke K, Ryan E, Wyles S, Navaratnarasah S, Jeffery R, Hunt T, Alison M, Cook T, Pusey C, Wright NA. Bone marrow contributes to renal parenchymal turnover and regeneration. J Pathol. 2001. 195:229- 235. Raabe T, Rapp UR. KSR--a regulator and scaffold protein of the MAPK pathway. Sci STKE. 2002. E28. Savitz DA, Liao D, Sastre A, Kleckner RC, Kavet R. Magnetic field exposure and cardiovascular disease mortality among electric utility workers. Am J Epidemiol. 1999. 149:135-142. Schoeters G, Leppens H, Van Gorp U, Van Den Heuvel R. Haemopoietic long- term bone marrow cultures from adult mice show osteogenic capacity in vitro on 3-dimensional collagen sponges. Cell Prolif. 1992. 25:587-603. Schwartz Z, Fisher M, Lohmann CH, Simon BJ, Boyan BD. Osteoprotegerin (OPG) production by cells in the osteoblast lineage is regulated by pulsed electromagnetic fields in cultures grown on calcium phosphate substrates. Ann Biomed Eng. 2009. 37:437-444. Schwartz Z, Simon BJ, Duran MA, Barabino G, Chaudhri R, Boyan BD. Pulsed electromagnetic fields enhance BMP-2 dependent osteoblastic differentiation of human mesenchymal stem cells. J Orthop Res. 2008. 26:1250-1255. Selvamurugan N, Kwok S, Vasilov A, Jefcoat SC, Partridge NC. Effects of BMP-2 and pulsed electromagnetic field (PEMF) on rat primary osteoblastic cell proliferation and gene expression. J Orthop Res. 2007. 25:1213-1220. Sheiko EA, Shikhlyarova AI, Zlatnik EY, Zakora GI, Nikipelova EA. Electromagnetic oscillations as a factor modulating blood neutrophil function. Bull Exp Biol Med. 2004. 137:499-502. Shi Y, Gaestel M. In the cellular garden of forking paths: how p38 MAPKs signal for downstream assistance. Biol Chem. 2002. 383:1519-1536. Smith T,Wong-Gibbons D, Maultsby J. Microcirculatory effects of pulsed electromagnetic fields. J Orthop Res. 2004. 22:80-84. Sollazzo V, Traina GC, DeMattei M, Pellati A, Pezzetti F, Caruso A. Responses of human MG-63 osteosarcoma cell line and human osteoblast-like cells to pulsed electromagnetic fields. Bioelectromagnetics. 1997. 18:541-547. Song G, Ju Y, Shen X, Luo Q, Shi Y, Qin J. Mechanical stretch promotes proliferation of rat bone marrow mesenchymal stem cells. Colloids Surf B Biointerfaces. 2007. 58:271-277. Strauch B, Patel MK, Navarro JA, Berdichevsky M, Yu HL, Pilla AA. Pulsed magnetic fields accelerate cutaneous wound healing in rats. Plast Reconstr Surg. 2007. 120:425-430. Stocum DL. Development. A tail of transdifferentiation. Science. 2002. 298:1901- 1903. Stuchly MA, Dawson TW. Interaction of low-frequency electric and magnetic fields with the human body. Pro IEEE. 88:643-664. Sun S, Titushkin I, Cho M. Regulation of mesenchymal stem cell adhesion and orientation in 3D collagen scaffold by electrical stimulus. Bioelectrochemistry. 2006. 69:133-141. Tepper OM, Callaghan MJ, Chang EI, Galiano RD, Bhatt KA, Baharestani S, Gan J, Simon B, Hopper RA, Levine JP, Gurtner GC. Electromagnetic fields increase in vitro and in vivo angiogenesis through endothelial release of FGF-2. FASEB J. 2004. 18:1231-1233. Terada N, Hamazaki T, Oka M, Hoki M, Mastalerz DM, Nakano Y, Meyer EM, Morel L, Petersen BE, Scott EW. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature. 2002. 416:542-545. Testa JR, Bellacosa A. AKT plays a central role in tumorigenesis. Proc Natl Acad Sci U.S.A. 2001. 98:10983-10985. Theise ND, Nimmakayalu M, Gardner R, Illei PB, Morgan G, Teperman L, Henegariu O, Krause DS. Liver from bone marrow in humans. Hepatology. 2000. 32:11-16. Tsai MT, Li WJ, Tuan RS, Chang WH. Modulation of osteogenesis in human mesenchymal stem cells by specific pulsed electromagnetic field stimulation. J Orthop Res. 2009. [Epub ahead of print] Tseng PY, Chen CJ, Sheu CC, Yu CW, Huang YS. Spontaneous differentiation of adult rat marrow stromal cells in a long-term culture. J Vet Med Sci. 2007. 69:95-102. Wang FW, Jia DY, Du ZH, Fu J, Zhao SD, Liu SM, Zhang YM, Ling EA, Hao AJ. Roles of activated astrocytes in bone marrow stromal cell proliferation and differentiation. Neuroscience. 2009. 160:319-329. Ware JA, Simons M. Angiogenesis in ischemic heart disease. Nat Med. 1997. 3: 158-64. Wertheimer N, Leeper E. Electrical wiring configurations and childhood cancer. Am J Epidemiol. 1979. 109:273-284. Wislet-Gendebien S, Bruyère F, Hans G, Leprince P, Moonen G, Rogister B. Nestin-positive mesenchymal stem cells favour the astroglial lineage in neural progenitors and stem cells by releasing active BMP4. BMC Neurosci. 2004. 5:33. Wolf FI, Torsello A, Tedesco B, Fasanella S, Boninsegna A, D''Ascenzo M, Grassi C, Azzena GB, Cittadini A. 50-Hz extremely low frequency electromagnetic fields enhance cell proliferation and DNA damage: possible involvement of a redox mechanism. Biochim Biophys Acta. 2005. 1743:120-129. Woodbury D, Schwarz EJ, Prockop DJ, Black IB. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res. 2000. 61:364-370. Wu S, Suzuki Y, Ejiri Y, Noda T, Bai H, Kitada M, Kataoka K, Ohta M, Chou H, Ide C. Bone marrow stromal cells enhance differentiation of cocultured neurosphere cells and promote regeneration of injured spinal cord. J Neurosci Res. 2003. 72:343- 351. Wu X, Senechal K, Neshat MS, Whang YE, Sawyers CL. The PTEN/MMAC1 tumor suppressor phosphatase functions as a negative regulator of the phosphoinositide 3-kinase/Akt pathway. Proc Natl Acad Sci U.S.A. 1998. 95: 15587-15591. Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science. 1995. 270: 1326-1331. Yanagisawa-Miwa A, Uchida Y, Nakamura F, Tomaru T, Kido H, Kamijo T, Sugimoto T, Kaji K, Utsuyama M, Kurashima C. Salvage of infarcted myocardium by angiogenic action of basic fibroblast growth factor. Science. 1992. 257:1401-1403. Yamaguchi R, Takami Y, Yamaguchi Y, Shimazaki S. Bone marrow-derived myofibroblasts recruited to the upper dermis appear beneath regenerating epidermis after deep dermal burn injury. Wound Repair Regen. 2007. 15:87-93. Yang H, Xia Y, Lu SQ, Soong TW, Feng ZW. Basic fibroblast growth factor- induced neuronal differentiation of mouse bone marrow stromal cells requires FGFR-1, MAPK/ERK, and transcription factor AP-1. J Biol Chem. 2008. 283:5287- 595. Ying QL, Nichols J, Evans EP, Smith AG. Changing potency by spontaneous fusion. Nature. 2002. 416:545-548. Yordy JS, Muise-Helmericks RC. Signal transduction and the Ets family of transcription factors. Oncogene. 2000. 19:6503-6513. Zhang Y, Ding J, Duan W, Fan W. Influence of pulsed electromagnetic field with different pulse duty cycles on neurite outgrowth in PC12 rat pheochromocytoma cells. Bioelectromagnetics. 2005. 26:406-411.
摘要: Pulsed electromagnetic fields have been used in orthopedic disease for thirty years. Bone marrow stromal cells (BMSCs) are multipotent stem cell. In our preliminary study, some researchers found that it seemed that there was no effect when BMSCs were simply exposed to PEMFs. For the reason given above, we have adequate reason to think that BMSCs may need some inducers to become sensitive to PEMFs. Basic fibroblast growth factor (bFGF) is important in the processes of proliferation and differentiation. In the present study, according to different concentrations of bFGF (0, 5, 10 ng/ml) in medium, we divided BMSCs into 3 groups. BMSCs were set in a microincubator between a pair of Helmholtz coils powered by a pulse generator (60 Hz, 25 gauss) for 6 hours a day for a period of 4 days. By using immunochemical staining methods and MTT assay, we found that PEMFs can promote the proliferation and viability of cells, especially in the group that contained bFGF (5 ng/ml). The results of proliferation and viability are similar in bFGF 5 and 10 ng/ml plus PEMFs. To probe into intracellular signal transduction, we used inhibitors which correlated with cell proliferation. The results indicate that treatment with Genistein(protein tyrosine kinase inhibitor) block the effect of PEMFs but not bFGF. Furthermore, another results indicate that treatment with either PD098059 or U0126 (both are MEK inhibitors) block the effect of PEMFs. It means that PEMFs and bFGF seem to enhance cell proliferation and viability via the MEK pathway and have a synergistic effect. We hope the application of PEMFs/bFGF combined with BMSCs transplantation in vivo to enhance cells viability and proliferation in the future. Comparatively, the synergistic effect of PEMFs and bFGF may be worthy to explore.
URI: http://hdl.handle.net/11455/13935
其他識別: U0005-2407200911391500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2407200911391500
Appears in Collections:獸醫學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.