Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/14096
標題: 薑黃素對大白鼠胰臟分泌胰島素之影響
Effects of Curcumin on Insulin Secretion in Perfused Rat Pancreas
作者: 陳達人
Chen, Da-Jen
關鍵字: insulin
胰島素
curcumin
薑黃素
出版社: 獸醫學系暨研究所
引用: 高本釧(1985)。新編中藥大辭典。新文豐出版公司 17:21-23 張賢哲(1998)。黃帝內經一學就通。智林文化,台北縣。 戴新民(1987)。現代本草中國藥才學(下)。啟業書局 490-493。 Akira O, Nawano M, Ueta K, Fujita T, Umebayashi I, Arakawa K, Ishihara TK, Saito A, Anai M, Funaki M, Kikuchi M, Oka Y, Asano T. Inhibitory effect of hyperglycemia on insulin-induced Akt/Protein kinase B activation in skeletal muscle. Am J Physiol Endocrinol Metab 280: E816-824, 2001. Alessi DR, Downes CP. The role of PI 3-kinase in insulin action. Biochim Biophys Acta 1436: 151-164, 1998. Angel I, Niddam R, Langer SZ. Involvement of alpha-2 adrenergic receptor subtypes in hyperglycemia. J Pharmacol Exp Ther 254: 877-882, 1990. Antony S, Kuttan R, Kuttan G.. Immunomodulatory activity of curcumin. Immunol Invest 28: 291-303, 1999. Araki E, Lipes MA, Patti ME, Bruning JC, Haag B, Johnson RS, Kahn CR. Alternative pathway of insulin signaling in mice with targetd disruption of the IRS-1 gene. Nature 372: 186-190. Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes 40: 405-412, 1991. Baldwin SA. Mammalian passive glucose transports: members of an ubiquitous family of active and passive transport proteins. Biochim Biophys Acta 1154: 17-49, 1993. Bellacosa A, Testa JR, Staal SP, Tsichlis PN. A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region. Scince 254: 274-277, 1991. Berger J, Moller DE. The mechanisms of action of PPARs. Annual Review of Medicine 53:409-435, 2002. Bergeron R, Russell RR, Young LH, Ren JM, Marcucci M, Lee A, Shulman GI. Effect of AMPK activation on muscle glucose metabolism in conscious rats. Am J Physiol 276: E938-E944, 1999. Bharat B. Aggarwal, Kuzhuvelil B. Harikumar. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic disease. The International Journal of Biochemistry & Cell Biology 41: 40–59, 2009. Bray GA, York DA. Hypothalamic and genetiv obesity in experimental animals: an automonia and endocrine hypothesis. Physiol Rev 59: 719-809, 1996. Brownlee M. Advanced protein glycosylation in diabetes and aging. Annu Rev Med 46: 223-234, 1995. Brouet I, Ohshima H. Curcumin, am anti-tumour promoter and anti-inflammatory agent, inhibits induction of nitric oxide synthase in activated macrophages. Biochem Biophys Res Commun 206: 533-540, 1995. Buren J, Liu HX, Jensen J, Eriksson JW. Dexamethasone impairs insulin signaling and glucose transport by depletion of insulin receptor substrate-1, phosphatidylinositol 3-kinase and protein kinase B in primary cultured rat adipocytes. Eur J Endocrinol 146: 419-429. Chan SL, Perrett CW, Morgan NG. Differential expression of α 2-adrenoceptor subtypes in purified rat pancreatic islet A- and B-cells. Cell Signal 9: 71-78, 1997. Chang MS, Oh MS, Teayoun do R, Jung KJ, Park S, Choi SB, Ko BS, Park SK. Effects of Okchun-San, a herbal formulation, on blood glucose levels and body weight in a model of type 2 diabetes. J Ethnopharmacol 103: 491-495, 2006. Cheng AY, Fantus IG. Oral antihyperglycemia therapy for type 2diabetes mellitus. CMAJ 172: 213-226, 2005. Chuang SE, Kuo ML, Hsu CH. Curcumin-containing diet inhibits diethylnitrosamine-induced murine hepatocarcinogenesis. Carcinogenesis 21: 331-335, 2000. Churchill M, Chadburn A, Bilinski RT. Inhibition of intestinal tumors by curcumin is associated with changes in the intestinal immune cell profile. J Surg Res 89: 169-175, 2000. Corbett J, Mcdaniel M. Intraislet release of interleukine 1 inhibits β-cell function by inducing β-cell expression of inducible nitric oxide sunthase. J Exp Med 181: 559-568, 1995. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378: 785-789, 1995. Dagon Y, Avraham Y, Berry EM. AMPK activation regulates apoptosis, adipogenesis, and lipolysis by eIF2alpha in adipocytes. Biochem Biophys Res Commun 340: 43-47, 2006. Derosa G, Gaddi AV, Piccinni MN, Salvadeo S, Ciccarelli L, Fogari E, Ghelfi M, Ferrari I, Cicero AF. Differentail effect of glimepiride and rosiglitazone on metaboliccontrol of type 2 diabetic patients treates with metformin: a randomized, double-bind, clinical trial. Diabetes, obesity and metabolism 8:197-205, 2006. Devedjian JC, Pujol A, Cayla C, George M, Casellas A, Paris H, Bosch F. Transgenic mice overexpressing α2A-adrenoceptors in pancreatic β-cells show altered regulation of glucose homeostasis. Diabetologia 43: 899-906, 2000. Eunmi Jang, Myungsook, C, Unju Jung Myungjoo Kim, Hyejin K, Seonmin J, Sukyung S, ChiNam S, MiKyung L. Beneficial effects of curcumin on hyperlipidemia and in sulin resistance in high –fat-ded hamsters. Metabolism clinical and experimental 57: 1576-1583, 2008. Dikshit M, Rastogi L, Shukla R, Srimal RC. Prevention of ischemia- induced biochemical changes by curcumin and quinidine in the cat heart. Indina J of Med Res 101: 31-35, 1995. Drucker DJ. Enhancing incretin action for the treatment of type 2 diabetes. Diabetes Care 26: 2929-2940, 2003. Eunmi Jang, Myungsook, C, Unju Jung Myungjoo Kim, Hyejin K, Seonmin J, Sukyung S, ChiNam S, MiKyung L. Beneficial effects of curcumin on hyperlipidemia and in sulin resistance in high –fat-ded hamsters. Metabolism clinical and experimental 57: 1576-1583, 2008. EkaterinaV, Bobrovnikova-Marjon, Philip L. Marjon, Olena Barbash, David L, Vander Jagt, Steve F. Expression of angiogenic factors vascular endothelial growth factor and interleukin-8/CXCL8 IS highly responsive to ambient glutamine availability:Role of nuclear factor-κ B and activating protein-1.Cancer Res 64: 858-4869, 2004. Fantin VR, Wang Q, Lienhard GE, Keller SR. Mice lacking insulin receptor substrate 4 exhibit mild defects in growth, reproduction, and glucose homeostasis. Am J Physiol Endocrinol Metab 278: E127-133. Freychet P, Roth J, Neville DM. Insulin receptors in liver: specific bindind of 125-insulin to the plasma membrane and its relation to insulin bioactivity. Proc Natl Acad Sci USA 68: 1833-1837, 1971. Fryer LG, Parbu-Patel A, Carling D. The Anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways. J Biol Chem 277: 25226-25232, 2002. Ganong WF. Endocrine functions of the pancreas & regulation of carbohydrate metabolism. In Riew of medical physiology. 18th ed., W.F. Ganong (ed.), Appleton & Lange, Stamford, Connecticut, USA, pp. 324-326, 1997. Gravey WT. Glucose transport and NIDDM. Diabetes Care 15: 396-417, 1992. Haiyan L, Sanjay JD, John JE. Curcumin potently blocks Kv1.4 potassium channels. Biochem Biophys Res Comm 344: 1161-1165, 2006. Hardie DG, Hawley SA. AMP-activated protein kinase: the energy charge hypothesis revisited. Bioessays 23: 1112-1119, 2001. Hammarstedt A, Andersson CX, Rotter Sopasakis V, Smith U. The effect of PPARgamma ligands on the adipose tissue in insulin restance. Prostaglandind, leukotrienes, and essential fatty acids 73: 65-75, 2005. Harrity T, Farrely D, Tieman A, Chu C, Kunselman L, Gu L, Ponticiello R, Cap M, Qu F, Shao C, Wang W, Zhang H, Fenderson W, Chen S, Devasthale P, Jeon Y, Seethala R, Yang Wp, Ren J, Zhou M, Ryono D, Biller S, Mookhtiar KA, Wetterau J, Greeg R, Cheng PT, Hariharan N.Muraglitazar, a novel dual (alpha/gamma)peroxisome proliferator-activated receptor activator, improves diabetes and other metabolic abnormalities and preserves beta-cell function in db/db mice. Diabetes 55: 240-248, 2006. Hatchera H, Planalpb R, Chob J, Tortia FM, and Tortic SV. Curcumin: From ancient medicine to current clinical trials. Cell. Mol. Life Sci 65: 1631 – 1652, 2008. Hidaka H, Ishiko T, Furuhashi T. Curcumin inhibits interleukin-8 production and enhances interleukin 8 receptor expression on the cell surface: impact on human pancreatic carcinoma cell growth by autocrine regulation. Cancer 95: 1206-1214, 2002. Hideya F, Masaya H, Xiaorong Z, Shimpei F,Kazuhito F, Kentaro T, Yuichi N, Yoshihito F, Kotaro Y, Yuichiro Y, Yutaka, Nobuya I. Curcumin inhibits glucose production in isolated mice Hepatocytes. Diabetes research and clinical practice 80: 185-191, 2008. Hong RL, Spohn WH, and Hung MC. Curcumin inhibits tyrosine kinase activity of p185neu and also depletes p185neu. Clin Cancer Res 5: 1884-1891, 1999. Hubbard SR. Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog. EMBO J 16: 5572-5581, 1997. Hunag WH, Hung MC. Suppression of c-Jun/Ap-1 activation by an inhibitor of tumor promotion in mouse fibroblast cells. Pro Natl Acad Sci USA 88: 5295-5296, 1991. Irwin N, Green BD, Gault VA, Cassidy RS, Harte FP, Harriott P, Flatt PR. Effects on glucose homeostasis and insulin secretion of long term activation of the glucose-dependent insulinotropic polypeptide(GIP) receptor by N-AcGIP(LysPAL37)in nomal mice. Peptides 27: 893-990, 2006. Jaruga E, Bielak-Zmijewska A Sikora E. Glutathione-independent mechanism of apoptosis inhibition by curcumin in rat thymocytes. Biochem Pharmacol 56: 961-965, 1998. Jayaprakasha G, Jagan L, Mohan R. Improve HPLC method for the determination of curcumin, demethoxycurcumin, and bisdemethoxy curcumin. J Agric Food Chen 50: 3668-3672, 2002. Jayesh B. Majithiya , R. Balaraman, Rajani Giridhar, Mange Ram Yadav. Effect of bis[curcumino]oxovanadium complex on non-diabetic and streptozotocin-induced diabetic rats. Journal of Trace Elements in Medicine and Biology 18: 211–217, 2005. Kido O, Nakae J, Accili D. The insulin receptor and its cellular targets. J Clin Endocrinol Metab 86: 972-979, 2000. Kohn AS, Summers S, Birnbaum M, Roth R.Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J Biol Chem 271: 31372-31378, 1996. Kohn AD, Takeuchi F, Roth RA. Akt, pleckstrin homology domain containing kinase, is activated primarily by phosphorylation. J Biol Chem 271: 21920-21926, 1996. Kunchandy E, Rao MNA. Oxygen radical scavenging activity of curcumin .Int’l J Pharm 38: 239-240, 1990. . Laakso M.Insulin resistance and its impact on the approach to therapy of type 2 diabetes. Int J Clin Pract Suppl: 8-12, 2001. Lacey RJ, Chan SL, Cable HC, James RF, Perrett CW, Scarpello JH, Morgan NG. Expression of α2- and β-adrenoceptor subtypes in human islets of Langerhans. J Endocrinol 148: 531-543, 1996. Leonard B, Austin E, Peter DB. Curcumin induces electrical activity in rat pancreatic β-cells by activating the volume-regulated anion channel. Biochem Phar 73: 1768-1775, 2007. Levine RM, Goldstein S, Huddlest B, Klein SP. Action of insulin on the permeability of cells to free hexoses, as studied by its effect on distribution of galactose. Am J Physiol 164: 70-76, 1950. Lindsay JR, Duffy NA, McKillop AM, Ardill J, Harte FP, Flatt PR, Bell PM. Inhibition of dipeptideyl peptidaseIV activity by oral metformin in Type 2 diabetes. Diabet Med 22: 654-657, 2005. Liu K, Xu L, Szalkowski D, Li Z, Ding V, Kwei G, Huskey S, Moller DE, Heck JV, Zhang BB, Jones AB. Discovery of a potent, highly selective, and orally efficacious small-molecule activator of insulin receptor. Journal of Medicinal Chemistry 43: 3487-3494, 2000. Lin TA, Lawrence JJ. Control of PHAS-I phosphorylation in 3T3-L1 adipocytes: effects of inhibiting protein phosphatases and the p7065k-signaling pathway. Diabetologia 42: 128-138, 1997. Mayer JP, Zhang F, DiMarchi RD. Insulin structure and function. Biopolymers 88 : 687-713, 2007. McGarry JD. Banting lecture 2001:dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes 51: 7-18, 2002. Miles PD, Li S, Hart M, Romeo O, Cheng J, Cohen A, Raafat K, Moossa AR, Olefsky JM. Mechanisms of insulin resistance in experimental hyperinsulinemic dogs. J Clin Invest 101: 202-211, 1998. Minpei K, Yoshihiro M,Tozo N, Tatsumasa M, Hideyuki K, Misuzu T, Kazuma T, Teruo K,Kaku N, and Mikio K. Hypoglycemic Effects of Turmeric (Curcuma longa L. Rhizome) on Genetically Diabetic KK-Ay Mice. Biol. Pharm. Bull. 28(5): 937-939, 2005 Miquel J, Bernd A, Sempere, JM, Diaz-Alperi J, Ramirez A. The curcuma antioxidants: pharmacological effects and prospects for future clinical use. A review. Archives of Gerontology and Geriatrics 34: 37-46, 2002. Musi N. AMP-activated protein kinase and type 2 diabetes. Curr Med Chem 13: 583-589, 2006. Muller G. The molecular mechanism of the insulin-mimetic/sensitizing activity of the antidiabetic sulfonylurea drug. AMaryl Molecular medicine 6: 907-933, 2000. Nanji AA, Jokelainen K, Tipoe GL,Rahemtulla A, Thomas P, Dannenberg AJ. Curcumin prevents alcohol-induced liver disease in rats by inhibiting the expression of NF-kappa B-dependent genes.American Journal of Physiology: Gastrointestinal and Liver Physiology 284: G321-G327, 2003. Ojuka EO, Nolte LA, Holloszy JO. Increased expression of GLUT-4 and hexokinase in rat epitrochlearis muscles exposed to AICAR in vitro. J Appl Physiol 88: 1072-1075, 2000. Okada T, Kawano Y, Sakakibara T, Hazeki O, Ui M. Essential role of phosphatidylinositol 3-kinase in insulin-induced glucose transport and antilipolysis in rat adipocytes. Studies with a selective inhibitor wortmannin. JBiol Chem 269: 3568-3573, 1994 Pessin JE, Saltiel AR. Signaling pathways in insulin action: molecular targets of insulin resistance. J Clin Invest 106: 165-169, 2000. Phan TT, See P, Lee ST. Protective effects of curcumin against oxidative damage on skin cells in vitro:its implication for wound healing. J Trauma 51: 927-931, 2001. Pidaran M, Leelavinothan P. Antioxidant effect of tetrahydrocurcumin in streptozotocin–nicotinamide induced diabetic rats. Life Sciences 79: 1720–1728, 2006. Pidaran M, Leelavinothan P. Influence of tetrahydrocurcumin on erythrocyte membrane bound enzymes and antioxidant status in experimental type 2 diabetic rats. Journal of Ethnopharmacology 113 : 479-486, 2007. Piper JT, Singhal SS, Salameh MS. Mechanisms of anti-carcinogenic properties of curcumin: the effect of curcumin on glutathione linked detoxification emzymes in rat liver . Int J Biochem Cell Biol 30: 445-456, 1998, Prigeon RL, Kahn SE, Porte D J. Effect of troglitazone on B cell function, insulin sensitivity, and glycemic control in subjects with type 2 diabetes mellitus. J Clin Endocrinol Metab 83: 819-823, 1998. Radha K , Anoop K. Singh, Jaya Gaddipati, Rikhab C. Srimal. Multiple biological activities of curcumin: A short review. Life Sciences 78:2081-2087, 2006. Rahman S, Rahman T, Ismail AA, Rashid AR. Diabetes-associated macrovasculopathy: pathophysiology and pathogenesis. Diabetes Obes Metab 9: 767-780, 2007. Rukkumani R, Aruna K, Varma PS, Rajasekaran KN, Menon VP. Comparative effects of curcumin and an analog of curcumin on alcohol and PUFA induced oxidative stress. Journal of Pharmacy and Pharmaceutical Sciences 7: 274-283, 2004. Willatgamuwa, SA , Kalpana MS, Srinivasanl k. Antidiabeticinfluence of dietary cumin deeds(curcumin cyminum)in streptozotocin induced diabetic rats. Nutrition Research 18: 131-142, 1998. Saltiel AR, Kahn CR. Insulin signaling and the regulation of glucose and lipid metabolism. Nature 414: 799-806, 2001. Sambandam N, Lopaschuk GD. AMP-activated protein kinase (AMPK) control of fatty acid and glucose metabolism in the ischemic heart. Prog Lipid Res 42: 238-256, 2003. Sanjaya S, Bharat BA. Activation of transcription factor NF-κB is suppressed by curcumin(diferulolylmethane). J Biol Chem 270: 24995-25000, 1995. Savontaus E, Fagerholm V, Rahkonen O, Scheinin M. Reduced blood glucose levels, increased insulin levels and improved glucose tolerance in α2A-adrenoceptor knockout mice. Eur J Pharmacol 578: 359-364, 2008. Sharma RA, Euden SA, Platton SL, Cooke DN, Shafayat A, Hewit, HR, Marczylo TH, Morgan B, Hemmingway D, Plummer SM, Pirmohamed M, Gescher AJ, and Steward WP. Phase I clinical trail of oral curcumin : biomarkers of systemic activity and compliance. Clin Cancer Res 10: 6847-6854, 2004. Shepherd PR, Nave BT, Siddle K. Insulin stimulation of glycogen synthesis and glycogen synthase activity is blocked by wortmannin and rapamycin in 3T3-L1 adipocytes: evidence for the involvement of phosphoinositide 3-kinase and p70 ribosomal protein-S6 kinase. Biochem J 305: 25-28, 1995. Shoke DA. Effect of bioflavonoids quercetin and curcumin on ischemic renal injury: a new class of renoprotective agents. Transplantation 66: 147-152, 1998. Sreejayan N, Rao MN. Nitric oxide scavenging by curcuminoids. J Pharm Pharmacol 49: 105-107, 1997. Sreejayan N, Rao MN. Free radical scavenging activity of curcuminoids. Arzneimittelforschung 46: 169-171, 1996. Stuart P. Weisberg, Rudolph Leibel, Drew V. Tortoriello. Dietary Curcumin Significantly Improves Obesity-Associated Inflammation and Diabetes in Mouse Models of Diabesity. Endocrinology 149(7): 3549–3558, 2008. Suman P, Sabkar BM, Tathagata C, Goutam KD, Tanya D, and Gaurisankar S. Selective protection os curcumin against carbon tetrachloride-induced inactivation of hepatic cytochrome P450 isozymes in rats. Cancer Detection and Prevention 29: 470-478, 2005. Tamemoto H, Tobe K, Tamauchi T, Terauchi Y, Kaburagi Y, Kadowaki T.Insulin resistance syndrome in mice deficient in insulin receptor substrate-1.Ann N Y Acad Sci 827: 85-93, 1997. Teayoun K, Jessica D, Albert JZ, Xiaoming H, Suresh TM. Curcumin activates AMPK and suppresses gene expression in hepatoma cells. Biochem Biophys Res Comm 388: 377-382, 2009. Tripathi BK, Srivastava AK. Diabetes mellitus:complications and therapeutics. MedSci Monit 12: RA 130-147, 2006. Tsuruzoe K, Emkey R, Kriauciunas M Ueki K, Kahn CR. Insulin receptor substrate 3(IRS-3) and IRS-4 impair IRS-1 and IRS-2-mediated signaling. Mol Cell Ciol 24: 26-38, 2001. Turcotte LP, Swenberger JR, Tucker MZ, Yee AJ. Increased fatty acid uptake and altered fatty acid metabolism in insulin-resistant muscle of obese zucker rats. Diabetes 50: 1389-1396, 2001. Uchida T, Nakamura T, Hasimoto N, Matsuda T, Kotani K, Sakaue H, Kido Y, Hayashi Y, Nakayama KI, White MF, Kasuga M. Deletion of Cdkn1b ameliorates hyperglycemia by maintaining compensatory hyperinsulinemai in diabetic mice. Nat Med 11: 175-182, 2005. Viletinck AJ, DeBruyne T, Apers S, Pieters LA. Plant-derives leading copounds for chemotherapy of human immunodeficiency virus (HIV)infection. Planta Medica 64: 97-109, 1998. Virtanen KA, Iozzo P, Hällsten K, Huupponen R, Parkkola R, Janatuinen T, Lönnqvist F, Viljanen T, Rönnemaa T, Lönnroth P, Knuuti J, Ferrannini E, Nuutila P. Increased fat mass compensates for insulin resistance in abdominal obesity and type 2 diabetes: a positron-emitting tomography study. Diabetes 54: 2720-2726, 2005 Wargovich MJ, Jimenez A, McKee L, Steele VE, Velasco M, Woods J, Price R, Gray K, Kelloff GJ. Efficacy of potential chemopreventive agents on rat colon aberrant crypt formation and progression. Carcinogenesis 21: 1149-1155, 2000. Zander M, Taskiran M, Toft-Nielsen MB, Madsbad S, Holst JJ. Additive glucose-lowering effects of glucagon-like peptide-1 and metformin in type 2diabetes. Diabetes Care 24: 720-725, 2001. Zimmet P, Alberti KG, Shaw J, Global and societal implications of the diabetes epidemic. Nature 414: 782-787, 2001.
摘要: 目前用於治療糖尿病的藥物有磺醯尿類、雙胍類、α-glucosidase抑制劑、thiazolidinedione、胰島素以及最新的dipeptidyl peptidase 4抑制劑,但是對於控制血糖之療效有限且有許多不良副作用。近年來許多學者研究尋找更有效的藥物來治療糖尿病,薑黃素是從薑黃的根莖部所萃取的化合物。文獻指出,薑黃素可以降低第一型和第二型糖尿病老鼠的血糖和改善體內能量代謝平衡。然而,薑黃素降血糖的作用機轉尚未被深入探討。本研究以薑黃素灌流大白鼠胰臟進行短時間性的刺激胰島素分泌,觀察薑黃素對胰臟胰島素分泌之影響。結果發現不同劑量之薑黃素(1、5、10 μM)皆可以增加第一階段胰島素分泌,其最高值分別為(196%、272%、349%),可以說明其分泌程度與所給予之劑量有關。當5 μM薑黃素(272%)與葡萄糖(318%)一同刺激胰島素分泌,會加成其第一階段胰島素的分泌(528%),但卻會抑制葡萄糖所誘發第二階段胰島素之分泌,在給予10 mM葡萄糖胰臟灌流20分鐘後馬上給予5 μM薑黃素會使得胰島素的分泌量增高,由結果推測薑黃素刺激胰島beta細胞短暫性的增加胰島素之分泌量。
Diabetes mellitus is a hyperglycemic disorder that affects the brain, kidney, heart, liver, and other organs. Curcumin, the bioactive component of curry spice turmeric, and its related structures possess potent anti-oxidant and anti-inflammatory properties. Evidences suggested that curcumin may play a beneficial role in animal diabetic model by lowering blood glucose levels and ameliorating the long-term complications of diabetes. However, current reports of the curcumin on insulin secretion is rudimentary and is limited to its anti-oxidant and anti-inflammatory effects. By using rat pancreatic perfusion technique, curcumin was used to perfuse rat pancreas. The results shown that curcumin temporally stimulated insulin secretion in a dose-dependent manner. After perfused with glucose and curcumin, the first phase of insulin secretion was increased and the second phase of insulin secretion was decreased. In addition, the pretreatment with glucose for 20 minutes then given curcumin significantly increased the insulin secretion immediately. The pretreatment with curcumin 10 minutes then given glucose significantly increased the insulin secretion temporally. The results suggested that curcumin could increase insulin secretion temporally and additively increased glucose-induced insulin secretion. However, the mechanism of curcumin increased insulin secretion still need a further study.
URI: http://hdl.handle.net/11455/14096
其他識別: U0005-1307201016330400
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1307201016330400
Appears in Collections:獸醫學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.