Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/14100
標題: 台灣乳牛場病原性大腸桿菌抗藥性及乙內醯胺酶基因之研究
Study of Antimicrobial Resistance and β-lactamase Gene among Pathogenic Escherichia coli Isolates from Dairy farms in Taiwan
作者: 蔡哲宇
Tsai, Che-Yu
關鍵字: Dairy cow
大腸桿菌
E. coli
Antimicrobial resistance
beta-lactamases
抗藥性
乙內醯胺酶
出版社: 獸醫學系暨研究所
引用: 江禎偉。金黃色葡萄球菌於台灣乳房炎牛隻抗藥性及流行病學分型之研究。碩士論文。國立中興大學獸醫學研究所。台中。中華民國。2005。 吳義興、陳素貞、蕭終融、張惟茗。牛乳房炎乳汁中病原細菌分離鑑定及其在周圍環境之分佈。台灣省家畜衛生試驗所研究報告。23:7-11,1987。 邱朝齊、林光榮、黎南榮、黃士則。台灣省乳牛乳房炎主要病原菌之頻度分佈研究。台灣省家畜衛生試驗所研究報告。9:73-78,1972。 隆美爾。台灣牧場大腸桿菌群抗藥性之表現及以聚合酶連鎖反應檢測產志賀毒素大腸桿菌之研究。國立中興大學獸醫學研究所。台中。中華民國。2009。 Abraham E, Chain E. An enzyme from bacteria able to destroy penicillin. Nat Med 146: 837, 1940. Acar JF, Moulin G. Antimicrobial resistance at farm level. Rev Sci Tech Oie 25: 775-792, 2006. Adams HR. Veterinary pharmacology and therapeutics. 8th ed. A Blackwell Publishing Company, Iowa, U.S.A., 2001. Agrawal P, Ghosh A, Kumar S, Basu B, Kapila K. Prevalence of extended-spectrum beta-lactamases among Escherichia coli and Klebsiella pneumoniae isolates in a tertiary care hospital. Indian J pathol Microbiol 51: 139-142, 2008. Ahmed AM, Clegg PD, Williams NJ, Baptiste KE, Bennett M. Antimicrobial resistance in equine faecal Escherichia coli isolates from North West England. Ann Clin Microbiol Antimicrob 9: 12, 2010. Ahmed AM, Younis EE, Osman SA, Ishida Y, El-Khodery SA, Shimamoto T. Genetic analysis of antimicrobial resistance in Escherichia coli isolated from diarrheic neonatal calves. Vet Microbiol 136: 397-402, 2009. Aksoy A, Yildirim M, Kacmaz B, Apan TZ, Gocmen JS. Verotoxin production in strains of Escherichia coli isolated from cattle and sheep, and their resistance to antibiotics. Turk J Vet Anim Sci 31: 225-231, 2007. Alonso R, Fernandez-Aranguiz A, Colom K, Cisterna R. Non-radioactive PCR-SSCP with a single PCR step for detection of inhibitor resistant beta-lactamases in Escherichia coli. J Microbiol Meth 50: 85-90, 2002. Animal-Health-Institute. Survey indicates most antibiotics used in animals are used for treating and preventing disease. Washington, DC, Animal Health Institute, 2000. Arlet G, Brami G, Decre D, Flippo A, Gaillot O, Lagrange PH, Philippon A. Molecular characterisation by PCR-restriction fragment length polymorphism of TEM beta-lactamases. Fems Microbiol Lett 134: 203-208, 1995. Arlet G, Philippon A. Construction by polymerase chain reaction and intragenic DNA probes for three main types of transferable beta-lactamases (TEM, SHV, CARB). Fems Microbiol Lett 82: 19-25, 1991. Arslan S, Ozdemir F. Extended spectrum beta-lactamases in Escherichia coli strains isolated from homemade white cheeses: prevalence and antibiotic susceptibility. World J Microb Biot 24: 2361-2364, 2008. Asbel LE, Levison ME. Cephalosporins, carbapenems, and monobactams. Infect Dis Clin North Am 14: 435-447, 2000. Aubert D, Poirel L, Chevalier J, Leotard S, Pages JM, Nordmann P. Oxacillinase-mediated resistance to cefepime and susceptibility to ceftazidime in Pseudomonas aeruginosa. Antimicrob Agents Chemother 45: 1615-1620, 2001. Badarau A, Llinas A, Laws AP, Damblon C, Page MI. Inhibitors of metallo-beta-lactamase generated from beta-lactam antibiotics. Biochemistry 44: 8578-8589, 2005. Bagattini M, Crivaro V, Di Popolo A, Gentile F, Scarcella A, Triassi M, Villari P, Zarrilli R. Molecular epidemiology of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae in a neonatal intensive care unit. J Antimicrob Chemother 57: 979-982, 2006. Barber M, Rozwadowska-Dowzenko M. Infection by penicillin-resistant staphylococci. Lancet 2: 641-644, 1948. Baur B, Hanselmann K, Schlimme W, Jenni B. Genetic transformation in freshwater: Escherichia coli is able to develop natural competence. Appl Environ Microbiol 62: 3673-3678, 1996. Bengtsson B, Unnerstad HE, Ekman T, Artursson K, Nilsson-Ost M, Waller KP. Antimicrobial susceptibility of udder pathogens from cases of acute clinical mastitis in dairy cows. Vet Microbiol 136: 142-149, 2009. Bert F, Branger C, Lambert-Zechovsky N. Identification of PSE and OXA beta-lactamase genes in Pseudomonas aeruginosa using PCR-restriction fragment length polymorphism. J Antimicrob Chemother 50: 11-18, 2002. Blake DP, Hillman K, Fenlon DR, Low JC. Transfer of antibiotic resistance between commensal and pathogenic members of the Enterobacteriaceae under ileal conditions. J Appl Microbiol 95: 428-436, 2003. Blumberg PM, Strominger JL. Interaction of penicillin with the bacterial cell: penicillin-binding proteins and penicillin-sensitive enzymes. Bacteriol Rev 38: 291-335, 1974. Bonnet R. Growing group of extended-spectrum beta-lactamases: the CTX-M enzymes. Antimicrob Agents Chemother 48: 1-14, 2004. Bou G, Oliver A, Martinez-Beltran J. OXA-24, a novel class D beta-lactamase with carbapenemase activity in an Acinetobacter baumannii clinical strain. Antimicrob Agents Chemother 44: 1556, 2000. Bradford PA. Extended-spectrum beta-lactamases in the 21st century: Characterization, epidemiology, and detection of this important resistance threat. Clinical Microbiology Reviews 14: 933-951, 2001a. Bradford PA. Extended-spectrum beta-lactamases in the 21st century: Characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev 14: 933-951, 2001b. Bradley AJ, Green MJ. A study of the incidence and significance of enterobacterial infections acquired during the non-lactating period of dairy cattle under UK field conditions. J Dairy Sci 83: 1957-1965, 2000. Bradley AJ, Leach KA, Breen JE, Green LE, Green MJ. Survey of the incidence and aetiology of mastitis on dairy farms in England and Wales. Vet Rec 160: 253-257, 2007. Branger C, Zamfir O, Geoffroy S, Laurans G, Arlet G, Thien HV, Gouriou S, Picard B, Denamur E. Genetic background of Escherichia coli and extended-spectrum beta-lactamase type. Emerg Infect Dis 11: 54-61, 2005. Briñas L, Zarazaga M, Saenz Y, Ruiz-Larrea F, Torres C. Beta-lactamases in ampicillin-resistant Escherichia coli isolates from foods, humans, and healthy animals. Antimicrob Agents Chemother 46: 3156-3163, 2002. Bush K. New beta-lactamases in gram-negative bacteria: diversity and impact on the selection of antimicrobial therapy. Clin Infect Dis 32: 1085-1089, 2001. Bush K, Jacoby GA. Nomenclature of TEM beta-lactamases. J Antimicrob Chemother 39: 1-3, 1997. Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 39: 1211-1233, 1995. Butaye P, Devriese LA, Haesebrouck F. Antimicrobial growth promoters used in animal feed: Effects of less well known antibiotics on gram-positive bacteria. Clin Microbiol Rev 16: 175-188, 2003. Canis F, Cavallo JD, Husson MO. Evaluation of bactericidal activity of cefpirome-aminoglycoside combination against Pseudomonas aeruginosa strains with intermediate sensitivity to cefpirome and in various phenotypes of beta-lactam resistance. Pathol Biol (Paris) 45: 420-423, 1997. Caprioli A, Morabito S, Brugere H, Oswald E. Enterohaemorrhagic Escherichia coli: Emerging issues on virulence and modes of transmission. Vet Rec 36: 289-311, 2005. Carattoli A. Animal reservoirs for extended spectrum beta-lactamase producers. Clin Microbiol Infect 14: 117-123, 2008. Carattoli A, Lovari S, Franco A, Cordaro G, Di Matteo P, Battisti A. Extended-spectrum beta-lactamases in Escherichia coli isolated from dogs and cats in Rome, Italy, from 2001 to 2003. Antimicrob Agents Chemother 49: 833-835, 2005. Carson CA, Reid-Smith R, Irwin RJ, Martin WS, McEwen SA. Antimicrobial resistance in generic fecal Escherichia coli from 29 beef farms in Ontario. Can J Vet Res 72: 119-128, 2008. Catry B, Laevens H, Devriese LA, Opsomer G, De Kruif A. Antimicrobial resistance in livestock. J Vet Pharmacol Ther 26: 81-93, 2003. Chaibi EB, Sirot D, Paul G, Labia R. Inhibitor-resistant TEM beta-lactamases: phenotypic, genetic and biochemical characteristics. J Antimicrob Chemother 43: 447-458, 1999. Checkley SL, Campbell JR, Chirino-Trejo M, Janzen ED, McKinnon JJ. Antimicrobial resistance in generic fecal Escherichia coli obtained from beef cattle on arrival at the feedlot and prior to slaughter, and associations with volume of total individual cattle antimicrobial treatments in one western Canadian feedlot. Can J Vet Res 72: 101-108, 2008. Chen J, Michel FC, Jr., Sreevatsan S, Morrison M, Yu Z. Occurrence and persistence of erythromycin resistance genes (erm) and tetracycline resistance genes (tet) in waste treatment systems on swine farms. Microb Ecol, 2010. (In press) Chia JH, Siu LK, Su LH, Lin HS, Kuo AJ, Lee MH, Wu TL. Emergence of carbapenem-resistant Escherichia coli in Taiwan: resistance due to combined CMY-2 production and porin deficiency. J Chemother 21: 621-626, 2009. Chiueh LC, Liu FM, Shih DYC. Prevalence of Shiga toxin-producing Escherichia coli in feces and raw milk of domestic cattle and sheep. J Food Drug Anal 10: 39-46, 2002. Chmelnitsky I, Carmeli Y, Leavitt A, Schwaber MJ, Navon-Venezia S. CTX-M-2 and a new CTX-M-39 enzyme are the major extended-spectrum beta-lactamases in multiple Escherichia coli clones isolated in Tel Aviv, Israel. Antimicrob Agents Ch 49: 4745-4750, 2005. Clausell A, Pujol M, Alsina MA, Cajal Y. Influence of polymyxins on the structural dynamics of Escherichia coli lipid membranes. Talanta 60: 225-234, 2003. Clermont O, Bonacorsi S, Bingen E. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol 66: 4555-4558, 2000. Colom K, Perez J, Alonso R, Fernandez-Aranguiz A, Larino E, Cisterna R. Simple and reliable multiplex PCR assay for detection of blaTEM, blaSHV and blaOXA-1 genes in Enterobacteriaceae. Fems Microbiol Lett 223: 147-151, 2003. Cowan SW, Garavito RM, Jansonius JN, Jenkins JA, Karlsson R, Konig N, Pai EF, Pauptit RA, Rizkallah PJ, Rosenbusch JP. The structure of OmpF porin in a tetragonal crystal form. Structure 3: 1041-1050, 1995. Crofton J, Mitchison DA. Streptomycin resistance in pulmonary tuberculosis. Br Med J 2: 1009-1015, 1948. Dallenne C, Da Costa A, Decre D, Favier C, Arlet G. Development of a set of multiplex PCR assays for the detection of genes encoding important beta-lactamases in Enterobacteriaceae. J Antimicrob Chemother 65: 490-495, 2010. Dargatz D. Feedlot 99, Part 3: Health management and biosecurity in U.S.A. Washington, DC, US Department of Agriculture, 2000. Datta N, Kontomichalou P. Penicillinase synthesis controlled by infectious R factors in Enterobacteriaceae. Nature 208: 239-241, 1965. Davison J. Genetic exchange between bacteria in the environment. Plasmid 42: 73-91, 1999. DeFrancesco KA, Cobbold RN, Rice DH, Besser TE, Hancock DD. Antimicrobial resistance of commensal Escherichia coli from dairy cattle associated with recent multi-resistant salmonellosis outbreaks. Vet Microbiol 98: 55-61, 2004. Depardieu F, Podglajen I, Leclercq R, Collatz E, Courvalin P. Modes and modulations of antibiotic resistance gene expression. Clin Microbiol Rev 20: 79-114, 2007. Di Conza JA, Gutkind GO. Integrons: gene collectors. Rev Argent Microbiol 42: 63-78, 2010. Doi Y, Adams-Haduch JM, Shivannavar CT, Paterson DL, Gaddad SM. Faecal carriage of CTX-M-15-producing Klebsiella pneumoniae in patients with acute gastroenteritis. Indian J Med Res 129: 599-602, 2009. Dolejska M, Senk D, Cizek A, Rybarikova J, Sychra O, Literak I. Antimicrobial resistant Escherichia coli isolates in cattle and house sparrows on two Czech dairy farms. Res Vet Sci 85: 491-494, 2008. Donaldson SC, Straley BA, Hegde NV, Sawant AA, DebRoy C, Jayarao BM. Molecular epidemiology of ceftiofur-resistant Escherichia coli isolates from dairy calves. Appl Environ Microb 72: 3940-3948, 2006. Drlica K. A strategy for fighting antibiotic resistance. ASM News 67: 27-33, 2001. Ehinger A, Schmidt H, Kietzmann M. Tissue distribution of cefquinome after intramammary and "systemic" administration in the isolated perfused bovine udder. Vet J 172: 147-153, 2006. Ehinger AM. Pharmacokinetic aspects of a new dry cow therapy. Catt Prac 13: 227-230, 2005. Enright M, Robinson D, Randle G, Feil E, Grundmann H, Spratt B. The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proc Natl Acad Sci USA 99: 7687, 2002. Fairbrother JM, Nadeau E. Escherichia coli: on-farm contamination of animals. Rev Sci Tech Oie 25: 555-569, 2006. Fields PI, Blom K, Hughes HJ, Helsel LO, Feng P, Swaminathan B. Molecular characterization of the gene encoding H antigen in Escherichia coli and development of a PCR-restriction fragment length polymorphism test for identification of E. coli O157: H7 and O157:NM. J Clin Microbiol 35: 1066-1070, 1997. Fisher JF, Meroueh SO, Mobashery S. Bacterial resistance to beta-lactam antibiotics: Compelling opportunism, compelling opportunity. Chem Rev 105: 395-424, 2005. Fluit AC, Visser MR, Schmitz FJ. Molecular detection of antimicrobial resistance. Clin Microbiol Rev 14: 836-871, 2001. Gallego L, Basaras M, Alonso R, Sarria L, Cisterna R. Oligonucleotide probes for the characterization of TEM-1 and TEM-2 beta lactamases in Salmonella strains. Enferm Infecc Microbiol Clin 11: 250-254, 1993. Gaukler SM, Linz GM, Sherwood JS, Dyer NW, Bleier WJ, Wannemuehler YM, Nolan LK, Logue CM. Escherichia coli, Salmonella, and Mycobacterium avium subsp. paratuberculosis in wild European starlings at a Kansas cattle feedlot. Avian Dis 53: 544-551, 2009. Gibson JS, Cobbold RN, Heisig P, Sidjabat HE, Kyaw-Tanner MT, Trott DJ. Identification of Qnr and AAC (6'')-1b-cr plasmid-mediated fluoroquinolone resistance determinants in multidrug-resistant Enterobacter spp. isolated from extraintestinal infections in companion animals. Vet Microbiol 143: 329-336, 2009. Gould IM. The epidemiology of antibiotic resistance. Int J Antimicrob Agents 32: S2-S9, 2008. Gow SP, Waldner CL, Rajic A, McFall ME, Reid-Smith R. Prevalence of antimicrobial resistance in fecal generic Escherichia coil isolated in western Canadian cow-calf herds. Part I-beef calves. Can J Vet Res 72: 82-90, 2008. Gronvold A. Fecal microbiota of horses in the clinical setting: potential effects of penicillin and general anesthesia. Vet Microbiol, 2010. (In press) Guerin-Faublee V, Carret G, Houffschmitt P. In vitro activity of 10 antimicrobial agents against bacteria isolated from cows with clinical mastitis. Vet Rec 152: 466-471, 2003. Guerra B, Junker E, Schroeter A, Malorny B, Lehmann S, Helmuth R. Phenotypic and genotypic characterization of antimicrobial resistance in German Escherichia coli isolates from cattle, swine and poultry. J Antimicrob Chemother 52: 489-492, 2003. Hariharan H. Antimicrobial Therapy in Veterinary Medicine. 4th ed. Canadian Veterinary Medical Association, 2007. Harrison CJ, Bratcher D. Cephalosporins: A Review. Pediatr Rev 29: 264, 2008. Hartman B, Tomasz A. Low-affinity penicillin-binding protein associated with beta-lactam resistance in Staphylococcus aureus. J Bacteriol 158: 513-516, 1984. Hawkey PM. Mechanisms of quinolone action and microbial response. J Antimicrob Chemother 51: 29-35, 2003. Hendriksen RS, Mevius DJ, Schroeter A, Teale C, Meunier D, Butaye P, Franco A, Utinane A, Amado A, Moreno M. Prevalence of antimicrobial resistance among bacterial pathogens isolated from cattle in different European countries: 2002-2004. Acta Vet Scand 50: 28-28, 2008. Heritier C, Poirel L, Lambert T, Nordmann P. Contribution of acquired carbapenem-hydrolyzing oxacillinases to carbapenem resistance in Acinetobacter baumannii. Antimicrob Agents Chemother 49: 3198-3202, 2005. Hosseini-Mazinani SM, Eftekhar F, Milani M, Ghandili S. Characterization of beta-lactamases from urinary isolates of Escherichia coli in Tehran. Iran Biomed J 11: 95-99, 2007. Hoyle D, Davison HC, Knight H, Yates CM, Dobay O, Gunn GJ, Amyes SGB, Woolhouse MEJ. Molecular characterisation of bovine faecal Escherichia coli shows persistence of defined ampicillin resistant strains and the presence of class 1 integrons on an organic beef farm. Vet Microbiol 115: 250-257, 2006. Hoyle DV, Yates CA, Chase-Topping ME, Turner EJ, Davies SE, Low JC, Gunn GJ, Woolhouse MEJ, Amyes SGB. Molecular epidemiology of antimicrobial-resistant commensal Escherichia coli strains in a cohort of newborn calves. Appl Environ Microb 71: 6680-6688, 2005. Hujer AM, Keslar KS, Dietenberger NJ, Bethel CR, Endimiani A, Bonomo RA. Detection of SHV beta-lactamases in Gram-negative bacilli using fluorescein-labeled antibodies. BMC Microbiol 9: 46, 2009. Huovinen S, Huovinen P, Jacoby GA. Detection of plasmid-mediated beta-Lactamases with DNA probes. Antimicrob Agents Chemother 32: 175-179, 1988. Inokuchi K, Mutoh N, Matsuyama S, Mizushima S. Primary structure of the ompF gene that codes for a major outer membrane protein of Escherichia coli K-12. Nucleic Acids Res 10: 6957-6968, 1982. Ishida K, Hung TV, Liou K, Lee HC, Shin CH, Sohng JK. Characterization of pbpA and pbp2 encoding penicillin-binding proteins located on the downstream of clavulanic acid gene cluster in Streptomyces clavuligerus. Biotechnol Lett 28: 409-417, 2006. Jack GW, Richmond MH. A comparative study of eight distinct beta-lactamases synthesized by gram-negative bacteria. J Gen Microbiol 61: 43-61, 1970. Jacoby GA. Beta-lactamase nomenclature. Antimicrob Agents Chemother 50: 1123-1129, 2006. Jacoby GA. AmpC beta-Lactamases. Clin Microbiol Rev 22: 161-182, 2009. Jacoby GA, Medeiros AA. More extended-spectrum beta-lactamases. Antimicrob Agents Chemother 35: 1697-1704, 1991. Jacoby GA, Walsh KE, Mills D, Walker VJ, Oh H, Robicsek A, Hooper DC. qnrB, another plasmid-mediated gene for quinolone resistance. Antimicrob Agents Chemother 50: 1178, 2006. Jaurin B, Grundstrom T. AmpC cephalosporinase of Escherichia coli K-12 has a different evolutionary origin from that of beta-lactamases of the penicillinase type. Proc Natl Acad Sci U S A 78: 4897-4901, 1981. Johnson KE, Thorpe CM, Sears CL. The emerging clinical importance of non-O157 Shiga toxin - Producing Escherichia coli. Clin Infect Dis 43: 1587-1595, 2006. Kadlec K, Schwarz S. Analysis and distribution of class 1 and class 2 integrons and associated gene cassettes among Escherichia coli isolates from swine, horses, cats and dogs collected in the BfT-GermVet monitoring study. J Antimicrob Chemother 62: 469-473, 2008. Kang CI, Kim SH, Park WB, Lee KD, Kim HB, Kim EC, Oh MD, Choe KW. Bloodstream infections due to extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae: Risk factors for mortality and treatment outcome, with special emphasis on antimicrobial therapy. Antimicrob Agents Chemother 48: 4574-4581, 2004. Karami N, Hannoun C, Adlerberth I, Wold AE. Colonization dynamics of ampicillin-resistant Escherichia coli in the infantile colonic microbiota. J Antimicrob Chemother 62: 703-708, 2008. Karim A, Poirel L, Nagarajan S, Nordmann P. Plasmid-mediated extended-spectrum beta-lactamase (CTX-M-3 like) from India and gene association with insertion sequence ISEcp1. Fems Microbiol Lett 201: 237-241, 2001. Kauffmann F. The serology of the coli group. J Immunol 57: 71-100, 1947. Kim YR, Kim SI, Lee JY, Park YJ, Lee KY, Kang MW. Nosocomial transmission of CTX-M-15 and OXA-30 beta-lactamase-producing Escherichia coli in a neurosurgical intensive care unit. Ann of Clin Lab Sci 35: 297-301, 2005. Lanz R, Kuhnert P, Boerlin P. Antimicrobial resistance and resistance gene determinants in clinical Escherichia coli from different animal species in Switzerland. Vet Microbiol 91: 73-84, 2003. Le Bouguenec C, Bertin Y. AFA and F17 adhesins produced by pathogenic Escherichia coli strains in domestic animals. Vet Res 30: 317-342, 1999. Leblanc DJ, Hawley RJ, Lee LN, Stmartin EJ. Conjugal transfer of plasmid DNA among oral Streptococci. Proc Natl Acad Sci U S A 75: 3484-3487, 1978. Lederberg J. Gene recombination and linked segregations in Escherichia coli. Genetics 117: 1-4, 1987. Levy SB. Microbial resistance to antibiotics. An evolving and persistent problem. Lancet 2: 83-88, 1982. Levy SB. Multidrug resistance--a sign of the times. N Engl J Med 338: 1376-1378, 1998. Levy SB, Marshall B. Antibacterial resistance worldwide: causes, challenges and responses. Nat Med 10: 122-129, 2004. Li XZ, Mehrotra M, Ghimire S, Adewoye L. Beta-lactam resistance and beta-lactamases in bacteria of animal origin. Vet Microbiol 121: 197-214, 2007. Lin YC, Hsia KC, Chen YC, Sheng WH, Chang SC, Liao MH, Li SY. Genetic basis of multidrug resistance in Acinetobacter clinical isolates in Taiwan. Antimicrob Agents Chemother 54: 2078-2084, 2010. Literak I, Dolejska M, Rybarikova J, Cizek A, Strejckova P, Vyskocilova M, Friedman M, Klimes J. Highly variable patterns of antimicrobial resistance in commensal Escherichia coli isolates from pigs, sympatric rodents, and flies. Microb Drug Resist 15: 229-237, 2009. Liu JH, Wei SY, Ma JY, Zeng ZL, Lu DH, Yang GX, Chen ZL. Detection and characterisation of CTX-M and CMY-2 beta-lactamases among Escherichia coli isolates from farm animals in Guangdong Province of China. Int J Antimicrob Agents 29: 576-581, 2007. Liu X, Ferenci T. An analysis of multifactorial influences on the transcriptional control of ompF and ompC porin expression under nutrient limitation. Microbiology 147: 2981-2989, 2001. Livermore DM. Beta-Lactamases in Laboratory and Clinical Resistance. Clin Microbiol Rev 8: 557-584, 1995. Lorenz MG, Wackernagel W. Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev 58: 563-602, 1994. Lorian V. Antibiotics in laboratory medicine. In: Charles WS, ed. Molecular mechanisms of action for antimicrobial agents. 5th ed. Lippincott Williams & Wilkins, Philadelphia, U.S.A., pp. 545-546, 2005. Lundin JI, Dargatz DA, Wagner BA, Lombard JE, Hill AE, Ladely SR, Fedorka-Cray PJ. Antimicrobial drug resistance of fecal Escherichia coli and Salmonella spp. isolates from United States dairy cows. Foodborne Pathog Dis 5: 7-19, 2008. Lytsy B, Lindback J, Torell E, Sylvan S, Velicko I, Melhus A. A case-control study of risk factors for urinary acquisition of Klebsiella pneumoniae producing CTX-M-15 in an outbreak situation in Sweden. Scand J Infect Dis, 2010. (In press) Ma YP, Chang SK, Chou CC. Characterization of bacterial susceptibility isolates in sixteen dairy farms in Taiwan. J Dairy Sci 89: 4573-4582, 2006. Magee JT. Antibiotic resistance and prescribing in the community. Rev Med Microbiol 12: 87-96, 2001. Magnet S, Blanchard JS. Molecular insights into aminoglycoside action and resistance. Chem Rev 105: 477-497, 2005. Marek A, Stepien-Pysniak D, Rzedzicki J. Analysis of the correlation between the level of anti-Salmonella antibodies in egg yolks and the presence of these microorganisms in egg contents following experimental infection of hens with Salmonella enteritidis and after treatment with selected antibiotics. Pol J Vet Sci 12: 485-490, 2009. Matthew M, Harris AM, Marshall MJ, Ross GW. Use of analytical isoelectric focusing for detection and identification of beta-lactamases. J Gen Microbiol 88: 169-178, 1975. Mazel D. Integrons: agents of bacterial evolution. Nat Rev Microbiol 4: 608-620, 2006. McEwen SA, Fedorka-Cray PJ. Antimicrobial use and resistance in animals. Clin Infect Dis 34: S93-S106, 2002. McPhee SJ, Papadakis MA, Tierney LM. Current medical diagnosis & treatment. 48th ed. Lange Medical Publications, Los Altos, California, 2009. Mendonca N, Nicolas-Chanoine MH, Canica M. Diversity of the blaSHV genes. Diagn Microbiol Infect Dis 65: 439-446, 2009. Mitscher LA. Bacterial topoisomerase inhibitors: quinolone and pyridone antibacterial agents. Chem Rev 105: 559-592, 2005. Molbak K. Spread of resistant bacteria and resistance genes from animals to humans-the public health consequences. J Vet Med B Infect Dis Vet Public Health 51: 364-369, 2004. Moreno E, Prats G, Sabate M, Perez T, Johnson JR, Andreu A. Quinolone, fluoroquinolone and trimethoprim/sulfamethoxazole resistance in relation to virulence determinants and phylogenetic background among uropathogenic Escherichia coli. J Antimicrob Chemother 57: 204-211, 2006. Morin DE. Mammary gland health and disorders. In: Smith BP, ed. Large animal medicine. 4th ed. Mosby, Inc., St. Louis. USA, pp. 1125-1127, 2009. Mulvey MR, Simor AE. Antimicrobial resistance in hospitals: How concerned should we be? Can Med Assoc J 180: 408-415, 2009. Naas T, Nordmann P. OXA-type beta-lactamases. Curr Pharm Design 5: 865, 1999. Nicholas RA, Krings S, Tomberg J, Nicola G, Davies C. Crystal structure of wild-type penicillin-binding protein 5 from Escherichia coli: implications for deacylation of the acyl-enzyme complex. J Biol Chem 278: 52826-52833, 2003. Nordmann P, Cuzon G, Naas T. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis 9: 228-236, 2009. Norgard MV, Keem K, Monahan JJ. Factors affecting the transformation of Escherichia coli strain chi1776 by pBR322 plasmid DNA. Gene 3: 279-292, 1978. O''Keefe A, Hutton TA, Schifferli DM, Rankin SC. First detection of CTX-M and SHV extended-spectrum beta-lactamases in Escherichia coli urinary tract isolates from dogs and cats in the United States. Antimicrob Agents Chemother, 2010. (In press) Ochman H, Jones IB. Evolutionary dynamics of full genome content in Escherichia coli. EMBO J 19: 6637-6643, 2000. Olesen I, Hasman H, Aarestrup FM. Prevalence of beta-lactamases among ampicillin-resistant Escherichia coli and Salmonella isolated from food animals in Denmark. Microb Drug Resist 10: 334-340, 2004. Oliphant CM, Green GM. Quinolones: A comprehensive review. Am Fam Physician 65: 455-464, 2002. Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci U S A 86: 2766-2770, 1989. Ouellette M, Paul GC, Philippon AM, Roy PH. Oligonucleotide probes (TEM-1, OXA-1) versus isoelectric focusing in beta-lactamase characterization of 114 resistant strains. Antimicrob Agents Chemother 32: 397-399, 1988. Pallecchi L, Bartoloni A, Paradisi F, Rossolini GM. Antibiotic resistance in the absence of antimicrobial use: mechanisms and implications. Expert Rev Anti Infect Ther 6: 725-732, 2008. Passey S, Bradley A, Mellor H. Escherichia coli isolated from bovine mastitis invade mammary cells by a modified endocytic pathway. Vet Microbiol 130: 151-164, 2008. Paterson DL. Resistance in gram-negative bacteria: Enterobacteriaceae. Am J Infect Control 34: S20-S28, 2006. Paterson DL. Recommendation for treatment of severe infections caused by Enterobacteriaceae producing extended-spectrum beta-lactamases (ESBLs). Clin Microbiol Infect 6: 460-463, 2009. Paterson DL, Bonomo RA. Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev 18: 657-686, 2005. Philippon A, Arlet G, Jacoby GA. Plasmid-determined AmpC-type beta-lactamases. Antimicrob Agents Ch 46: 1-11, 2002. Pitton J. Mechanisms of bacterial resistance to antibiotics. Ergeb Physiol 65: 15-93, 1972. Pomba C, Mendonca N, Costa M, Louro D, Baptista B, Ferreira M, Correia JD, Canica M. Improved multiplex PCR method for the rapid detection of beta-lactamase genes in Escherichia coli of animal origin. Diagn Microbiol Infect Dis 56: 103-106, 2006. Pommerville JC. Alcamo''s fundamentals of microbiology. 7th ed. Jones & Bartlett Publishers, Edward, U.S.A., 2004. Poole K. Efflux-mediated multiresistance in Gram-negative bacteria. Clin Microbiol Infect 10: 12-26, 2004. Pumbwe L, Wareham DW, Aduse-Opoku J, Brazier JS, Wexler HM. Genetic analysis of mechanisms of multidrug resistance in a clinical isolate of Bacteroides fragilis. Clin Microbiol Infect 13: 183-189, 2007. Quinn PJ, Markey BK, Carter ME, Donnelly WJ, Leonard FC. Veterinary microbiology and microbial disease. 2nd ed. Blackwell Science, Oxford, UK, 2002. Ramaswamy S, Musser JM. Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update. Tuber Lung Dis 79: 3-29, 1998. Randegger CC, Hachler H. Real-time PCR and melting curve analysis for reliable and rapid detection of SHV extended-spectrum beta-lactamases. Antimicrob Agents Chemother 45: 1730-1736, 2001. Rasmussen BA, Gluzman Y, Tally FP. Escherichia Coli chromosomal mutations that permit direct cloning of the bacteroides-fragilis metallo-beta-lactamase gene, Ccra. Mol Microbiol 5: 1211-1219, 1991. Recchia GD, Hall R. Gene cassettes: a new class of mobile element. Microbiology 141: 3015-3027, 1995. Rice LB, Bonomo RA. Beta-lactamases: which ones are clinically important? Drug Resist Update 3: 178-189, 2000. Rochon-Edouard S, Pestel-Caron M, Lemeland JF, Caron F. In vitro synergistic effects of double and triple combinations of beta-lactams, vancomycin, and netilmicin against methicillin-resistant Staphylococcus aureus strains. Antimicrob Agents Chemother 44: 3055-3060, 2000. Rodriguez Bano J, Navarro M, Romero L, Muniain M, de Cueto M, Rios M, Hernandez J, Pascual A. Bacteremia due to extended spectrum beta-lactamase producing Escherichia coli in the CTX M era: a new clinical challenge. Clin Infect Dis 43: 1407-1414, 2006. Rossolini GM, D''Andrea MM, Mugnaioli C. The spread of CTX-M-type extended-spectrum beta-lactamases. Clin Microbiol Infect 14: 33-41, 2008. Ruiz J. Mechanisms of resistance to quinolones: target alterations, decreased accumulation and DNA gyrase protection. J Antimicrob Chemoth 51: 1109, 2003. Rybarikova J, Dolejska M, Materna D, Literak I, Cizek A. Phenotypic and genotypic characteristics of antimicrobial resistant Escherichia coli isolated from symbovine flies, cattle and sympatric insectivorous house martins from a farm in the Czech Republic (2006-2007). Res Vet Sci, 2010. (In press) Sabate M, Tarrago R, Navarro F, Miro E, Verges C, Barbe J, Prats G. Cloning and sequence of the gene encoding a novel cefotaxime-hydrolyzing beta-lactamase (CTX-M-9) from Escherichia coli in Spain. Antimicrob Agents Chemother 44: 1970-1973, 2000. Sader H, Gales A. Emerging strategies in infectious diseases: new carbapenem and trinem antibacterial agents. Drugs 61: 553-564, 2001. Saenz Y, Zarazaga M, Brinas L, Lantero M, Ruiz-Larrea F, Torres C. Antibiotic resistance in Escherichia coli isolates obtained from animals, foods and humans in Spain. Int J Antimicrob Agents 18: 353-358, 2001. Salverda ML, de Visser JA, Barlow M. Natural evolution of TEM-1 beta-lactamase: experimental reconstruction and clinical relevance. FEMS Microbiol Rev, 2010. (In press) Samuelsen O, Toleman MA, Sundsfjord A, Rydberg J, Leegaard TM, Walder M, Lia A, Ranheim TE, Rajendra Y, Hermansen NO, Walsh TR, Giske CG. Molecular epidemiology of metallo-beta-lactamase-producing Pseudomonas aeruginosa isolates from Norway and Sweden shows import of international clones and local clonal expansion. Antimicrob Agents Chemother 54: 346-352, 2010. Sauvage E, Kerff F, Terrak M, Ayala JA, Charlier P. The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol Rev 32: 234-258, 2008. Sawant AA, Hegde NV, Straley BA, Donaldson SC, Love BC, Knabel SJ, Jayarao BM. Antimicrobial-resistant enteric bacteria from dairy cattle. Appl Environ Microb 73: 156-163, 2007. Sawant AA, Sordillo LM, Jayarao BM. A survey on antibiotic usage in dairy herds in Pennsylvania. J Dairy Sci 88: 2991-2999, 2005. Sayah RS, Kaneene JB, Johnson Y, Miller R. Patterns of antimicrobial resistance observed in Escherichia coli isolates obtained from domestic- and wild-animal fecal samples, human septage, and surface water. Appl Environ Microbiol 71: 1394-1404, 2005. Schwarz S, Chaslus-Dancla E. Use of antimicrobials in veterinary medicine and mechanisms of resistance. Vet Res 32: 201-225, 2001. Shahada F, Sugiyama H, Chuma T, Sueyoshi M, Okamoto K. Genetic analysis of multi-drug resistance and the clonal dissemination of beta-lactam resistance in Salmonella infantis isolated from broilers. Vet Microbiol 140: 136-141, 2010. Shahcheraghi F, Nasiri S, Noveiri H. The survey of genes encoding beta-lactamases, in Escherichia coli resistant to beta-lactam and non-beta-lactam antibiotics. Iran J Basic Med Sci 13: 230-237, 2010. Shakil S, Akram M, Ali SM, Khan AU. Acquisition of extended-spectrum beta-lactamase producing Escherichia coli strains in male and female infants admitted to a neonatal intensive care unit: molecular epidemiology and analysis of risk factors. J Med Microbiol, 2010. (In press) Sharma R, Munns K, Alexander T, Entz T, Mirzaagha P, Yanke LJ, Mulvey M, Topp E, McAllister T. Diversity and distribution of commensal fecal Escherichia coli bacteria in beef cattle administered selected subtherapeutic antimicrobials in a feedlot setting. Appl Environ Microbiol 74: 6178-6186, 2008. Shpigel N, Levin D, Winkler M, Saran A, Ziv G, Bottner A. Efficacy of cefquinome for treatment of cows with mastitis experimentally induced using Escherichia coli. J Dairy Sci 80:
摘要: 細菌產生抗生素之抗藥性是現代醫學嚴重的問題,對於公共衛生或是動物的健康都帶來很大的威脅。諸多研究均提出人類及動物可能經由食物鏈、直接或間接地接觸到彼此帶有抗藥性基因的細菌,使得抗藥性基因藉以互相的傳播,增加細菌間抗藥性的多樣性。在牧場中,E. coli為乳牛乳房炎、下痢、肺炎及小牛臍帶炎等之常見病原,因此為探討台灣乳牛場中E. coli之抗生素抗藥性以及抗藥性基因的情形,本實驗遂以抗生素敏感性試驗及多重引子聚合酶連鎖反應(multiplex polymerase chain reaction)方式,偵測目前牧場中使用最多的乙內醯胺類(β-lactam)抗生素的TEM (Temoniera)、SHV (sulphydryl variable)及OXA (oxacillinase)三類乙內醯胺酶(β-lactamases)抗藥性基因。本實驗自台灣9個地理區的牧場,分別自生乳樣本、下痢牛隻糞便、母牛產後子宮炎分泌物、仔牛臍帶炎病例及牛肺臟病材樣本,共分離出137株E. coli。所挑選的10 種抗生素中,抗藥性最高者為cloxacillin (87.5%)、oxytetracycline (50.0%),其次為ampicillin (35.3%);抗藥性出現率最低的藥物為florfenicol (7.4%)、cefuroxime (9.6%)及ceftiofur (11.%)。Multiplex PCR結果共檢測出76株(55.5%)帶有blaTEM-1抗藥性基因的E. coli;blaTEM-1抗藥性基因親緣關係圖顯示不同樣本來源的抗藥性基因,與其餘樣本的親緣關係相似度約在95%以外,不同樣本及牧場間彼此基因相似度都在97%以上。根據實驗結果顯示,不同牧場之間E. coli的抗藥性呈現多樣性的特徵,以blaTEM-1為實驗結果中常見的抗藥性基因型(55.47%),但並未發現SHV及OXA等相關抗藥性基因。雖然β-lactamase基因在牧場病原性E. coli中並不具有其他的TEM突變型產生,但是具致病性及抗藥性基因的病原性E. coli對於人類的健康及公共衛生仍然是很大的威脅,因此仍須持續地調查其他種類的抗藥性基因在E. coli的分佈情況。總結而言,抗生素敏感性結果顯示E. coli對於oxytetracycline的抗藥性極高(50%),建議現場獸醫師不應該再作為第一線藥物來使用,並且在使用抗生素前應該先對細菌的抗藥性特徵有充份的瞭解,才能達到有效的治療效果並且減少抗藥性細菌產生的可能。動物來源的細菌抗藥性問題已經是全世界都非常重視的議題,因此為了要對台灣牧場中E. coli抗藥性特徵及抗藥性基因的分佈情形有更清楚的瞭解,長期的調查計畫是非常有必要性的。
Antimicrobial resistance is a growing concern for public and animal health in modern medicine. Threats to public health could come from the transfer of pathogens between animals and people via direct contact or indirect contact such as through food. Escherichia coli is one of the most common pathogens which induce such as mastitis, diarrhea, pneumonia, omphalitis in dairy farms. To accurately characterize the relationship between antibiotic use and resistance in dairy farms, epidemiological definitions are needed. The aim of this study was to detect the resistance determinats by use of disk diffusion method and specific oligonucleotide primers for amplifying three β-lactamases genes: blaTEM, blaSHV, and blaOXA-1. In the result of this study, a total of 137 pathogenic E. coli was obtained from raw milk samples, diarrheic feces, omphalitis, uterine infection cases, and lung tissue samples from 63 dairy farms in Taiwan. The result of antibiotic resistance tests was showed with a large proportion of isolates resistant to ampicillin (35.3%), oxytetracycline (50.0%), and cloxacillin (87.5%). Upon testing for β-lactamases genes, the blaTEM-1 was detected in 76 strains (55.5%) from 137 E. coli isolates. However, none of these isolates contained either blaSHV or blaOXA-1 genes. Dendrograms of phylogenetic relationships with blaTEM-1 gene detected from 76 E. coli were very similar (97%-100%), except one (95%) obtained from a fecal sample. According to our results, approximately 90% of strains of E. coli revealed a variety of resistance profiles to the tested antibiotics. Multiplex antimicrobial resistance (≥ 2 antimicrobial) was observed in 77 (56.2%) of E. coli isolates. The prevalence of the antibiotic resistance patterns and the blaTEM-1 gene in our finding was lower than in other researches but the resistant trend was identically. The results may indicate that the susceptibility profile of the causal bacteria should be determined before empirical therapy is started. blaTEM-1 was the predominant β-Lactamase from gram negative isolates worldwide and the most common resistance gene among pathogenic E. coli isolated from dairy farms in Taiwan. Therefore, a long period of surveillance programs is necessary for better understanding about this bacterium and more effective therapy in diseases infected with E. coli.
URI: http://hdl.handle.net/11455/14100
其他識別: U0005-1407201014023200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1407201014023200
Appears in Collections:獸醫學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.