Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/14244
標題: 運動疲勞對中樞神經系統的影響
The Effects of Physical Fatigue on Central Nervous System
作者: 吳家綺
Wu, Chia-Chi
關鍵字: Physical fatigue
運動疲勞
corticospine
hippocampus
pyramidal neuron
dendritic spine
皮質脊髓徑
海馬迴
錐體細胞
樹突棘
出版社: 獸醫學系暨研究所
引用: Anjaneyulu M, Chopra K (2003) Reversal of lipopolysaccharide-induced thermal and behavioural hyperalgesia by quercetin. Drug Dev Res 58:248-252. Arnsten AF, Goldman-Rakic PS (1998) Noise stress impairs prefrontal cortical cognitive function in monkeys: evidence for a hyperdopaminergic mechanism. Arch Gen Psychiatr 55:362-368. Assenza A, Bergero D, Tarantola M, Piccione G, Caola G (2004) Blood serum branched chain amino acids and tryptophan modifications in horses competing in long-distance rides of different length. J Anim Physiol Anim Nutr (Berl) 88:172-177. Bourne JN, Sorra KE, Hurlburt J, Harris KM. (2007) Polyribosomes are increased in spines of CA1 dendrites 2 h after the induction of LTP in mature rat hippocampal slices. Hippocampus 17(1):1-4. Calabrese B, Wilson MS, Halpain S (2006) Development and regulation of dendritic spine synapses. Physiology 21:38-47. Cameron WE, Averill DB, Berger, AJ (1985) Quantitative analysis of the dendrites of cat phrenic motoneurons stained intracellularly with horseradish peroxidase. J Comp Neurol 231:91-101. Chen JR, Wang YJ, Tseng GF (2003) The effect of epidural compression on cerebral cortex: a rat model. J Neurotrauma 20:767-780. Chen JR, Wang YJ, Tseng GF (2004) The effect of decompression and exogenous NGF on cerebral cortex subjected to compression. J Neurotrauma 21:1640-1651. Chen JR, Wang TJ, Huang HY, Chen LJ, Huang YS, Wang YJ, Tseng GF (2009a) Fatigue reversibly reduced cortical and hippocampal dendritic spines concurrent with compromise of motor endurance and spatial memory. Neuroscience 161(4):1104-1113. Chen JR, Yan YT, Wang TJ, Chen LJ, Wang YJ, Tseng GF (2009b) Gonadal hormones modulate the dendritic spine densities of primary cortical pyramidal neurons in adult female rat. Cerebral Cortex 19:2719-2727. Chen JR, Wang TJ, Wang YJ, Tseng GF (2010) The immediate large-scale dendritic plasticity of cortical pyramidal neurons subjected to acute epidural compression. Neuroscience 167:414-427. Conrad CD, Galea LA, Kuroda Y, McEwen BS (1996) Chronic stress impairs rat spatial memory on the Y maze, and this effect is blocked by tianeptine pretreatment. Behav Neurosci 110:1321-1334. Cooke BM, Woolley CS (2005) Gonadal hormone modulation of dendrites in the mammalian CNS. J Neurobiol 64:34-46. Cooney JR, Hurlburt JL, Selig DK, Harris KM, Fiala JC (2002) Endosomal compartments serve multiple hippocampal dendritic spines from a widespread rather than a local store of recycling membrane. J Neurosci 22(6):2215-2224. Davey NJ, Puri BK, Nowicky AV, Main J, Zaman R (2001) Voluntary motor function in patients with chronic fatigue syndrome. J Psychosom Res 50:17-20. Davis JM (1995) Carbohydrates, branched-chain amino acids, and endurance: the central fatigue hypothesis. Int J Sport Nutr 5 Suppl:S29-38. de Kloet ER, Vreugdenhil E, Oitzl MS, Joëls M (1998) Brain corticosteroid receptor balance in health and disease. Endocr Rev 19:269-301. de Lange FP, Kalkman JS, Bleijenberg G, Hagoort P, van der Meer JWM,Toni I (2005) Gray matter volume reduction in the chronic fatigue syndrome. NeuroImage 26:777-781. Deschamps JD, Kenyon VA, Holman TR (2006) Baicalein is a potent in vitro inhibitor against both reticulocyte 15-human and platelet 12-human lipoxygenases. Bioorg Med Chem 14(12):4295-4301. Donohue HS, Gabbott PLA, Davies HA, Rodríguez JJ, Cordero MI, Sandi C, Medvedev NI, Popov VI, Colyer FM, Peddie CJ, Stewart MG (2006) Chronic restraint stress induces changes in synapse morphology in stratum lacunosum-moleculare ca1 rat hippocampus: a stereological and three-dimensional ultrastructural study. Neuroscience 140:597-606. Engert F, Bonhoeffer T (1999) Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 399:66-70. Ermak G, Davies KJ (2002) Calcium and oxidative stress: from cell signaling to cell death. Mol Immunol 38:713-721. Ferrer I, Guionnet N, Cruz-sanchez F, Tunon T (1990) Neuronal alterations in patients with dementia: a Golgi study on biopsy samples. Neurosci Lett 114:11-16. Fiala JC, Spacek J, Harris KM (2002) Dendritic spine pathology: cause or consequence of neurological disorders? Brain Res Brain Res Rev 39:29-54. Fifkova E, Delay RJ (1982) Cytoplasmic actin in neuronal processes as a possible mediator of synaptic plasticity. JCell Biol 95:345-350. Fischer M, Kaech S, Knutti D, Matus A (1998) Rapid actin-based plasticity in dendritic spines. Neuron 20:847-854. Fukuda K, Straus SE, Hickie I, Sharpe MC, Dobbins JG, Komaroff A (1994) The chronic fatigue syndrome: a comprehensive approach to its definition and study. Ann Intern Med 121:953-959. Fuller A, Carter RN, Mitchell D (1998) Brain and abdominal temperatures at fatigue in rats exercising in the heat. J Appl Physiol 84:877-883. Furuyashiki T, Arakawa Y, Takemoto-Kimura S, Bito H, Narumiya S (2002) Multiple spatiotemporal modes of actin reorganization by NMDA receptors and voltage-gated Ca2+ channels. Proc Natl Acad Sci USA 99:14458-14463. Gibson GE (2002) Interactions of oxidative stress with cellular calcium dynamics and glucose metabolism in Alzheimer''s disease. Free Radic Biol Med 32:1061-1070. Glantz LA, Lewis DA (2001) Dendritic spine density in schizophrenia and depression. Arch Gen Psychiatry 58:203. Gray EG (1959) Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscopic study. J Anat Lond 93:420-433. Grosche J, Matyash V, Moller T, Verkhratsky A, Reichenbach A, Kettenmann H (1999) Microdomains for neuron-glia interaction: parallel fiber signaling to Bergmann glial cells. Nat Neurosci 2:139-143. Grosche J, Kettenmann H, Reichenbach A (2002) Bergmann glial cells form distinct morphological structures to interact with cerebellar neurons. J Neurosci Res 68:138-149. Grutzendler J, Kasthuri N, Gan WB (2002) Long-term dendritic spine stability in the adult cortex. Nature 420:812-816. Hains AB, Vu MAT, Maciejewski PK, van Dyck CH, Gottron M, Arnsten AFT (2009) Inhibition of protein kinase C signaling protects prefrontal cortex dendritic spines and cognition from the effects of chronic stress. Proc Natl Acad Sci USA 106 (42):17957-17962. Halpain S, Hipolito A, Saffer L (1998) Regulation of F-actin stability in dendritic spines by glutamate receptors and calcineurin. J Neurosci 18:9835-9844. Harris KM, Jensen FE, Tsao B (1992) Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation. J Neurosci 12(7):2685-2705. Hsieh CJ, Hall K, Ha T, Li C, Krishnaswamy G, Chi DS (2007) Baicalein inhibits IL-1β- and TNF-α-induced inflammatory cytokine production from human mast cells via regulation of the NF-κB pathway. Clin Mol Allergy 5:5. Jammes Y, Steinberg JG, Delliaux S, Bregeon F (2009) Chronic fatigue syndrome combines increased exerciseinduced oxidative stress and reduced cytokine and Hsp responses. J Intern Med 266:196-206. Kasai H, Matsuzaki M, Noguchi J, Yasumatsu N, Nakahara H (2003) Structure-stability-function relationships of dendritic spines. Trends in Neurosciences 26(7):360-368. Katafuchi T, Kondo T, Take S, Yoshimura M (2006) Brain cytokines and the 5-HT system during poly I:C-induced fatigue. Ann N Y Acad Sci 1088:230-237. Kaur S, Anurag A, Tirkey N, Chopra K (2005) Reversal of LPS-induced central and peripheral hyperalgesia by green tea extract. Phytother Res 19:39-43. Kim SY, Jun TW, Lee YS, Na HK, Surh YJ, Song W (2009) Effects of exercise on cyclooxygenase-2 expression and nuclear factor-κb DNA binding in human peripheral blood mononuclear cells. Ann N Y Acad Sci 1171:464-471. LaFerla FM (2002) Calcium dyshomeostasis and intracellular signalling in Alzheimer''s disease. Nature Rev Neurosci 3:862-872. Lendvai B, Stern E, Chen B, Svoboda K (2000) Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo. Nature 404:876-881. Liu J, Yeo HC, Övervik-Douki E, Hagen T, Doniger SJ, Chu DW, Brooks GA, Ames BN (2000) Chronically and acutely exercised rats: biomarkers of oxidative stress and endogenous antioxidants. J Appl Physiol 89:21-28. Luine V, Villegas M, Martinez C, McEwen BS (1994) Repeated stress causes reversible impairments of spatial memory performance. Brain Res 639:167-170. Luine V, Attalla S, Mohan G, Costa A, Frankfurt M (2006) Dietary phytoestrogens enhance spatial memory and spine density in the hippocampus and prefrontal cortex of ovariectomized rats. Brain Res 1126:183-187. Maes M, Mihaylova I, Leunis JC (2006) Chronic fatigue syndrome is accompanied by an IgM-related immune response directed against neopitopes formed by oxidative or nitrosative damage to lipids and proteins. Neuro Endocrinol Lett 27:615-621. Maes M, Mihaylova I, Leunis JC (2007) Increased serum IgM antibodies directed against phosphatidyl inositol (Pi) in chronic fatigue syndrome (CFS) and major depression: evidence that an IgM-mediated immune response against Pi is one factor underpinning the comorbidity between both CFS and depression. Neuro Endocrinol Lett 28:861-867. Maes M, Mihaylova I, Kubera M, Bosmans E (2007) Not in the mind but in the cell: increased production of cyclo-oxygenase-2 and inducible NO synthase in chronic fatigue syndrome. Neuro Endocrinol Lett 28:463-469. Maes M, Mihaylova I, Bosmans E (2007) Not in the mind of neurasthenic lazybones but in the cell nucleus: patients with chronic fatigue syndrome have increased production of nuclear factor kappa beta. Neuro Endocrinol Lett 28:456-462. Maletic-Savatic M, Malinow R, Svoboda K (1999) Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science 283:1923-1927. Matsuzaki M, Ellis-Davies GC, Nemoto T, Miyashita Y, Iino M, Kasai H (2001) Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat Neurosci 4(11):1086-1092. Matsuzaki M, Honkura N, Ellis-Davies GC, Kasai H (2004) Structural basis of long-term potentiation in single dendritic spines. Nature 429:761-766. Mattson MP, Chan SL (2003) Neuronal and glial calcium signaling in Alzheimer''s disease. Cell Calcium 34:385-397. Matus A, Ackermann M, Pehling G, Byers HR, Fujiwara K (1982) High actin concentrations in brain dendritic spines and postsynaptic densities. Proc Natl Acad Sci USA 79:7590-7594. McDermott CM, LaHoste GJ, Chen C, Musto A, Bazan NG, Magee JC (2003) Sleep deprivation causes behavioral, synaptic, and membrane excitability alterations in hippocampal neurons. J Neurosci 23(29):9687-9695. McDermott CM, Hardy MN, Bazan NG, Magee JC (2006) Sleep deprivation-induced alterations in excitatory synaptic transmission in the CA1 region of the rat hippocampus. J Physiol 570.3:553-565. McEwen BS (2000) The neurobiology of stress: from serendipity to clinical relevance. Brain Res 886:172-189. Moser MB, Trommald M, Andersen P (1994) An increase in dendritic spine density on hippocampal ca1 pyramidal cells following spatial learning in adult rats suggests the formation of new synapses. Proc Natl Acad Sci USA 91(26):12673-12675. Murai KK, Nguyen LN, Irie F, Yamaguchi Y, Pasquale EB (2003) Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling. Nat Neurosci 6:153-160. Murphy BL, Arnsten AF, Goldman-Rakic PS, Roth RH (1996) Increased dopamine turnover in the prefrontal cortex impairs spatial working memory performance in rats and monkeys. Proc Natl Acad Sci USA 93:1325-1329. Newsholme EA, Blomstrand E (1996) The plasma level of some amino acids and physical and mental fatigue. Experientia 52(5):413-415. Nicholson DA, Trana R, Katz Y, Kath WL, Spruston N, Geinisman Y (2006) Distance-dependent differences in synapse number and AMPA receptor expression in hippocampal CA1 pyramidal neurons. Neuron 50(3):431-442. Nimchinsky EA, Sabatini BL, Svoboda K (2002) Structure and function of dendritic spines. Annu Rev Physiol 64:313-353. Okabe S (2007) Molecular anatomy of the postsynaptic density. Mol Cell Neurosci 34(4):503-518. Okada T, Tanaka M, Kuratsune H, Watanabe Y, Sadato N (2004) Mechanisms underlying fatigue: a voxel-based morphometric study of chronic fatigue syndrome. BMC Neurology 4:14. Ostroff LE, Fiala JC, Allwardt B, Harris KM (2002) Polyribosomes redistribute from dendritic shafts into spines with enlarged synapses during LTP in developing rat hippocampal slices. Neuron 35(3):535-545. Park M, Salgado JM, Ostroff L, Helton TD, Robinson CG, Harris KM, Ehlers MD (2006) Plasticity-induced growth of dendritic spines by exocytic trafficking from recycling endosomes. Neuron 52(5):817-830. Parnass Z, Tashiro A, Yuste R (2000) Analysis of spine morphological plasticity in developing hippocampal pyramidal neurons. Hippocampus 10:561-568. Paul LA, Scheibel AB (1986) Structural substrates of epilepsy. Adv Neurol 44:775-786. Popov VI, Bocharova LS, Bragin AG (1992) Repeated changes of dendritic morphology in the hippocampus of ground squirrels in the course of hibernation. Neuroscience 48:45-51. Qui S, Hermans EJ, van Marle HJF, Luo J, Fernandez, G (2009) Acute psychological stress reduces working memory-related activity in the dorsolateral prefrontal cortex. Biol Psychiatry 66(1):25-32. Richards RS, Wang L, Jelinek H (2007) Erythrocyte oxidative damage in chronic fatigue syndrome. Arch Med Res 28:94-98. Ruskin DN, Dunn KE, Billiot I, Bazan NG, LaHoste GJ (2006) Eliminating the adrenal stress response does not affect sleep deprivation-induced acquisition deficits in the water maze. Life Sciences 78:2833-2838. Sacco P, Hope PAJ, Thickbroom GW, Byrnes ML, Mastaglia FL (1999) Corticomotor excitability and perception of effort during sustained exercise in the chronic fatigue syndrome. Clin Neurophysiol 110:1883-1891. Sachdeva AK, Kuhad A, Tiwari V, Chopra K (2009) Epigallocatechin gallate ameliorates chronic fatigue syndrome in mice: Behavioral and biochemical evidence. Behav Brain Res 205(2):414-420. Samii A, Wassermann EM, Ikoma K, Mercuri B, George MS, O''Fallon A, Dale JK, Straus SE, Hallett M (1996) Decreased post-exercise facilitation of motor evoked potentials in patients with chronic fatigue syndrome or depression. Neurology 47:1410-1414. Sandi C, Davies HA, Cordero MI, Rodriguez JJ, Popov VI, Stewart MG (2003) Rapid reversal of stress induced loss of synapses in CA3 of rat hippocampus following water maze training. Eur J Neurosci 17:2447-2456. Sandi C (2004) Stress, cognitive impairment and cell adhesion molecules. Nat Rev Neurosci 5:917-930. Shansky RM, Rubinow K, Brennan A, Arnsten AF (2006) The effects of sex and hormonal status on restraint-stress-induced working memory impairment. Behav Brain Funct 2:8. Singh A, Naidu PS, Gupta S, Kulkarni SK (2002) Effect of natural and synthetic antioxidants in a mouse model of chronic fatigue syndrome. J Med Food 5-4:211-220. Soares DD, Coimbra CC, Marubayashi U (2007) Tryptophan-induced central fatigue in exercising rats is related to serotonin content in preoptic area. Neurosci Lett 415:274-278. Spacek J, Harris KM (1997) Three-dimensional organization of smooth endoplasmic reticulum in hippocampal CA1 dendrites and dendritic spines of the immature and mature rat. J Neurosci 17(1):190-203. Starr A, Scalise A, Gordon R, Michalewski HJ, Caramia MD (2000) Motor cortex excitability in chronic fatigue syndrome. Clin Neurophysiol 111:2025-2031. Sun L, Shen W, Liu Z, Guan S, Liu J, Ding S (2010) Endurance exercise causes mitochondrial and oxidative stress in rat liver: Effects of a combination of mitochondrial targeting nutrients. Life Sciences 86:39-44. Swann JW, Al-Noori S, Jiang M, Lee CL (2000) Spine loss and other dendritic abnormalities in epilepsy. Hippocampus 10:617-625. Tada T, Sheng M (2006) Molecular mechanisms of dendritic spine morphogenesis. Curr Opin Neurobiol 16(1):95-101. Tanaka M, Nakamura F, Mizokawa S, Matsumura A, Nozaki S, Watanabe Y (2003) Establishment and assessment of a rat model of fatigue. Neurosci Lett 352:159-162. Trachtenberg JT, Chen BE, Knott GW, Feng G, Sanes JR, Welker E, Svoboda K (2002) Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420:788-794. Ulfhake B, Cullheim S (1988) Postnatal development of cat hind limb motoneurons. III: Changes in size of motoneurons supplying the triceps surae muscle. J Comp Neurol 278:103-120. Vees AM, Micheva KD, Beaulieu C, Descarries L (1998) Increased number and size of dendritic spines in ipsilateral barrel field cortex following unilateral whisker trimming in postnatal rat. J Comp Neurol 400:110-124. Venero C, Tilling T, Hermans-Borgmeyer I, Schmidt R, Schachner M, Sandi C (2002) Chronic stress induces opposite changes in the expression of the neural cell adhesion molecules NCAM and L1 mRNA. Neuroscience 115:1211-1219. Wang TJ, Chen JR, Tseng GF (2002) Fate of the soma and dendrties of cord-projection central neurons after proximal and distal spinal axotomy: an intracellular dye injection study. J Neurotrauma 19:1487-1502. Wang TJ, Chen JR, Wang YJ, Tseng GF (2009) The cytoarchitecture and soma-dendritic arbors of the pyramidal neurons of aged rat sensorimotor cortex: An intracellular dye injection study. Neuroscience 158:776-785. Whitam M, Fortes MB (2008) Heat shock protein 72: release and biological significance during exercise. Front Biosci 13:1328-1339. Witcher MR, Kirov SA, Harris KM (2007) Plasticity of perisynaptic astroglia during synaptogenesis in the mature rat hippocampus. Glia 55(1):13-23. Won JS, Im YB, Khan M, Singh AK, Singh I (2005) Involvement of phospholipase A2 and lipoxygenase in lipopolysaccharide-induced inducible nitric oxide synthase expression in glial cells. Glia 51:13-21. Woo KJ, Lim JH, Suh SI, Kwon YK, Shin SW, Kim SC, Choi YH, Park JW, Kwon TK (2006) Differential inhibitory effects of baicalein and baicalin on LPS-induced cyclooxygenase-2 expression through inhibition of C/EBPbeta DNA-binding activity. Immunobiology 211:259-368.
摘要: 疲勞是正常的生理反應,日常活動、腦力激盪、或劇烈運動之後,經常會有暫時性的疲勞感。慢性疲勞症候群(chronic fatigue syndrome, CFS)則是指持續6個月以上不知原因的疲勞,且伴隨有記憶力或專注力衰退、喉嚨痛、淋巴結腫大、肌肉僵硬或疼痛、關節痛、頭痛、睡眠不佳、用力後疲勞等四種以上症狀。研究顯示慢性疲勞症候群病患血液中有較高的氧化及亞硝化壓力,一般相信NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells)是調控發炎、氧化及亞硝化壓力途徑之主要上游調控者。而疲勞的相關症狀均與神經系統有關,為了進一步瞭解短時間及長時間運動疲勞對中樞神經細胞的影響及其可能的機制,我們以SD大白鼠為對象,利用自動滾輪強迫動物連續運動1周及8周(每天21小時運動/3小時休息)來誘導疲勞,而後以Morris water maze和負重游泳測試分別來評估其空間記憶能力及體耐力。型態學上,除了分析大腦皮質的厚度外,同時以免疫組織化學染色觀察中樞神經組織中星狀神經膠細胞、NF-κB及nNOS (neuronal NO synthase)-immunoreative細胞的密度。另外,為了進一步瞭解個別神經細胞的樹突型態變化,我們以細胞內染料注射方法來探討皮質脊髓徑神經元及海馬迴CA1 (Cornu Ammonis 1)與CA3錐體細胞的樹突叢,分析樹突棘密度的變化。實驗結果顯示,連續運動1周及8周的大鼠在Morris water maze中的表現顯著下降,顯示如此誘導疲勞的動物之空間記憶力衰退且運動能力變差;連續運動1周後的動物負重游泳能力顯著下降,顯示體耐力下降。從通過前連合處的大腦冠狀切面上量測,體感覺運動皮質的厚度在連續運動8周組顯著下降。然而,這兩組動物大腦皮質第五層錐體細胞的密度並無顯著差異,此外,星狀神經膠細胞及表現nNOS的細胞密度也無顯著差異。長時間連續運動組,表現NF-κB的細胞密度則顯著上升。在神經細胞樹突棘密度上,短時間及長時間連續運動組皮質脊髓徑神經元各部位樹突表面的樹突棘密度顯著下降,海馬迴CA1及CA3錐體細胞也出現相同的變化。綜合上述結果,我們推測短時間或長時間的連續運動會經由改變大腦皮質及海馬迴錐體細胞的樹突型態,來影響動物的負重游泳能力及空間記憶學習能力。
Fatigue is a normal physiological phenomenon after exercise or daily activity. Fatigue that persists for over six months with four or more of the following symptoms: impaired memory or concentration, sore throat, enlargement of lymph nodes, aching or stiff muscles, multi-joint pain, new headaches, unrefreshing sleep or post-exertional fatigue is regarded as chronic fatigue syndrome (CFS). CFS patients often show high oxidative and nitrosative stress and are believed to link to the activation of its major upstream mechanism, the NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) pathway. In this study, we used SD rat as a model and used auto-running wheel (21 hours of running daily) to enforce extended exercise for short (1 week) and long (8 weeks) duration to find out how fatigue affects central neurons. Effects on spatial memory and motor endurance were assessed with Morris water maze and weight-loaded forced swimming test respectively. The effects on cytoarchitecture including cortical thickness and densities of layer V pyramidal neurons, astrocytes, NF-κB and nNOS-expression cells were also evaluated. The dendritic arbors and spines of corticospinal neurons and hippocampal CA1 and CA3 pyramidal neurons were studied following intracellular dye injection. Our results showed 1 or 8 weeks of continuous exercise weakened the animals' performance in Morris water maze and weight-loaded forced swimming test. Cortical thickness at the level of anterior commissure was significant reduced after 8 weeks of continuous exercise. Density of layer V pyramidal neurons as well as those of the GFAP and nNOS-immunoreacitve cells was not altered. Cells expressing NF-κB was however increased after 8 weeks of continuous exercise. Dendritic spines on corticospinal and hippocampal CA1 and CA3 pyramidal neurons of both exercise groups were significantly reduced. In conclusion, our results suggest that extended exercise as short as 1 week could alter the dendritic morphologies of corticospinal as well as hippocampal CA1 and CA3 pyramidal neurons. This might have consequently impaired animals' spatial learning and motor endurance.
URI: http://hdl.handle.net/11455/14244
其他識別: U0005-1907201016443800
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1907201016443800
Appears in Collections:獸醫學系所

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.