Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/14266
標題: 缺氧蛋白BNIP3及鈣離子誘導蛋白E4BP4對心肌細胞傷害及保護之調控機轉探討
Regulatory mechanisms of BNIP3 and E4BP4 in cell death and protection of cardiomyocytes
作者: 翁宜君
Weng, Yi-Jiun
關鍵字: BNIP3
心肌凋亡
E4BP4
apoptosis
autophagy
自噬
生存因子
出版社: 獸醫學系暨研究所
引用: Agah, R., Kirshenbaum, L. A., Abdellatif, M., Truong, L. D., Chakraborty, S., Michael, L. H., and Schneider, M. D.: Adenoviral delivery of E2F-1 directs cell cycle reentry and p53-independent apoptosis in postmitotic adult myocardium in vivo. J Clin Invest 100: 2722-8, 1997 Akiyama, M., Minami, Y., Kuriyama, K., and Shibata, S.: MAP kinase-dependent induction of clock gene expression by alpha 1-adrenergic receptor activation. FEBS Lett 542: 109-14, 2003 Azad, M. B., Chen, Y., Henson, E. S., Cizeau, J., McMillan-Ward, E., Israels, S. J., and Gibson, S. B.: Hypoxia induces autophagic cell death in apoptosis-competent cells through a mechanism involving BNIP3. Autophagy 4: 195-204, 2008 Baker, L., Meldrum, K. K., Wang, M., Sankula, R., Vanam, R., Raiesdana, A., Tsai, B., Hile, K., Brown, J. W., and Meldrum, D. R.: The role of estrogen in cardiovascular disease. J Surg Res 115: 325-44, 2003 Barut, B. A. and Zon, L. I.: Realizing the potential of zebrafish as a model for human disease. Physiol Genomics 2: 49-51, 2000 Baxter, J. D. and Forsham, P. H.: Tissue effects of glucocorticoids. Am J Med 53: 573-89, 1972 Bhuiyan, M. S., Shioda, N., and Fukunaga, K.: Ovariectomy augments pressure overload-induced hypertrophy associated with changes in Akt and nitric oxide synthase signaling pathways in female rats. Am J Physiol Endocrinol Metab 293: E1606-14, 2007 Bikle, D. D., Harris, J., Halloran, B. P., Roberts, C. T., Leroith, D., and Morey-Holton, E.: Expression of the genes for insulin-like growth factors and their receptors in bone during skeletal growth. Am J Physiol 267: E278-86, 1994 Bogin, E., Massry, S. G., and Harary, I.: Effect of parathyroid hormone on rat heart cells. J Clin Invest 67: 1215-27, 1981 Boya, P., Gonzalez-Polo, R. A., Casares, N., Perfettini, J. L., Dessen, P., Larochette, N., Metivier, D., Meley, D., Souquere, S., Yoshimori, T., Pierron, G., Codogno, P., and Kroemer, G.: Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 25: 1025-40, 2005 Boyd, J. M., Malstrom, S., Subramanian, T., Venkatesh, L. K., Schaeper, U., Elangovan, B., D''Sa-Eipper, C., and Chinnadurai, G.: Adenovirus E1B 19 kDa and Bcl-2 proteins interact with a common set of cellular proteins. Cell 79: 341-51, 1994 Brittsan, A. G. and Kranias, E. G.: Phospholamban and cardiac contractile function. J Mol Cell Cardiol 32: 2131-9, 2000 Brown, D. D., Wang, Z., Furlow, J. D., Kanamori, A., Schwartzman, R. A., Remo, B. F., and Pinder, A.: The thyroid hormone-induced tail resorption program during Xenopus laevis metamorphosis. Proc Natl Acad Sci U S A 93: 1924-9, 1996 Bruick, R. K.: Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. Proc Natl Acad Sci U S A 97: 9082-7, 2000 Burggren, W. W.: What is the purpose of the embryonic heart beat? Or how facts can ultimately prevail over physiological dogma. Physiol Biochem Zool 77: 333-45, 2004 Burke, A. P. and Virmani, R.: Pathophysiology of acute myocardial infarction. Med Clin North Am 91: 553-72; ix, 2007 Burton, T. R. and Gibson, S. B.: The role of Bcl-2 family member BNIP3 in cell death and disease: NIPping at the heels of cell death. Cell Death Differ 16: 515-23, 2009 Carmeliet, P., Dor, Y., Herbert, J. M., Fukumura, D., Brusselmans, K., Dewerchin, M., Neeman, M., Bono, F., Abramovitch, R., Maxwell, P., Koch, C. J., Ratcliffe, P., Moons, L., Jain, R. K., Collen, D., and Keshert, E.: Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394: 485-90, 1998 Carney, S. A., Prasch, A. L., Heideman, W., and Peterson, R. E.: Understanding dioxin developmental toxicity using the zebrafish model. Birth Defects Res A Clin Mol Teratol 76: 7-18, 2006 Chae, S. U., Ha, K. C., Piao, C. S., Chae, S. W., and Chae, H. J.: Estrogen attenuates cardiac ischemia-reperfusion injury via inhibition of calpain-mediated bid cleavage. Arch Pharm Res 30: 1225-35, 2007 Chang, M. H., Kuo, W. W., Chen, R. J., Lu, M. C., Tsai, F. J., Kuo, W. H., Chen, L. Y., Wu, W. J., Huang, C. Y., and Chu, C. H.: IGF-II/mannose 6-phosphate receptor activation induces metalloproteinase-9 matrix activity and increases plasminogen activator expression in H9c2 cardiomyoblast cells. J Mol Endocrinol 41: 65-74, 2008 Chen, G., Ray, R., Dubik, D., Shi, L., Cizeau, J., Bleackley, R. C., Saxena, S., Gietz, R. D., and Greenberg, A. H.: The E1B 19K/Bcl-2-binding protein Nip3 is a dimeric mitochondrial protein that activates apoptosis. J Exp Med 186: 1975-83, 1997 Chen, J. L., Lin, H. H., Kim, K. J., Lin, A., Ou, J. H., and Ann, D. K.: PKC delta signaling: a dual role in regulating hypoxic stress-induced autophagy and apoptosis. Autophagy 5: 244-6, 2009 Chen, L. M., Kuo, W. W., Yang, J. J., Wang, S. G., Yeh, Y. L., Tsai, F. J., Ho, Y. J., Chang, M. H., Huang, C. Y., and Lee, S. D.: Eccentric cardiac hypertrophy was induced by long-term intermittent hypoxia in rats. Exp Physiol 92: 409-16, 2007 Chu, C. H., Tzang, B. S., Chen, L. M., Kuo, C. H., Cheng, Y. C., Chen, L. Y., Tsai, F. J., Tsai, C. H., Kuo, W. W., and Huang, C. Y.: IGF-II/mannose-6-phosphate receptor signaling induced cell hypertrophy and atrial natriuretic peptide/BNP expression via Galphaq interaction and protein kinase C-alpha/CaMKII activation in H9c2 cardiomyoblast cells. J Endocrinol 197: 381-90, 2008 Chu, C. H., Tzang, B. S., Chen, L. M., Liu, C. J., Tsai, F. J., Tsai, C. H., Lin, J. A., Kuo, W. W., Bau, D. T., Yao, C. H., and Huang, C. Y.: Activation of insulin-like growth factor II receptor induces mitochondrial-dependent apoptosis through G(alpha)q and downstream calcineurin signaling in myocardial cells. Endocrinology 150: 2723-31, 2009 Cowell, I. G.: E4BP4/NFIL3, a PAR-related bZIP factor with many roles. Bioessays 24: 1023-9, 2002 Cowell, I. G. and Hurst, H. C.: Transcriptional repression by the human bZIP factor E4BP4: definition of a minimal repression domain. Nucleic Acids Res 22: 59-65, 1994 Cowell, I. G. and Hurst, H. C.: Protein-protein interaction between the transcriptional repressor E4BP4 and the TBP-binding protein Dr1. Nucleic Acids Res 24: 3607-13, 1996 Cowell, I. G., Skinner, A., and Hurst, H. C.: Transcriptional repression by a novel member of the bZIP family of transcription factors. Mol Cell Biol 12: 3070-7, 1992 Cunningham, M. and Gilkeson, G.: Estrogen Receptors in Immunity and Autoimmunity. Clin Rev Allergy Immunol Daido, S., Kanzawa, T., Yamamoto, A., Takeuchi, H., Kondo, Y., and Kondo, S.: Pivotal role of the cell death factor BNIP3 in ceramide-induced autophagic cell death in malignant glioma cells. Cancer Res 64: 4286-93, 2004 Depre, C. and Vatner, S. F.: Cardioprotection in stunned and hibernating myocardium. Heart Fail Rev 12: 307-17, 2007 Diwan, A., Krenz, M., Syed, F. M., Wansapura, J., Ren, X., Koesters, A. G., Li, H., Kirshenbaum, L. A., Hahn, H. S., Robbins, J., Jones, W. K., and Dorn, G. W.: Inhibition of ischemic cardiomyocyte apoptosis through targeted ablation of Bnip3 restrains postinfarction remodeling in mice. J Clin Invest 117: 2825-33, 2007 Diwan, A., Matkovich, S. J., Yuan, Q., Zhao, W., Yatani, A., Brown, J. H., Molkentin, J. D., Kranias, E. G., and Dorn, G. W., 2nd: Endoplasmic reticulum-mitochondria crosstalk in NIX-mediated murine cell death. J Clin Invest 119: 203-12, 2009 Doi, M., Nakajima, Y., Okano, T., and Fukada, Y.: Light-induced phase-delay of the chicken pineal circadian clock is associated with the induction of cE4bp4, a potential transcriptional repressor of cPer2 gene. Proc Natl Acad Sci U S A 98: 8089-94, 2001 Dorn, G. W., 2nd and Force, T.: Protein kinase cascades in the regulation of cardiac hypertrophy. J Clin Invest 115: 527-37, 2005 Dorn, G. W., 2nd and Kirshenbaum, L. A.: Cardiac reanimation: targeting cardiomyocyte death by BNIP3 and NIX/BNIP3L. Oncogene 27 Suppl 1: S158-67, 2008 Drazner, M. H., Rame, J. E., Marino, E. K., Gottdiener, J. S., Kitzman, D. W., Gardin, J. M., Manolio, T. A., Dries, D. L., and Siscovick, D. S.: Increased left ventricular mass is a risk factor for the development of a depressed left ventricular ejection fraction within five years: the Cardiovascular Health Study. J Am Coll Cardiol 43: 2207-15, 2004 Durgan, D. J., Hotze, M. A., Tomlin, T. M., Egbejimi, O., Graveleau, C., Abel, E. D., Shaw, C. A., Bray, M. S., Hardin, P. E., and Young, M. E.: The intrinsic circadian clock within the cardiomyocyte. Am J Physiol Heart Circ Physiol 289: H1530-41, 2005 Eckfeldt, C. E., Mendenhall, E. M., Flynn, C. M., Wang, T. F., Pickart, M. A., Grindle, S. M., Ekker, S. C., and Verfaillie, C. M.: Functional analysis of human hematopoietic stem cell gene expression using zebrafish. PLoS Biol 3: e254, 2005 Elsasser, A., Vogt, A. M., Nef, H., Kostin, S., Mollmann, H., Skwara, W., Bode, C., Hamm, C., and Schaper, J.: Human hibernating myocardium is jeopardized by apoptotic and autophagic cell death. J Am Coll Cardiol 43: 2191-9, 2004 Fabiato, A. and Fabiato, F.: Contractions induced by a calcium-triggered release of calcium from the sarcoplasmic reticulum of single skinned cardiac cells. J Physiol 249: 469-95, 1975 Feldser, D., Agani, F., Iyer, N. V., Pak, B., Ferreira, G., and Semenza, G. L.: Reciprocal positive regulation of hypoxia-inducible factor 1alpha and insulin-like growth factor 2. Cancer Res 59: 3915-8, 1999 Fortuno, M. A., Gonzalez, A., Ravassa, S., Lopez, B., and Diez, J.: Clinical implications of apoptosis in hypertensive heart disease. Am J Physiol Heart Circ Physiol 284: H1495-506, 2003 Fraysse, B., Mons, R., and Garric, J.: Development of a zebrafish 4-day embryo-larval bioassay to assess toxicity of chemicals. Ecotoxicol Environ Saf 63: 253-67, 2006 Gekakis, N., Staknis, D., Nguyen, H. B., Davis, F. C., Wilsbacher, L. D., King, D. P., Takahashi, J. S., and Weitz, C. J.: Role of the CLOCK protein in the mammalian circadian mechanism. Science 280: 1564-9, 1998 George, H. and Terracol, R.: The vrille gene of Drosophila is a maternal enhancer of decapentaplegic and encodes a new member of the bZIP family of transcription factors. Genetics 146: 1345-63, 1997 Goldspink, P. H., McKinney, R. D., Kimball, V. A., Geenen, D. L., and Buttrick, P. M.: Angiotensin II induced cardiac hypertrophy in vivo is inhibited by cyclosporin A in adult rats. Mol Cell Biochem 226: 83-8, 2001 Guarino, R. D., Perez, D. M., and Piascik, M. T.: Recent advances in the molecular pharmacology of the alpha 1-adrenergic receptors. Cell Signal 8: 323-33, 1996 Gupta, K. B., Ratcliffe, M. B., Fallert, M. A., Edmunds, L. H., Jr., and Bogen, D. K.: Changes in passive mechanical stiffness of myocardial tissue with aneurysm formation. Circulation 89: 2315-26, 1994 Gustafsson, A. B. and Gottlieb, R. A.: Autophagy in ischemic heart disease. Circ Res 104: 150-8, 2009 Gwechenberger, M., Mendoza, L. H., Youker, K. A., Frangogiannis, N. G., Smith, C. W., Michael, L. H., and Entman, M. L.: Cardiac myocytes produce interleukin-6 in culture and in viable border zone of reperfused infarctions. Circulation 99: 546-51, 1999 Hale, S. L., Birnbaum, Y., and Kloner, R. A.: Estradiol, Administered Acutely, Protects Ischemic Myocardium in Both Female and Male Rabbits. J Cardiovasc Pharmacol Ther 2: 47-52, 1997 Hamacher-Brady, A., Brady, N. R., Logue, S. E., Sayen, M. R., Jinno, M., Kirshenbaum, L. A., Gottlieb, R. A., and Gustafsson, A. B.: Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy. Cell Death Differ 14: 146-57, 2007 Harrison, D. G., Cai, H., Landmesser, U., and Griendling, K. K.: Interactions of angiotensin II with NAD(P)H oxidase, oxidant stress and cardiovascular disease. J Renin Angiotensin Aldosterone Syst 4: 51-61, 2003 Hein, S., Arnon, E., Kostin, S., Schonburg, M., Elsasser, A., Polyakova, V., Bauer, E. P., Klovekorn, W. P., and Schaper, J.: Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: structural deterioration and compensatory mechanisms. Circulation 107: 984-91, 2003 Hill, A. J., Teraoka, H., Heideman, W., and Peterson, R. E.: Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicol Sci 86: 6-19, 2005 Ikushima, S., Inukai, T., Inaba, T., Nimer, S. D., Cleveland, J. L., and Look, A. T.: Pivotal role for the NFIL3/E4BP4 transcription factor in interleukin 3-mediated survival of pro-B lymphocytes. Proc Natl Acad Sci U S A 94: 2609-14, 1997 Izumo, S., Nadal-Ginard, B., and Mahdavi, V.: Protooncogene induction and reprogramming of cardiac gene expression produced by pressure overload. Proc Natl Acad Sci U S A 85: 339-43, 1988 Junghans, D., Chauvet, S., Buhler, E., Dudley, K., Sykes, T., and Henderson, C. E.: The CES-2-related transcription factor E4BP4 is an intrinsic regulator of motoneuron growth and survival. Development 131: 4425-34, 2004 Kanda, T. and Takahashi, T.: Interleukin-6 and cardiovascular diseases. Jpn Heart J 45: 183-93, 2004 Kaneko, K., Kanda, T., Yokoyama, T., Nakazato, Y., Iwasaki, T., Kobayashi, I., and Nagai, R.: Expression of interleukin-6 in the ventricles and coronary arteries of patients with myocardial infarction. Res Commun Mol Pathol Pharmacol 97: 3-12, 1997 Kanzawa, T., Zhang, L., Xiao, L., Germano, I. M., Kondo, Y., and Kondo, S.: Arsenic trioxide induces autophagic cell death in malignant glioma cells by upregulation of mitochondrial cell death protein BNIP3. Oncogene 24: 980-91, 2005 Kim, I., Rodriguez-Enriquez, S., and Lemasters, J. J.: Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys 462: 245-53, 2007 Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., and Schilling, T. F.: Stages of embryonic development of the zebrafish. Dev Dyn 203: 253-310, 1995 Kinoshita, T., Shirouzu, M., Kamiya, A., Hashimoto, K., Yokoyama, S., and Miyajima, A.: Raf/MAPK and rapamycin-sensitive pathways mediate the anti-apoptotic function of p21Ras in IL-3-dependent hematopoietic cells. Oncogene 15: 619-27, 1997 Kinoshita, T., Yokota, T., Arai, K., and Miyajima, A.: Suppression of apoptotic death in hematopoietic cells by signalling through the IL-3/GM-CSF receptors. EMBO J 14: 266-75, 1995 Kirshenbaum, L. A., Abdellatif, M., Chakraborty, S., and Schneider, M. D.: Human E2F-1 reactivates cell cycle progression in ventricular myocytes and represses cardiac gene transcription. Dev Biol 179: 402-11, 1996 Knaapen, M. W., Davies, M. J., De Bie, M., Haven, A. J., Martinet, W., and Kockx, M. M.: Apoptotic versus autophagic cell death in heart failure. Cardiovasc Res 51: 304-12, 2001 Kostin, S., Pool, L., Elsasser, A., Hein, S., Drexler, H. C., Arnon, E., Hayakawa, Y., Zimmermann, R., Bauer, E., Klovekorn, W. P., and Schaper, J.: Myocytes die by multiple mechanisms in failing human hearts. Circ Res 92: 715-24, 2003 Kume, K., Zylka, M. J., Sriram, S., Shearman, L. P., Weaver, D. R., Jin, X., Maywood, E. S., Hastings, M. H., and Reppert, S. M.: mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98: 193-205, 1999 Kung, T. A., Egbejimi, O., Cui, J., Ha, N. P., Durgan, D. J., Essop, M. F., Bray, M. S., Shaw, C. A., Hardin, P. E., Stanley, W. C., and Young, M. E.: Rapid attenuation of circadian clock gene oscillations in the rat heart following ischemia-reperfusion. J Mol Cell Cardiol 43: 744-53, 2007 Kunisada, K., Tone, E., Fujio, Y., Matsui, H., Yamauchi-Takihara, K., and Kishimoto, T.: Activation of gp130 transduces hypertrophic signals via STAT3 in cardiac myocytes. Circulation 98: 346-52, 1998 Kuribara, R., Kinoshita, T., Miyajima, A., Shinjyo, T., Yoshihara, T., Inukai, T., Ozawa, K., Look, A. T., and Inaba, T.: Two distinct interleukin-3-mediated signal pathways, Ras-NFIL3 (E4BP4) and Bcl-xL, regulate the survival of murine pro-B lymphocytes. Mol Cell Biol 19: 2754-62, 1999 Lai, C. K. and Ting, L. P.: Transcriptional repression of human hepatitis B virus genes by a bZIP family member, E4BP4. J Virol 73: 3197-209, 1999 Langheinrich, U.: Zebrafish: a new model on the pharmaceutical catwalk. Bioessays 25: 904-12, 2003 Lee, S. D., Chu, C. H., Huang, E. J., Lu, M. C., Liu, J. Y., Liu, C. J., Hsu, H. H., Lin, J. A., Kuo, W. W., and Huang, C. Y.: Roles of insulin-like growth factor II in cardiomyoblast apoptosis and in hypertensive rat heart with abdominal aorta ligation. Am J Physiol Endocrinol Metab 291: E306-14, 2006 Lee, S. D., Kuo, W. W., Lin, J. A., Chu, Y. F., Wang, C. K., Yeh, Y. L., Wang, S. G., Liu, J. Y., Chang, M. H., and Huang, C. Y.: Effects of long-term intermittent hypoxia on mitochondrial and Fas death receptor dependent apoptotic pathways in rat hearts. Int J Cardiol 116: 348-56, 2007 Liang, Q. and Molkentin, J. D.: Divergent signaling pathways converge on GATA4 to regulate cardiac hypertrophic gene expression. J Mol Cell Cardiol 34: 611-6, 2002 Liang, X. H., Jackson, S., Seaman, M., Brown, K., Kempkes, B., Hibshoosh, H., and Levine, B.: Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402: 672-6, 1999 Liang, X. H., Kleeman, L. K., Jiang, H. H., Gordon, G., Goldman, J. E., Berry, G., Herman, B., and Levine, B.: Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J Virol 72: 8586-96, 1998 Limas, C. J.: Calcium transport ATPase of cardiac sarcoplasmic reticulum in experimental hyperthyroidism. Am J Physiol 235: H745-52, 1978 Lin, T. B., Lo, M. J., Huang, C. Y., Ting, H., and Lee, S. D.: GABAergic modulation of ventilatory response to acute and sustained hypoxia in obese Zucker rats. Int J Obes (Lond) 29: 188-95, 2005 Lin, Y. M., Huang, S. K., Wang, H. F., Chen, L. M., Tsai, F. J., Hsu, H. H., Kuo, C. H., Wang, P. S., Huang, C. Y., and Lee, S. D.: Short-term versus long-term intermittent hypobaric hypoxia on cardiac fibrosis and Fas death receptor dependent apoptotic pathway in rat hearts. Chin J Physiol 51: 308-16, 2008 Liu, C. J., Lo, J. F., Kuo, C. H., Chu, C. H., Chen, L. M., Tsai, F. J., Tsai, C. H., Tzang, B. S., Kuo, W. W., and Huang, C. Y.: Akt mediates 17beta-estradiol and/or estrogen receptor-alpha inhibition of LPS-induced tumor necresis factor-alpha expression and myocardial cell apoptosis by suppressing the JNK1/2-NFkappaB pathway. J Cell Mol Med 13: 3655-67, 2009 Lockshin, R. A. and Zakeri, Z.: Apoptosis, autophagy, and more. Int J Biochem Cell Biol 36: 2405-19, 2004 Loppnow, H. and Libby, P.: Proliferating or interleukin 1-activated human vascular smooth muscle cells secrete copious interleukin 6. J Clin Invest 85: 731-8, 1990 MacDonnell, S. M., Kubo, H., Harris, D. M., Chen, X., Berretta, R., Barbe, M. F., Kolwicz, S., Reger, P. O., Eckhart, A., Renna, B. F., Koch, W. J., Houser, S. R., and Libonati, J. R.: Calcineurin inhibition normalizes beta-adrenergic responsiveness in the spontaneously hypertensive rat. Am J Physiol Heart Circ Physiol 293: H3122-9, 2007 Matsui, Y., Takagi, H., Qu, X., Abdellatif, M., Sakoda, H., Asano, T., Levine, B., and Sadoshima, J.: Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res 100: 914-22, 2007 McCormick, K. M., Dahms, N. M., and Lough, J.: Insulin-like growth factor-II/mannose-6-phosphate receptor expression during early heart development. Dev Dyn 207: 195-203, 1996 McNamara, P., Seo, S. B., Rudic, R. D., Sehgal, A., Chakravarti, D., and FitzGerald, G. A.: Regulation of CLOCK and MOP4 by nuclear hormone receptors in the vasculature: a humoral mechanism to reset a peripheral clock. Cell 105: 877-89, 2001 Meng, A., Tang, H., Yuan, B., Ong, B. A., Long, Q., and Lin, S.: Positive and negative cis-acting elements are required for hematopoietic expression of zebrafish GATA-1. Blood 93: 500-8, 1999 Mercadier, J. J., Samuel, J. L., Michel, J. B., Zongazo, M. A., de la Bastie, D., Lompre, A. M., Wisnewsky, C., Rappaport, L., Levy, B., and Schwartz, K.: Atrial natriuretic factor gene expression in rat ventricle during experimental hypertension. Am J Physiol 257: H979-87, 1989 Mesri, M. and Altieri, D. C.: Endothelial cell activation by leukocyte microparticles. J Immunol 161: 4382-7, 1998 Metzstein, M. M., Hengartner, M. O., Tsung, N., Ellis, R. E., and Horvitz, H. R.: Transcriptional regulator of programmed cell death encoded by Caenorhabditis elegans gene ces-2. Nature 382: 545-7, 1996 Molkentin, J. D.: Calcineurin-NFAT signaling regulates the cardiac hypertrophic response in coordination with the MAPKs. Cardiovasc Res 63: 467-75, 2004 Molkentin, J. D. and Dorn, G. W., 2nd: Cytoplasmic signaling pathways that regulate cardiac hypertrophy. Annu Rev Physiol 63: 391-426, 2001 Molkentin, J. D., Lu, J. R., Antos, C. L., Markham, B., Richardson, J., Robbins, J., Grant, S. R., and Olson, E. N.: A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93: 215-28, 1998 Molkentin, J. D. and Olson, E. N.: GATA4: a novel transcriptional regulator of cardiac hypertrophy? Circulation 96: 3833-5, 1997 Nakayama, H., Chen, X., Baines, C. P., Klevitsky, R., Zhang, X., Zhang, H., Jaleel, N., Chua, B. H., Hewett, T. E., Robbins, J., Houser, S. R., and Molkentin, J. D.: Ca2+- and mitochondrial-dependent cardiomyocyte necrosis as a primary mediator of heart failure. J Clin Invest 117: 2431-44, 2007 Nemoto, S., Sheng, Z., and Lin, A.: Opposing effects of Jun kinase and p38 mitogen-activated protein kinases on cardiomyocyte hypertrophy. Mol Cell Biol 18: 3518-26, 1998 Ng, D. C., Court, N. W., dos Remedios, C. G., and Bogoyevitch, M. A.: Activation of signal transducer and activator of transcription (STAT) pathways in failing human hearts. Cardiovasc Res 57: 333-46, 2003 Nicol, R. L., Frey, N., Pearson, G., Cobb, M., Richardson, J., and Olson, E. N.: Activated MEK5 induces serial assembly of sarcomeres and eccentric cardiac hypertrophy. EMBO J 20: 2757-67, 2001 Nishida, K., Yamaguchi, O., and Otsu, K.: Crosstalk between autophagy and apoptosis in heart disease. Circ Res 103: 343-51, 2008 Nishimura, Y. and Tanaka, T.: Calcium-dependent activation of nuclear factor regulated by interleukin 3/adenovirus E4 promoter-binding protein gene expression by calcineurin/nuclear factor of activated T cells and calcium/calmodulin-dependent protein kinase signaling. J Biol Chem 276: 19921-8, 2001 Nowikovsky, K., Reipert, S., Devenish, R. J., and Schweyen, R. J.: Mdm38 protein depletion causes loss of mitochondrial K+/H+ exchange activity, osmotic swelling and mitophagy. Cell Death Differ 14: 1647-56, 2007 Ohno, T., Onishi, Y., and Ishida, N.: A novel E4BP4 element drives circadian expression of mPeriod2. Nucleic Acids Res 35: 648-55, 2007 Okano, T. and Fukada, Y.: Chicktacking pineal clock. J Biochem 134: 791-7, 2003 Olson, E. N. and Schneider, M. D.: Sizing up the heart: development redux in disease. Genes Dev 17: 1937-56, 2003 Otto, G. P., Wu, M. Y., Kazgan, N., Anderson, O. R., and Kessin, R. H.: Macroautophagy is required for multicellular development of the social amoeba Dictyostelium discoideum. J Biol Chem 278: 17636-45, 2003 Ozkurt, I. C., Pirih, F. Q., and Tetradis, S.: Parathyroid hormone induces E4bp4 messenger ribonucleic acid expression primarily through cyclic adenosine 3'',5''-monophosphate signaling in osteoblasts. Endocrinology 145: 3696-703, 2004 Ozkurt, I. C. and Tetradis, S.: Parathyroid hormone-induced E4BP4/NFIL3 down-regulates transcription in osteoblasts. J Biol Chem 278: 26803-9, 2003 Pan, J., Fukuda, K., Kodama, H., Sano, M., Takahashi, T., Makino, S., Kato, T., Manabe, T., Hori, S., and Ogawa, S.: Involvement of gp130-mediated signaling in pressure overload-induced activation of the JAK/STAT pathway in rodent heart. Heart Vessels 13: 199-208, 1998 Pan, J., Fukuda, K., Saito, M., Matsuzaki, J., Kodama, H., Sano, M., Takahashi, T., Kato, T., and Ogawa, S.: Mechanical stretch activates the JAK/STAT pathway in rat cardiomyocytes. Circ Res 84: 1127-36, 1999 Pattingre, S., Tassa, A., Qu, X., Garuti, R., Liang, X. H., Mizushima, N., Packer, M., Schneider, M. D., and Levine, B.: Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122: 927-39, 2005 Paul, S.: Ventricular remodeling. Crit Care Nurs Clin North Am 15: 407-11, 2003 Pfeffer, J. M., Pfeffer, M. A., Fletcher, P. J., and Braunwald, E.: Progressive ventricular remodeling in rat with myocardial infarction. Am J Physiol 260: H1406-14, 1991 Priceman, S. J., Kirzner, J. D., Nary, L. J., Morris, D., Shankar, D. B., Sakamoto, K. M., and Medh, R. D.: Calcium-dependent upregulation of E4BP4 expression correlates with glucocorticoid-evoked apoptosis of human leukemic CEM cells. Biochem Biophys Res Commun 344: 491-9, 2006 Pyo, J. O., Jang, M. H., Kwon, Y. K., Lee, H. J., Jun, J. I., Woo, H. N., Cho, D. H., Choi, B., Lee, H., Kim, J. H., Mizushima, N., Oshumi, Y., and Jung, Y. K.: Essential roles of Atg5 and FADD in autophagic cell death: dissection of autophagic cell death into vacuole formation and cell death. J Biol Chem 280: 20722-9, 2005 Ray, R., Chen, G., Vande Velde, C., Cizeau, J., Park, J. H., Reed, J. C., Gietz, R. D., and Greenberg, A. H.: BNIP3 heterodimerizes with Bcl-2/Bcl-X(L) and induces cell death independent of a Bcl-2 homology 3 (BH3) domain at both mitochondrial and nonmitochondrial sites. J Biol Chem 275: 1439-48, 2000 Raya, T. E., Gay, R. G., Lancaster, L., Aguirre, M., Moffett, C., and Goldman, S.: Serial changes in left ventricular relaxation and chamber stiffness after large myocardial infarction in rats. Circulation 77: 1424-31, 1988 Rodgers, R. L., Black, S., Katz, S., and McNeill, J. H.: Thyroidectomy of SHR: effects on ventricular relaxation and on SR calcium uptake activity. Am J Physiol 250: H861-5, 1986 Safe, S.: Transcriptional activation of genes by 17 beta-estradiol through estrogen receptor-Sp1 interactions. Vitam Horm 62: 231-52, 2001 Saito, S., Hiroi, Y., Zou, Y., Aikawa, R., Toko, H., Shibasaki, F., Yazaki, Y., Nagai, R., and Komuro, I.: beta-Adrenergic pathway induces apoptosis through calcineurin activation in cardiac myocytes. J Biol Chem 275: 34528-33, 2000 Samarel, A. M.: IGF-1 Overexpression rescues the failing heart. Circ Res 90: 631-3, 2002 Schwartz, K., de la Bastie, D., Bouveret, P., Oliviero, P., Alonso, S., and Buckingham, M.: Alpha-skeletal muscle actin mRNA''s accumulate in hypertrophied adult rat hearts. Circ Res 59: 551-5, 1986 Sharpe, J. C., Arnoult, D., and Youle, R. J.: Control of mitochondrial permeability by Bcl-2 family members. Biochim Biophys Acta 1644: 107-13, 2004 Shimizu, S., Kanaseki, T., Mizushima, N., Mizuta, T., Arakawa-Kobayashi, S., Thompson, C. B., and Tsujimoto, Y.: Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol 6: 1221-8, 2004 Shimomura, H., Terasaki, F., Hayashi, T., Kitaura, Y., Isomura, T., and Suma, H.: Autophagic degeneration as a possible mechanism of myocardial cell death in dilated cardiomyopathy. Jpn Circ J 65: 965-8, 2001 Simmerman, H. K., Collins, J. H., Theibert, J. L., Wegener, A. D., and Jones, L. R.: Sequence analysis of phospholamban. Identification of phosphorylation sites and two major structural domains. J Biol Chem 261: 13333-41, 1986 Spitsbergen, J. M. and Kent, M. L.: The state of the art of the zebrafish model for toxicology and toxicologic pathology research--advantages and current limitations. Toxicol Pathol 31 Suppl: 62-87, 2003 Suko, J.: The calcium pump of cardiac sarcoplasmic reticulum. Functional alterations at different levels of thyroid state in rabbits. J Physiol 228: 563-82, 1973 Teicher, B. A.: Physiologic mechanisms of therapeutic resistance. Blood flow and hypoxia. Hematol Oncol Clin North Am 9: 475-506, 1995 Tracy, K., Dibling, B. C., Spike, B. T., Knabb, J. R., Schumacker, P., and Macleod, K. F.: BNIP3 is an RB/E2F target gene required for hypoxia-induced autophagy. Mol Cell Biol 27: 6229-42, 2007 Vande Velde, C., Cizeau, J., Dubik, D., Alimonti, J., Brown, T., Israels, S., Hakem, R., and Greenberg, A. H.: BNIP3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore. Mol Cell Biol 20: 5454-68, 2000 Wallace, A. D., Wheeler, T. T., and Young, D. A.: Inducibility of E4BP4 suggests a novel mechanism of negative gene regulation by glucocorticoids. Biochem Biophys Res Commun 232: 403-6, 1997 Wang, Y., Huang, S., Sah, V. P., Ross, J., Jr., Brown, J. H., Han, J., and Chien, K. R.: Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen-activated protein kinase family. J Biol Chem 273: 2161-8, 1998 Whelan, R. S., Mani, K., and Kitsis, R. N.: Nipping at cardiac remodeling. J Clin Invest 117: 2751-3, 2007 Wu, C. H., Liu, J. Y., Wu, J. P., Hsieh, Y. H., Liu, C. J., Hwang, J. M., Lee, S. D., Chen, L. M., Chang, M. H., Kuo, W. W., Shyu, J. C., Tsai, J. H., and Huang, C. Y.: 17beta-estradiol reduces cardiac hypertrophy mediated through the up-regulation of PI3K/Akt and the suppression of calcineurin/NF-AT3 signaling pathways in rats. Life Sci 78: 347-56, 2005 Wu, H. C., Yeh, Y. L., Kuo, W. W., Huang, S. K., Kuo, W. H., Hsieh, D. J., Wu, C. L., Tsai, C. H., Lee, S. D., and Huang, C. Y.: P38 mitogen-activated protein kinase pathways are involved in the hypertrophy and apoptosis of cardiomyocytes induced by Porphyromonas gingivalis conditioned medium. Cell Biochem Funct 26: 246-55, 2008 Xu, Y., Arenas, I. A., Armstrong, S. J., and Davidge, S. T.: Estrogen modulation of left ventricular remodeling in the aged heart. Cardiovasc Res 57: 388-94, 2003 Yamamoto, S., Sawada, K., Shimomura, H., Kawamura, K., and James, T. N.: On the nature of cell death during remodeling of hypertrophied human myocardium. J Mol Cell Cardiol 32: 161-75, 2000 Yan, L., Vatner, D. E., Kim, S. J., Ge, H., Masurekar, M., Massover, W. H., Yang, G., Matsui, Y., Sadoshima, J., and Vatner, S. F.: Autophagy in chronically ischemic myocardium. Proc Natl Acad Sci U S A 102: 13807-12, 2005 Yang, A. L., Lo, M. J., Ting, H., Chen, J. S., Huang, C. Y., and Lee, S. D.: GABA(A) and GABA(B) receptors differentially modulate volume and frequency in ventilatory compensation in obese Zucker rats. J Appl Physiol 102: 350-7, 2007 Yasuda, M., Theodorakis, P., Subramanian, T., and Chinnadurai, G.: Adenovirus E1B-19K/BCL-2 interacting protein BNIP3 contains a BH3 domain and a mitochondrial targeting sequence. J Biol Chem 273: 12415-21, 1998 Yen, W. L. and Klionsky, D. J.: How to live long and prosper: autophagy, mitochondria, and aging. Physiology (Bethesda) 23: 248-62, 2008 Ylikorkala, O.: HRT as secondary prevention of cardiovascular disease. Maturitas 47: 315-8, 2004 Young, M. E., Razeghi, P., and Taegtmeyer, H.: Clock genes in the heart: characterization and attenuation with hypertrophy. Circ Res 88: 1142-50, 2001 Young, M. E., Wilson, C. R., Razeghi, P., Guthrie, P. H., and Taegtmeyer, H.: Alterations of the circadian clock in the heart by streptozotocin-induced diabetes. J Mol Cell Cardiol 34: 223-31, 2002 Yu, Y. L., Chiang, Y. J., Chen, Y. C., Papetti, M., Juo, C. G., Skoultchi, A. I., and Yen, J. J.: MAPK-mediated phosphorylation of GATA-1 promotes Bcl-XL expression and cell survival. J Biol Chem 280: 29533-42, 2005 Yu, Y. L., Chiang, Y. J., and Yen, J. J.: GATA factors are essential for transcription of the survival gene E4bp4 and the viability response of interleukin-3 in Ba/F3 hematopoietic cells. J Biol Chem 277: 27144-53, 2002 Yurkova, N., Shaw, J., Blackie, K., Weidman, D., Jayas, R., Flynn, B., and Kirshenbaum, L. A.: The cell cycle factor E2F-1 activates Bnip3 and the intrinsic death pathway in ventricular myocytes. Circ Res 102: 472-9, 2008 Zechner, D., Thuerauf, D. J., Hanford, D. S., McDonough, P. M., and Glembotski, C. C.: A role for the p38 mitogen-activated protein kinase pathway in myocardial cell growth, sarcomeric organization, and cardiac-specific gene expression. J Cell Biol 139: 115-27, 1997 Zhang, H., Bosch-Marce, M., Shimoda, L. A., Tan, Y. S., Baek, J. H., Wesley, J. B., Gonzalez, F. J., and Semenza, G. L.: Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 283: 10892-903, 2008 Zhang, L., Li, L., Liu, H., Borowitz, J. L., and Isom, G. E.: BNIP3 mediates cell death by different pathways following localization to endoplasmic reticulum and mitochondrion. FASEB J 23: 3405-14, 2009 Zhang, W. and Xu, C.: Calcium sensing receptor and heart diseases. Pathophysiology 16: 317-23, 2009 Zhang, W., Zhang, J., Kornuc, M., Kwan, K., Frank, R., and Nimer, S. D.: Molecular cloning and characterization of NF-IL3A, a transcriptional activator of the human interleukin-3 promoter. Mol Cell Biol 15: 6055-63, 1995
摘要: 缺氧誘導標的蛋白BNIP3及生存相關蛋白E4BP4皆在疾病心臟中會大量增加。本研究將個別針對BNIP3及E4BP4探討其在心臟中的角色和調控機制。近期的報告指出,抑制BNIP3可以遏止心肌細胞的凋亡及梗塞後的心臟重組反應。因此,研究BNIP3是一個重要的治療標的,然而,BNIP3是否誘導肥大反應現今並沒有直接的報告與研究。在此研究中,我們將H9c2心肌原母細胞株短暫轉殖入並過量表現BNIP3,去偵測肥大訊息與現象是否發生,並利用細胞骨架染色來測量細胞大小。發現BNIP3過量表現會使得心肌細胞肥大,同時也使得病理性肥大的訊息路徑都被活化,包括: IL6-MEK5-ERK5, IL6-JAK2-STAT1/3, calcineurin/NFAT3以及p38β MAPK。除此之外,也促使了肥大的標的基因: ANP及BNP的蛋白量增加。總結以上的結果, BNIP3會誘導病理性肥大的發生,在未來可幫助新藥開發及當作治療的目標。雌性素及雌性素接受體-α (E2/ERα)皆可對抗粒線體依賴型凋亡路徑的發生,對心臟缺血缺氧傷害確實具有保護作用。進一步研究E2/ERα對BNIP3所誘導的自噬與凋亡反應之調控機制。在MTT及西方點墨法實驗中,利用capase-3抑制劑來抑制凋亡發現自噬作用會增強,而加入rapamycin來促進自噬時更促進BNIP3所造成的細胞死亡。經由TUNEL實驗觀察凋亡小體的減少及西方點墨法觀察caspase-3, Atg5及LC3-II皆有被ERα抑制的效果,得知E2/ERα對BNIP3造成的凋亡與自噬反應皆具有抑制之效果。經免疫沉澱實驗發現,ERα與BNIP3的結合反應強制的減少了BNIP3與其他蛋白Bcl-2及Rheb的結合。這表示ERα抑制了BNIP3去誘導凋亡及自噬反應的發生。此外,透過螢光酵素報告基因實驗發現,ERα可能會經由SP-1或NFkB對BNIP3的基因進行壓制的調控。由實驗結果推測ERα可以經由抑制BNIP3的基因轉錄及蛋白結合作用來抑制BNIP3所誘導的自噬與凋亡反應進而保護心臟。在另一主題,E4BP4屬於bZIP轉錄因子之ㄧ員,文獻證實E4BP4在造血細胞株中是一生存因子。然而,E4BP4在心臟中扮演的角色仍屬未知。我們利用Dot-blot技術及西方點墨法偵測各種哺乳動物心臟,發現確實有E4BP4的表現。而以免疫化學染色觀察,在人類疾病心臟組織中也看到E4BP4表現量的增加,並且當我們在新生鼠初代培養心肌細胞中將E4BP4過量表現則活化了促進生存訊息路徑蛋白如:IGF-1/IGF-1R、Bcl-2及p-Akt的表現進而來保護心臟。因此我們認為E4BP4在心臟中亦是生存因子。在先天性高血壓鼠(SHR)的心臟中也發現了E4BP4表現量增加,進一步我們探討E4BP4對血管昇壓素(AngII)造成心肌細胞凋亡之反應。由TUNEL及DNA斷裂的實驗觀察E4BP4減弱AngII所造成心肌細胞凋亡的情形。由mRNA及蛋白質層次觀察,E4BP4會經由PI3K-Akt的訊息路徑來減弱AngII所誘導的IGF-II表現及caspase-3的活化。並且,E4BP4更會去減少活化態PP2A、促進PKA及PLB的活化,進而促使鈣離子回收進入SR儲存。因此也抑制了Ang-II誘導的calcineurin的活化。此研究不但最新定義了E4BP4在心臟中屬生存因子,並可經由活化PI3K-Akt路徑及調控細胞內鈣離子濃度進而抑制Ang-II所誘導的凋亡反應。相信此研究之成果將對於心肌傷害之治療,臨床用藥及促進人體之健康有極其重要的意義。
Hypoxia-inducible marker, BNIP3, and survival-related E4BP4 are both upregulated in disease hearts. In this study, we focused on BNIP3 and E4BP4 respectively, to explore their roles and regulatory mechanisms in heart. Recent reports discussed ablating BNIP3 can restrain cardiomyocytes apoptosis and post-infarction remodeling. BNIP3 is a crucial therapeutic target. However, the BNIP3-induced hypertrophy aspect is rarely investigated. Here, we transiently transfected BNIP3 plasmids into H9c2 cardiomyoblast cells to evaluate the molecular signaling and hypertrophy markers using Western blot, and measure the cell size change using actin staining. We disclose that BNIP3 overexpression induced an increase in cell size, activated the pathological-related hypertrophy signaling pathways, such as IL6-MEK5-ERK5, IL6-JAK2-STAT1/3, calcineurin/NFAT3 and p38β MAPK resulting in the fetal genes, ANP and BNP expressing. Concluding above, BNIP3 acts as a pathological hypertrophy inducer, which might be a potential therapeutic target for heart damage prevention. ERα/E2 exert cardiac protection to against mitochondria-dependent apoptosis in I/R injury heart. We further uncover the regulatory mechanism of ERα on BNIP3-depedent effect. Autophagy was evidenced as an alternative death pathway when apoptosis was blocked by caspase-3 inhibitor (Z-DEVD-FMK) in BNIP3-overexpressed cells. Improving autophagy by rapamycin administration further enlarged the death effect of BNIP3-overexpressed cells evidenced by MTT cell viability and Western blot. ERα/E2 reduced BNIP3-induced apoptosis and autophagy by decrease the apoptotic cells in TUNEL assay and by decrease the protein levels of caspase 3, Atg5, LC3-II. By assay coimmunoprecipitation of BNIP3 and immunoblot of Bcl-2 and Rheb, we showed that the binding effect between ERα and BNIP3 reduced the interaction of BNIP3 with Bcl-2 or Rheb. It suggests the strong binding effect of ERα and BNIP3 inhibit the initiations of apoptosis and autophagy. In addition, ERα could repress BNIP3 promoter activity via binding to SP-1 or NFkB site. We speculate that ERα exerts the protective effect through repressing BNIP3 expression and strong binding with BNIP3 to retrain the BNIP3-induced autophagy and apoptosis effects. On the other hands, the bZIP transcription factor E4BP4, has been demonstrated to be a survival factor in pro-B lymphocytes. However, the role E4BP4 playing in heart is still poorly understood. Dot-blot hybridization assays using Dig-labled RNA probes revealed that the E4BP4 gene was expressed in cardiac tissue from several species including, monkey, dog, rabbit, and human. Western blot analysis showed that the E4BP4 protein was consistently present in all of these four species. Furthermore, immunohistochemistry revealed that the E4BP4 protein was overexpressed in diseased heart tissue in comparison with normal heart tissue. In addition, the overexpression of E4BP4 in vitro activated cell survival signaling pathway, including IGF-1/IGF-1R, Bcl-2, and p-Akt to rescue cardiomyocytes from apoptosis. Based on these results, we conclude that E4BP4 plays as a survival factor in heart. Previous study showed that E4BP4 expression was raised in hearts of spontaneously hypertensive rats (SHR). We tested the effect of E4BP4 on AngII-induced cardiomyocyte apoptosis. TUNEL and DNA fragmentation assays revealed that E4BP4 attenuated the apoptosis induced by AngII in H9c2 cardiomyoblast cells. Western blot and RT-PCR analysis showed that E4BP4 repressed the AngII-induced IGF-II mRNA expression and caspase-3 cleavage through PI3K-Akt pathway. Additionally, E4BP4 improved calcium reuptake into SR via down-regulating PP2A, up-regulating phosphorylated PKA and phosphorylated PLB, since inactive the AngII-induced calcineurin activation. This is a novel discovery that E4BP4 exerted as a survival factor in cardiomyoblasts and inhibited the AngII-induced apoptotic effect through blocking IGF-II transcription and regulating calcium cycling.
URI: http://hdl.handle.net/11455/14266
其他識別: U0005-2101201120244200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2101201120244200
Appears in Collections:獸醫學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.