Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/14267
標題: Pectobacterium carotovorum subsp. carotovorum 之 c-di-GMP 與 CRP 之協同作用對低分子量細菌素 carocin 基因之調控機制研究
Studies of the regulatory mechanism of the Low-Molecular-Weight Bacteriocin carocin gene through c-di-GMP and CRP cooperation in Pectobacterium carotovorum subsp. carotovorum
作者: 賴瑋婷
Lai, Wei-Ting
關鍵字: 環磷酸腺苷受體蛋白
Pectobacterium
調控機制
carocin
c-di-GMP
CRP
出版社: 化學系所
引用: 1.Perombelon, M.C.M., Potato diseases caused by soft rot erwinias: an overview of pathogenesis. Plant Pathology, 2002. 51(1): p. 1-12. 2.Chatterjee, A.K., et al., Synthesis and excretion of polygalacturonic acid trans-eliminase in Erwinia, Yersinia, and Klebsiella species. Canadian journal of microbiology, 1979. 25(1): p. 94-102. 3.黃徳昌, 臺灣作物細菌性病害防治要領. 行政院農業委員會臺東區農業改良場. 4.Gratia, A., Sur un remarquable exemple d''antagonisme entre deux souches de colibacille. CR Soc Biol, 1925. 93: p. 1040-1041. 5.Gratia, A. and P. Fredericq, Diversite des souches antibiotiques de Bacterium coli et etendue variable de leur champ d''action. CR Soc. Biol, 1946. 140: p. 1032-1033. 6.Bradley, D.E., Ultrastructure of bacteriophage and bacteriocins. Bacteriological reviews, 1967. 31(4): p. 230. 7.Nguyen, A.H., et al., A simple purification method and morphology and component analyses for carotovoricin Er, a phage-tail-like bacteriocin from the plant pathogen Erwinia carotovora Er. Bioscience, Biotechnology, and Biochemistry, 1999. 63(8): p. 1360-1369. 8.Chuang, D.-y., Y.-c. Chien, and H.-P. Wu, Cloning and expression of the Erwinia carotovora subsp. carotovora gene encoding the low-molecular-weight bacteriocin carocin S1. J Bacteriol, 2007. 189(2): p. 620-626. 9.林佳德, 低分子量細菌素Carocin S2抗生蛋白質CaroS2K抗生活性最小化區域分離與功能分析. 國立中興大學化學系所, 2012. 10.Chan, Y.-C., et al., Cloning, purification, and functional characterization of Carocin S2, a ribonuclease bacteriocin produced by Pectobacterium carotovorum. BMC Microbiol, 2011. 11(1): p. 99. 11.Kyeremeh, A.G., et al., Biological Control of Soft Rot of Chinese Cabbage Using Single and Mixed Treatments of Bacteriocin-producing Avirulent Mutants of Erwinia carotovora subsp. carotovora. Journal of General Plant Pathology, 2000. 66(3): p. 264-268. 12.Radman, M., SOS repair hypothesis: phenomenology of an inducible DNA repair which is accompanied by mutagenesis, in Molecular mechanisms for repair of DNA1975, Springer. p. 355-367. 13.Ebina, Y., et al., LexA protein is a repressor of the colicin E1 gene. Journal of Biological Chemistry, 1983. 258(21): p. 13258-13261. 14.Kamenšek, S., et al., Genes regulated by the Escherichia coli SOS repressor LexA exhibit heterogenous expression. BMC Microbiol, 2010. 10(1): p. 283. 15.Michel, B., After 30 years of study, the bacterial SOS response still surprises us. PLoS biology, 2005. 3(7): p. e255. 16.Cascales, E., et al., Colicin biology. Microbiology and Molecular Biology Reviews, 2007. 71(1): p. 158-229. 17.Davies, J.K. and P. Reeves, Genetics of resistance to colicins in Escherichia coli K-12: cross-resistance among colicins of group B. J Bacteriol, 1975. 123(1): p. 96-101. 18.Davies, J.K. and P. Reeves, Genetics of resistance to colicins in Escherichia coli K-12: cross-resistance among colicins of group A. J Bacteriol, 1975. 123(1): p. 102-117. 19.Ebina, Y. and A. Nakazawa, Cyclic AMP-dependent initiation and rho-dependent termination of colicin E1 gene transcription. Journal of Biological Chemistry, 1983. 258(11): p. 7072-7078. 20.Shirabe, K., et al., Positive regulation of the colicin E1 gene by cyclic AMP and cyclic AMP receptor protein. Nucleic acids research, 1985. 13(13): p. 4687-4698. 21.Varley, J.M. and G.J. Boulnois, Analysis of a cloned colicin 1b gene: complete nucleotide sequence and implications for regulation of expression. Nucleic acids research, 1984. 12(17): p. 6727-6739. 22.Schramm, E., et al., Nucleotide sequence of the colicin B activity gene cba: consensus pentapeptide among TonB-dependent colicins and receptors. J Bacteriol, 1987. 169(7): p. 3350-3357. 23.Zink, R.T., et al., recA is required in the induction of pectin lyase and carotovoricin in Erwinia carotovora subsp. carotovora. J Bacteriol, 1985. 164(1): p. 390-396. 24.Nguyen, H.A., J. Kaneko, and Y. Kamio, Temperature-dependent production of carotovoricin Er and pectin lyase in phytopathogenic Erwinia carotovora subsp. carotovora Er. Bioscience, Biotechnology, and Biochemistry, 2002. 66(2): p. 444-447. 25.Gomelsky, M., Cyclic-di-GMP-binding CRP-like protein: a spectacular new role for a veteran signal transduction actor. J Bacteriol, 2009. 191(22): p. 6785-6787. 26.de Crecy-Lagard, V., et al., A Xanthomonas campestris pv. campestris protein similar to catabolite activation factor is involved in regulation of phytopathogenicity. J Bacteriol, 1990. 172(10): p. 5877-5883. 27.陳彥君, Pectobacterium carotovorum subsp. carotovorum低分子量細菌素基因受c-di-GMP與cyclic AMP Receptor Protein調控作用之探討. 國立中興大學化學系所, 2011. 28.Park, T.-H., et al., Genome sequence of Pectobacterium carotovorum subsp. carotovorum strain PCC21, a pathogen causing soft rot in Chinese cabbage. J Bacteriol, 2012. 194(22): p. 6345. 29.Rastogi, R.P., et al., Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. Journal of nucleic acids, 2010. 2010. 30.McKay, D.B. and T.A. Steitz, Structure of catabolite gene activator protein. Nature, 1981. 290: p. 745. 31.Popovych, N., et al., Structural basis for cAMP-mediated allosteric control of the catabolite activator protein. Proceedings of the National Academy of Sciences, 2009. 106(17): p. 6927-6932. 32.Busby, S. and R.H. Ebright, Transcription activation by catabolite activator protein (CAP). Journal of molecular biology, 1999. 293(2): p. 199-213. 33.Fazli, M., et al., The CRP/FNR family protein Bcam1349 is ac‐di‐GMP effector that regulates biofilm formation in the respiratory pathogen Burkholderia cenocepacia. Mol Microbiol, 2011. 82(2): p. 327-341. 34.Sambrook, J. and D.W. Russell, Molecular cloning: a laboratory manual (3-volume set). 2001. 35.詹富智、葉錫東、陳煜焜, 植物病毒學實驗講義. p. chapter7,13. 36.Zhan, L., et al., The cyclic AMP receptor protein, CRP, is required for both virulence and expression of the minimal CRP regulon in Yersinia pestis biovar microtus. Infect Immun, 2008. 76(11): p. 5028-5037. 37.Kalia, D., et al., Nucleotide, c-di-GMP, c-di-AMP, cGMP, cAMP,(p) ppGpp signaling in bacteria and implications in pathogenesis. Chemical Society Reviews, 2013. 42(1): p. 305-341. 38.Husnain, S.I., S.J. Busby, and M.S. Thomas, Downregulation of the Escherichia coli guaB promoter by upstream-bound cyclic AMP receptor protein. J Bacteriol, 2009. 191(19): p. 6094-6104. 39.Tebbutt, J., et al., Architectural requirements for optimal activation by tandem CRP molecules at a class I CRP‐dependent promoter. FEMS microbiology letters, 2002. 210(1): p. 55-60. 40.Won, H.-S., et al., Structural overview on the allosteric activation of cyclic AMP receptor protein. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2009. 1794(9): p. 1299-1308. 41.Korner, H., H.J. Sofia, and W.G. Zumft, Phylogeny of the bacterial superfamily of Crp‐Fnr transcription regulators: exploiting the metabolic spectrum by controlling alternative gene programs. FEMS microbiology reviews, 2003. 27(5): p. 559-592.
摘要: Pectobacterium carotovorum subsp. carotovorum屬腸道菌科,為植物病原菌。有些Pectobacterium carotovorum subsp. carotovorum菌株在受紫外光刺激誘導下,會產生低分子量細菌素。目前對於低分子量細菌素的訊息傳遞路徑尚未明朗,但本實驗室先前的研究指出,阻斷crp基因的突變株和阻斷dgc基因的突變株,皆失去表現低分子量細菌素carocin基因的能力,因此本研究目的在於探討c-di-GMP與CRP之協同作用對低分子量細菌素carocin基因的調控機制。 我們利用DNASIS MAX軟體分析carocin基因上游序列,從中找出兩個可能為CRP 辨識結合的位置。以此為依據,我們設計兩組30個鹼基對的DNA片段做為探針,探針序列分別包含所預測的CRP結合序列,並於5''端標定上生物素。接著進行生物素化探針沉澱分析實驗,並且製備CRP多株抗體以利西方墨點法的進行。在生物素化探針沉澱分析實驗中,實驗結果顯示CRP確實可以結合於我們所預測的位置,分別命名為CIE-1(carocin induced element-1)和CIE-2(carocin induced element-2)。CIE-1 座落於轉錄起始點上游-112~-117 bp處;CIE-2 則是在-17~-22 bp的位置。我們也發現,紫外光刺激不影響CRP蛋白表現量,卻關乎CRP與DNA的結合。當菌體未受紫外光刺激的情況下,CRP主要結合於CIE-1或CIE-2的其中一處;相反地,當菌體經紫外光刺激誘導的情況下,CRP與CIE-1和CIE-2結合且結合量是一致的。此外,在沒有c-di-GMP的情況下,我們也觀察到CRP與CIE-1和CIE-2的結合量明顯下降。基於這樣的結果,我們推測c-di-GMP是造成CRP異構轉變的因子,即c-di-GMP可能和CRP結合形成複合體,再結合於carocin基因上游序列調控carocin基因的表現。我們也推測紫外光刺激造成菌體內c-di-GMP濃度提升,而c-di-GMP濃度的提升或許是導致CRP由抑制子轉變為活化子的關鍵角色。 總結來說,本研究推測出一個可能的訊息傳遞路徑,來試圖解釋紫外光的刺激如何導致carocin基因表現,以及c-di-GMP和CRP之協同作用於carocin基因調控所扮演的角色。
Pectobacterium carotovorum subsp. carotovorum is a phytopathogenic enterobacterium. Some of Pectobacterium carotovorum subsp. carotovorum strains produced low-molecular-weight-bacteriocin by ultraviolet induction. But litte is known about the signal transduction pathway of low-molecular-weight- bacteriocin carocin gene. The previous studies from our lab has shown that crp-defective mutant and dgc -defective mutant could not express carocin gene respectively. In this study, we want to known that how is the regulatory mechanism of carocin gene throgh cyclic dimeric guanosine monophosphate (c-di-GMP) and cAMP receptor protein(CRP) cooperation? Here, we analyzed the carocin gene upstream sequence by the DNASIS MAX program and this sequence analysis indicated that the carocin gene upstream region contains two putative CRP binding sites. Thus, we designed two 30 bp DNA fragments as biotinylated probes and each probe contains the putative CRP binding site respectively. We thus used the biotinylated probe pull down assay and prepared the CRP polyclonal antibody for western blotting. As a result, in our experiments, CRP binds to two putative CRP sites called CIE-1(carocin induced element-1) and CIE-2(carocin induced element-2). CIE-1 located at positions -112~-117 bp relative to the translation start site, while CIE-2 located at positions -17~-22 bp. Without ultraviolet induction, CRP binds CIE-1 or CIE-2 dominantly in the biotinylated probe pull down assay. With ultraviolet induction, CRP binds to CIE-1 and CIE-2. In addition, in the absence of c-di-GMP, the level of CRP binds to CIE-1 and CIE-2 obviously decreased. Based on the data presented in this study, we think maybe c-di-GMP is a novel effecter for CRP allosteric transition and thus the cooperation of c-di-GMP and CRP regulates the carocin gene. We proposed that ultraviolet induction may cause increasing the level of c-di-GMP concetration and the role of c-di-GMP is to convert CRP from a repressor to an activator. In conclusion, our results attempted to model a signal transduction pathway of the carocin gene expression in response to the ultraviolet induction. In particular, we implicated the roles of the c-di-GMP and CRP cooperation in the carocin gene.
URI: http://hdl.handle.net/11455/14267
其他識別: U0005-2008201302571400
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2008201302571400
Appears in Collections:化學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.