Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/14423
標題: 家禽病毒蛋白結合腸球菌載體誘發免疫性分析
Characterization of Immune responses elicited by Enterococcus vaccine vector conjugated with ARV-sigmaC
作者: 林冠勳
Lin, Kuan-Hsun
關鍵字: 乳酸菌
LAB
傳染性支氣管炎病毒
里奧病毒
黏膜性免疫
棘蛋白
IBV
ARV
mucosal immunity
spike protein
出版社: 獸醫學系暨研究所
引用: 1. 許愛萍 (2008) 以禽類傳染性支氣管炎病毒為研究模式評估開發乳酸菌為黏膜性疫苗之運輸載體 國立中興大學獸醫學研究所 碩士論文 2. Alander, M., Korpela, R., Saxelin, M., Vilpponen-Salmela, T., Mattila-Sandholm, T., and von Wright, A. (1997). Recovery of Lactobacillus rhamnosus GG from human colonic biopsies. Lett Appl Microbiol 24, 361-364. 3. Anegg, B., Auer, H., Diem, E., and Aspock, H. (1990). [Wound myiasis. Facultative myiasis]. Der Hautarzt; Zeitschrift fur Dermatologie, Venerologie, und verwandte Gebiete 41, 461-463. 4. Audouy, S.A., van Roosmalen, M.L., Neef, J., Kanninga, R., Post, E., van Deemter, M., Metselaar, H., van Selm, S., Robillard, G.T., Leenhouts, K.J., et al. (2006). Lactococcus lactis GEM particles displaying pneumococcal antigens induce local and systemic immune responses following intranasal immunization. Vaccine 24, 5434-5441. 5. Audouy, S.A., van Selm, S., van Roosmalen, M.L., Post, E., Kanninga, R., Neef, J., Estevao, S., Nieuwenhuis, E.E., Adrian, P.V., Leenhouts, K., et al. (2007). Development of lactococcal GEM-based pneumococcal vaccines. Vaccine 25, 2497-2506. 6. Auer, I.O. (1990). [The small intestine as an immune organ]. Fortschritte der Medizin 108, 292-296. 7. Axelsson, L. (2004). Lactic Acid Bacteria: Microbiology and Functional Aspect, 3rd edn (Marcel Dekker, Inc.). 8. Benavente, J., and Martinez-Costas, J. (2007). Avian reovirus: structure and biology. Virus Res 123, 105-119. 9. Bergeron, Y., Ouellet, N., Deslauriers, A.M., Simard, M., Olivier, M., and Bergeron, M.G. (1998). Cytokine kinetics and other host factors in response to pneumococcal pulmonary infection in mice. Infect Immun 66, 912-922. 10. Bermúdez-Humarán, L.G., Innocentin, S., Lefèvre, F., Chatel, J.-M., and Langella, P. (2009). Development of Mucosal Vaccines Based on Lactic Acid Bacteria Prebiotics and Probiotics Science and Technology. In, D. Charalampopoulos, and R.A. Rastall, eds. (Springer New York), pp. 1099-1122. 11. Bermudez-Humaran, L.G., Cortes-Perez, N.G., Le Loir, Y., Alcocer-Gonzalez, J.M., Tamez-Guerra, R.S., de Oca-Luna, R.M., and Langella, P. (2004). An inducible surface presentation system improves cellular immunity against human papillomavirus type 16 E7 antigen in mice after nasal administration with recombinant Lactococci. J Med Microbiol 53, 427-433. 12. Bermudez-Humaran, L.G., Cortes-Perez, N.G., Lefevre, F., Guimaraes, V., Rabot, S., Alcocer-Gonzalez, J.M., Gratadoux, J.J., Rodriguez-Padilla, C., Tamez-Guerra, R.S., Corthier, G., et al. (2005). A novel mucosal vaccine based on live Lactococci expressing E7 antigen and IL-12 induces systemic and mucosal immune responses and protects mice against human papillomavirus type 16-induced tumors. J Immunol 175, 7297-7302. 13. Borges, O., Cordeiro-da-Silva, A., Romeijn, S.G., Amidi, M., de Sousa, A., Borchard, G., and Junginger, H.E. (2006). Uptake studies in rat Peyer''s patches, cytotoxicity and release studies of alginate coated chitosan nanoparticles for mucosal vaccination. J Control Release 114, 348-358. 14. Bosma, T., Kanninga, R., Neef, J., Audouy, S.A., van Roosmalen, M.L., Steen, A., Buist, G., Kok, J., Kuipers, O.P., Robillard, G., et al. (2006). Novel surface display system for proteins on non-genetically modified gram-positive bacteria. Appl Environ Microbiol 72, 880-889. 15. Box, P.G., and Ellis, K.R. (1985). Infectious bronchitis in laying hens: interference with response to emulsion vaccine by attenuated live vaccine. Avian Pathol 14, 9-22. 16. Brandtzaeg, P. (2009). Mucosal immunity: induction, dissemination, and effector functions. Scand J Immunol 70, 505-515. 17. Buist, G., Karsens, H., Nauta, A., van Sinderen, D., Venema, G., and Kok, J. (1997). Autolysis of Lactococcus lactis caused by induced overproduction of its major autolysin, AcmA. Appl Environ Microbiol 63, 2722-2728. 18. Bybee, S.N., Scorza, A.V., and Lappin, M.R. (2011). Effect of the Probiotic Enterococcus faecium SF68 on Presence of Diarrhea in Cats and Dogs Housed in an Animal Shelter. Journal of Veterinary Internal Medicine 25, 856-860. 19. Cardoso, L.S., Araujo, M.I., Goes, A.M., Pacifico, L.G., Oliveira, R.R., and Oliveira, S.C. (2007). Polymyxin B as inhibitor of LPS contamination of Schistosoma mansoni recombinant proteins in human cytokine analysis. Microb Cell Fact 6, 1. 20. Carstens, E.B. (2010). Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2009). Arch Virol 155, 133-146. 21. Cavanagh, D. (1983). Coronavirus IBV: structural characterization of the spike protein. J Gen Virol 64 ( Pt 12), 2577-2583. 22. Cavanagh, D. (2005). Coronaviruses in poultry and other birds. Avian Pathol 34, 439-448. 23. Cavanagh, D. (2007). Coronavirus avian infectious bronchitis virus. Vet Res 38, 281-297. 24. Cavanagh, D., Davis, P.J., Cook, J.K., Li, D., Kant, A., and Koch, G. (1992). Location of the amino acid differences in the S1 spike glycoprotein subunit of closely related serotypes of infectious bronchitis virus. Avian Pathol 21, 33-43. 25. Cavanagh, D., Davis, P.J., Darbyshire, J.H., and Peters, R.W. (1986). Coronavirus IBV: virus retaining spike glycopolypeptide S2 but not S1 is unable to induce virus-neutralizing or haemagglutination-inhibiting antibody, or induce chicken tracheal protection. J Gen Virol 67 ( Pt 7), 1435-1442. 26. Cavanagh, D., Davis, P.J., and Mockett, A.P. (1988). Amino acids within hypervariable region 1 of avian coronavirus IBV (Massachusetts serotype) spike glycoprotein are associated with neutralization epitopes. Virus Res 11, 141-150. 27. Cavanagh, D., and Naqi, S. (2003). Diseases of Poultry, 11th edn (Iowa State Press). 28. Cerutti, A., Cols, M., Gentile, M., Cassis, L., Barra, C.M., He, B., Puga, I., and Chen, K. (2011). Regulation of mucosal IgA responses: lessons from primary immunodeficiencies. Annals of the New York Academy of Sciences 1238, 132-144. 29. Chan, K.W., Hsieh, H.H., Wang, H.C., Lee, Y.J., Sung, M.H., Wong, M.L., and Hsu, W.L. (2009). Identification, expression and antigenic analysis of recombinant hemagglutinin proteins of canine distemper virus. J Virol Methods 155, 18-24. 30. Chen, H., Coote, B., Attree, S., and Hiscox, J.A. (2003). Evaluation of a nucleoprotein-based enzyme-linked immunosorbent assay for the detection of antibodies against infectious bronchitis virus. Avian Pathol 32, 519-526. 31. Chen, H.W., Wang, C.H., and Cheng, I.C. (2011). A type-specific blocking ELISA for the detection of infectious bronchitis virus antibody. J Virol Methods 173, 7-12. 32. Cheun, H.I., Kawamoto, K., Hiramatsu, M., Tamaoki, H., Shirahata, T., Igimi, S., and Makino, S.I. (2004). Protective immunity of SpaA-antigen producing Lactococcus lactis against Erysipelothrix rhusiopathiae infection. J Appl Microbiol 96, 1347-1353. 33. Clark, M.A., Hirst, B.H., and Jepson, M.A. (1998). M-cell surface beta1 integrin expression and invasin-mediated targeting of Yersinia pseudotuberculosis to mouse Peyer''s patch M cells. Infect Immun 66, 1237-1243. 34. Collado, M.C., Meriluoto, J., and Salminen, S. (2007). Role of commercial probiotic strains against human pathogen adhesion to intestinal mucus. Letters in Applied Microbiology 45, 454-460. 35. Coombs, K. (2006). Reovirus Structure and Morphogenesis Reoviruses: Entry, Assembly and Morphogenesis. In, P. Roy, ed. (Springer Berlin Heidelberg), pp. 117-167. 36. Cortes-Perez, N.G., Azevedo, V., Alcocer-Gonzalez, J.M., Rodriguez-Padilla, C., Tamez-Guerra, R.S., Corthier, G., Gruss, A., Langella, P., and Bermudez-Humaran, L.G. (2005). Cell-surface display of E7 antigen from human papillomavirus type-16 in Lactococcus lactis and in Lactobacillus plantarum using a new cell-wall anchor from lactobacilli. J Drug Target 13, 89-98. 37. Cortes-Perez, N.G., Lefevre, F., Corthier, G., Adel-Patient, K., Langella, P., and Bermudez-Humaran, L.G. (2007). Influence of the route of immunization and the nature of the bacterial vector on immunogenicity of mucosal vaccines based on lactic acid bacteria. Vaccine 25, 6581-6588. 38. De Wit, J.J. (2000). Detection of infectious bronchitis virus. Avian Pathol 29, 71-93. 39. De Wit, J.J., Cook, J.K.A., and van der Heijden, H.M.J.F. (2011). Infectious bronchitis virus variants: a review of the history, current situation and control measures. Avian Pathology 40, 223-235. 40. De Wit, J.J., Mekkes, D.R., Koch, G., and Westenbrink, F. (1998). Detection of specific IgM antibodies to infectious bronchitis virus by an antibody-capture ELISA. Avian Pathol 27, 155-160. 41. Debard, N., Sierro, F., Browning, J., and Kraehenbuhl, J.P. (2001). Effect of mature lymphocytes and lymphotoxin on the development of the follicle-associated epithelium and M cells in mouse Peyer''s patches. Gastroenterology 120, 1173-1182. 42. Degen, W.G.J., van Zuilekom, H.I., Scholtes, N.C., van Daal, N., and Schijns, V.E.J.C. (2005). Potentiation of humoral immune responses to vaccine antigens by recombinant chicken IL-18 (rChIL-18). Vaccine 23, 4212-4218. 43. Delcenserie, V., Martel, D., Lamoureux, M., Amiot, J., Boutin, Y., and Roy, D. (2008). Immunomodulatory effects of probiotics in the intestinal tract. Curr Issues Mol Biol 10, 37-54. 44. Desvaux, M., Dumas, E., Chafsey, I., and Hebraud, M. (2006). Protein cell surface display in Gram-positive bacteria: from single protein to macromolecular protein structure. FEMS Microbiol Lett 256, 1-15. 45. Detmer, A., and Glenting, J. (2006). Live bacterial vaccines--a review and identification of potential hazards. Microb Cell Fact 5, 23. 46. Dieye, Y., Usai, S., Clier, F., Gruss, A., and Piard, J.C. (2001). Design of a protein-targeting system for lactic acid bacteria. J Bacteriol 183, 4157-4166. 47. Ditu, L.-M., Chifiriuc, M.C., Bezirtzoglou, E., Voltsi, C., Bleotu, C., Pelinescu, D., Mihaescu, G., and Lazar, V. (2011). Modulation of virulence and antibiotic susceptibility of enteropathogenic Escherichia coli strains by Enterococcus faecium probiotic strain culture fractions. Anaerobe 17, 448-451. 48. Fink, L.N., Zeuthen, L.H., Christensen, H.R., Morandi, B., Frokiaer, H., and Ferlazzo, G. (2007). Distinct gut-derived lactic acid bacteria elicit divergent dendritic cell-mediated NK cell responses. Int Immunol 19, 1319-1327. 49. Finzi, G., Cornaggia, M., Capella, C., Fiocca, R., Bosi, F., Solcia, E., and Samloff, I.M. (1993). Cathepsin E in follicle associated epithelium of intestine and tonsils: localization to M cells and possible role in antigen processing. Histochemistry 99, 201-211. 50. Foster, N., Clark, M.A., Jepson, M.A., and Hirst, B.H. (1998). Ulex europaeus 1 lectin targets microspheres to mouse Peyer''s patch M-cells in vivo. Vaccine 16, 536-541. 51. Frey, A., Giannasca, K.T., Weltzin, R., Giannasca, P.J., Reggio, H., Lencer, W.I., and Neutra, M.R. (1996). Role of the glycocalyx in regulating access of microparticles to apical plasma membranes of intestinal epithelial cells: implications for microbial attachment and oral vaccine targeting. J Exp Med 184, 1045-1059. 52. Fukushima, Y., Kawata, Y., Mizumachi, K., Kurisaki, J., and Mitsuoka, T. (1999). Effect of bifidobacteria feeding on fecal flora and production of immunoglobulins in lactating mouse. Int J Food Microbiol 46, 193-197. 53. Gallagher, T.M., and Buchmeier, M.J. (2001). Coronavirus spike proteins in viral entry and pathogenesis. Virology 279, 371-374. 54. Gerdts, V., Mutwiri, G.K., Tikoo, S.K., and Babiuk, L.A. (2006). Mucosal delivery of vaccines in domestic animals. Vet Res 37, 487-510. 55. Gibertoni, A.M., Montassier Mde, F., Sena, J.A., Givisiez, P.E., Furuyama, C.R., and Montassier, H.J. (2005). Development and application of a Saccharomyces cerevisiae-expressed nucleocapsid protein-based enzyme-linked immunosorbent assay for detection of antibodies against infectious bronchitis virus. J Clin Microbiol 43, 1982-1984. 56. Gill, H.S., Rutherfurd, K.J., and Cross, M.L. (2001). Dietary probiotic supplementation enhances natural killer cell activity in the elderly: an investigation of age-related immunological changes. J Clin Immunol 21, 264-271. 57. Golovkina, T.V., Shlomchik, M., Hannum, L., and Chervonsky, A. (1999). Organogenic role of B lymphocytes in mucosal immunity. Science 286, 1965-1968. 58. Gonzalez, J.M., Gomez-Puertas, P., Cavanagh, D., Gorbalenya, A.E., and Enjuanes, L. (2003). A comparative sequence analysis to revise the current taxonomy of the family Coronaviridae. Arch Virol 148, 2207-2235. 59. Grande, A., Costas, C., and Benavente, J. (2002). Subunit composition and conformational stability of the oligomeric form of the avian reovirus cell-attachment protein sigmaC. J Gen Virol 83, 131-139. 60. Grande, A., Rodriguez, E., Costas, C., Everitt, E., and Benavente, J. (2000). Oligomerization and cell-binding properties of the avian reovirus cell-attachment protein sigmaC. Virology 274, 367-377. 61. Gronlund, M.M., Arvilommi, H., Kero, P., Lehtonen, O.P., and Isolauri, E. (2000). Importance of intestinal colonisation in the maturation of humoral immunity in early infancy: a prospective follow up study of healthy infants aged 0-6 months. Arch Dis Child Fetal Neonatal Ed 83, F186-192. 62. Guardado-Calvo, P., Fox, G.C., Llamas-Saiz, A.L., and van Raaij, M.J. (2009). Crystallographic structure of the α-helical triple coiled-coil domain of avian reovirus S1133 fibre. Journal of General Virology 90, 672-677. 63. Guardado Calvo, P., Fox, G.C., Hermo Parrado, X.L., Llamas-Saiz, A.L., Costas, C., Martinez-Costas, J., Benavente, J., and van Raaij, M.J. (2005). Structure of the carboxy-terminal receptor-binding domain of avian reovirus fibre sigmaC. J Mol Biol 354, 137-149. 64. Gupta, P.N., and Vyas, S.P. (2011). Investigation of lectinized liposomes as M-cell targeted carrier-adjuvant for mucosal immunization. Colloids Surf B Biointerfaces 82, 118-125. 65. Hanne Risager, C., and Hanne, F.r. (2006). Immunomodulating Effects of Lactic Acid Bacteria. In Functional Foods and Biotechnology (CRC Press). 66. Hase, K., Kawano, K., Nochi, T., Pontes, G.S., Fukuda, S., Ebisawa, M., Kadokura, K., Tobe, T., Fujimura, Y., Kawano, S., et al. (2009). Uptake through glycoprotein 2 of FimH+ bacteria by M cells initiates mucosal immune response. Nature 462, 226-230. 67. Havennar R, Husis, J.H.J., (1992) The Lactic Acid Bacteria. Elsevier press, London. 68. Hedin, C., Whelan, K., and Lindsay, J.O. (2007). Evidence for the use of probiotics and prebiotics in inflammatory bowel disease: a review of clinical trials. Proc Nutr Soc 66, 307-315. 69. Higgins, L.M., Lambkin, I., Donnelly, G., Byrne, D., Wilson, C., Dee, J., Smith, M., and O''Mahony, D.J. (2004). In vivo phage display to identify M cell-targeting ligands. Pharm Res 21, 695-705. 70. Holmgren, J., and Czerkinsky, C. (2005). Mucosal immunity and vaccines. Nat Med 11, S45-53. 71. Husband, A.J., Kramer, D.R., Bao, S., Sutherland, R.M., and Beagley, K.W. (1996). Regulation of mucosal IgA responses in vivo: cytokines and adjuvants. Vet Immunol Immunopathol 54, 179-186. 72. Ignjatovic, J., and Galli, L. (1994). The S1 glycoprotein but not the N or M proteins of avian infectious bronchitis virus induces protection in vaccinated chickens. Arch Virol 138, 117-134. 73. Ignjatovic, J., and Galli, U. (1995). Immune responses to structural proteins of avian infectious bronchitis virus. Avian Pathol 24, 313-332. 74. Ignjatovic, J., and Sapats, S. (2005). Identification of previously unknown antigenic epitopes on the S and N proteins of avian infectious bronchitis virus. Arch Virol 150, 1813-1831. 75. Isolauri, E. (2004). Dietary modification of atopic disease: Use of probiotics in the prevention of atopic dermatitis. Curr Allergy Asthma Rep 4, 270-275. 76. Isolauri, E., Joensuu, J., Suomalainen, H., Luomala, M., and Vesikari, T. (1995). Improved immunogenicity of oral D x RRV reassortant rotavirus vaccine by Lactobacillus casei GG. Vaccine 13, 310-312. 77. Iwasaki, A. (2007). Mucosal dendritic cells. Annu Rev Immunol 25, 381-418. 78. Jain, S., Sharma, R.K., and Vyas, S.P. (2006). Chitosan nanoparticles encapsulated vesicular systems for oral immunization: preparation, in-vitro and in-vivo characterization. J Pharm Pharmacol 58, 303-310. 79. Jones, B.D., Ghori, N., and Falkow, S. (1994). Salmonella typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer''s patches. J Exp Med 180, 15-23. 80. Kaila, M., Isolauri, E., Soppi, E., Virtanen, E., Laine, S., and Arvilommi, H. (1992). Enhancement of the circulating antibody secreting cell response in human diarrhea by a human Lactobacillus strain. Pediatr Res 32, 141-144. 81. Kandori, H., Hirayama, K., Takeda, M., and Doi, K. (1996). Histochemical, lectin-histochemical and morphometrical characteristics of intestinal goblet cells of germfree and conventional mice. Experimental animals / Japanese Association for Laboratory Animal Science 45, 155-160. 82. Kant, A., Koch, G., van Roozelaar, D.J., Kusters, J.G., Poelwijk, F.A., and van der Zeijst, B.A. (1992). Location of antigenic sites defined by neutralizing monoclonal antibodies on the S1 avian infectious bronchitis virus glycopolypeptide. J Gen Virol 73 ( Pt 3), 591-596. 83. Karchev, T., and Kabakchiev, P. (1984). M-cells in the epithelium of the nasopharyngeal tonsil. Rhinology 22, 201-210. 84. Katz, D.E., DeLorimier, A.J., Wolf, M.K., Hall, E.R., Cassels, F.J., van Hamont, J.E., Newcomer, R.L., Davachi, M.A., Taylor, D.N., and McQueen, C.E. (2003). Oral immunization of adult volunteers with microencapsulated enterotoxigenic Escherichia coli (ETEC) CS6 antigen. Vaccine 21, 341-346. 85. Kelly, D., Conway, S., and Aminov, R. (2005). Commensal gut bacteria: mechanisms of immune modulation. Trends Immunol 26, 326-333. 86. Kelsall, B.L., and Rescigno, M. (2004). Mucosal dendritic cells in immunity and inflammation. Nat Immunol 5, 1091-1095. 87. Kerneis, S., Bogdanova, A., Kraehenbuhl, J.P., and Pringault, E. (1997). Conversion by Peyer''s patch lymphocytes of human enterocytes into M cells that transport bacteria. Science 277, 949-952. 88. Kersten, G., and Hirschberg, H. (2007). Needle-free vaccine delivery. Expert opinion on drug delivery 4, 459-474. 89. Kett, K., Baklien, K., Bakken, A., Kral, J.G., Fausa, O., and Brandtzaeg, P. (1995). Intestinal B-cell isotype response in relation to local bacterial load: evidence for immunoglobulin A subclass adaptation. Gastroenterology 109, 819-825. 90. Kim, D.Y., Sato, A., Fukuyama, S., Sagara, H., Nagatake, T., Kong, I.G., Goda, K., Nochi, T., Kunisawa, J., Sato, S., et al. (2011). The airway antigen sampling system: respiratory M cells as an alternative gateway for inhaled antigens. J Immunol 186, 4253-4262. 91. Kiyono, H., and Fukuyama, S. (2004). NALT- versus Peyer''s-patch-mediated mucosal immunity. Nat Rev Immunol 4, 699-710. 92. Kleerebezem, M., and Vaughan, E.E. (2009). Probiotic and gut lactobacilli and bifidobacteria: molecular approaches to study diversity and activity. Annu Rev Microbiol 63, 269-290. 93. Koch, G., Hartog, L., Kant, A., and van Roozelaar, D.J. (1990). Antigenic domains on the peplomer protein of avian infectious bronchitis virus: correlation with biological functions. J Gen Virol 71 ( Pt 9), 1929-1935. 94. Koch, S., Hufnagel, M., Theilacker, C., and Huebner, J. (2004). Enterococcal infections: host response, therapeutic, and prophylactic possibilities. Vaccine 22, 822-830. 95. Kunkel, E.J., and Butcher, E.C. (2003). Plasma-cell homing. Nat Rev Immunol 3, 822-829. 96. Kurono, Y., Yamamoto, M., Fujihashi, K., Kodama, S., Suzuki, M., Mogi, G., McGhee, J.R., and Kiyono, H. (1999). Nasal immunization induces Haemophilus influenzae-specific Th1 and Th2 responses with mucosal IgA and systemic IgG antibodies for protective immunity. J Infect Dis 180, 122-132. 97. Kusters, J.G., Niesters, H.G., Lenstra, J.A., Horzinek, M.C., and van der Zeijst, B.A. (1989). Phylogeny of antigenic variants of avian coronavirus IBV. Virology 169, 217-221. 98. Lai, M.M., and Cavanagh, D. (1997). The molecular biology of coronaviruses. Adv Virus Res 48, 1-100. 99. Lars, A. (2004). Lactic Acid Bacteria. In Lactic Acid Bacteria (CRC Press). 100. Lee, J.S., Poo, H., Han, D.P., Hong, S.P., Kim, K., Cho, M.W., Kim, E., Sung, M.H., and Kim, C.J. (2006). Mucosal immunization with surface-displayed severe acute respiratory syndrome coronavirus spike protein on Lactobacillus casei induces neutralizing antibodies in mice. J Virol 80, 4079-4087. 101. Lemiale, F., Kong, W.P., Akyurek, L.M., Ling, X., Huang, Y., Chakrabarti, B.K., Eckhaus, M., and Nabel, G.J. (2003). Enhanced mucosal immunoglobulin A response of intranasal adenoviral vector human immunodeficiency virus vaccine and localization in the central nervous system. J Virol 77, 10078-10087. 102. Lewis, D.J., Huo, Z., Barnett, S., Kromann, I., Giemza, R., Galiza, E., Woodrow, M., Thierry-Carstensen, B., Andersen, P., Novicki, D., et al. (2009). Transient facial nerve paralysis (Bell''s palsy) following intranasal delivery of a genetically detoxified mutant of Escherichia coli heat labile toxin. PLoS One 4, e6999. 103. Lin, K.Y., Wang, H.C., and Wang, C.H. (2005). Protective effect of vaccination in chicks with local infectious bronchitis viruses against field virus challenge. J Microbiol Immunol Infect 38, 25-30. 104. Lin, W.H., Hwang, C.F., Chen, L.W., and Tsen, H.Y. (2006). Viable counts, characteristic evaluation for commercial lactic acid bacteria products. Food Microbiol 23, 74-81. 105. Link-Amster, H., Rochat, F., Saudan, K.Y., Mignot, O., and Aeschlimann, J.M. (1994). Modulation of a specific humoral immune response and changes in intestinal flora mediated through fermented milk intake. FEMS Immunol Med Microbiol 10, 55-63. 106. Liu, H.J., and Giambrone, J.J. (1997). Amplification, cloning and sequencing of the sigmaC-encoded gene of avian reovirus. J Virol Methods 63, 203-208. 107. Madsen, K., Cornish, A., Soper, P., McKaigney, C., Jijon, H., Yachimec, C., Doyle, J., Jewell, L., and De Simone, C. (2001). Probiotic bacteria enhance murine and human intestinal epithelial barrier function. Gastroenterology 121, 580-591. 108. Majamaa, H., Isolauri, E., Saxelin, M., and Vesikari, T. (1995). Lactic acid bacteria in the treatment of acute rotavirus gastroenteritis. J Pediatr Gastroenterol Nutr 20, 333-338. 109. Marquardt, W.W., Snyder, D.B., and Schlotthober, B.A. (1981). Detection and quantification of antibodies to infectious bronchitis virus by enzyme-linked immunosorbent assay. Avian Dis 25, 713-722. 110. Martinez-Costas, J., Grande, A., Varela, R., Garcia-Martinez, C., and Benavente, J. (1997). Protein architecture of avian reovirus S1133 and identification of the cell attachment protein. J Virol 71, 59-64. 111. Martinoli, C., Chiavelli, A., and Rescigno, M. (2007). Entry route of Salmonella typhimurium directs the type of induced immune response. Immunity 27, 975-984. 112. Masters, P.S. (2006). The molecular biology of coronaviruses. Adv Virus Res 66, 193-292. 113. Matsuzaki, T., and Chin, J. (2000). Modulating immune responses with probiotic bacteria. Immunol Cell Biol 78, 67-73. 114. Mayr, U.B., Haller, C., Haidinger, W., Atrasheuskaya, A., Bukin, E., Lubitz, W., and Ignatyev, G. (2005). Bacterial Ghosts as an Oral Vaccine: a Single Dose of Escherichia coli O157:H7 Bacterial Ghosts Protects Mice against Lethal Challenge. Infection and Immunity 73, 4810-4817. 115. McGhee, J.R., and Mestecky, J. (1990). In defense of mucosal surfaces. Development of novel vaccines for IgA responses protective at the portals of entry of microbial pathogens. Infect Dis Clin North Am 4, 315-341. 116. Meanger, J., Wickramasinghe, R., Enriquez, C.E., and Wilcox, G.E. (1997). Immune response to avian reovirus in chickens and protection against experimental infection. Aust Vet J 75, 428-432. 117. Medina, E., and Guzman, C.A. (2001). Use of live bacterial vaccine vectors for antigen delivery: potential and limitations. Vaccine 19, 1573-1580. 118. Mierau, I., Olieman, K., Mond, J., and Smid, E.J. (2005). Optimization of the Lactococcus lactis nisin-controlled gene expression system NICE for industrial applications. Microb Cell Fact 4, 16. 119. Mishra, N., Tiwari, S., Vaidya, B., Agrawal, G.P., and Vyas, S.P. (2011a). Lectin anchored PLGA nanoparticles for oral mucosal immunization against hepatitis B. J Drug Target 19, 67-78. 120. Mishra, N., Tiwari, S., Vaidya, B., Agrawal, G.P., and Vyas, S.P. (2011b). Lectin anchored PLGA nanoparticles for oral mucosal immunization against hepatitis B. Journal of Drug Targeting 19, 67-78. 121. Moeini, H., Rahim, R.A., Omar, A.R., Shafee, N., and Yusoff, K. (2011). Lactobacillus acidophilus as a live vehicle for oral immunization against chicken anemia virus. Appl Microbiol Biotechnol 90, 77-88. 122. Mohamadzadeh, M., Olson, S., Kalina, W.V., Ruthel, G., Demmin, G.L., Warfield, K.L., Bavari, S., and Klaenhammer, T.R. (2005). Lactobacilli activate human dendritic cells that skew T cells toward T helper 1 polarization. Proc Natl Acad Sci U S A 102, 2880-2885. 123. Moore, K.M., Jackwood, M.W., and Hilt, D.A. (1997). Identification of amino acids involved in a serotype and neutralization specific epitope within the s1 subunit of avian infectious bronchitis virus. Arch Virol 142, 2249-2256. 124. Morello, E., Bermudez-Humaran, L.G., Llull, D., Sole, V., Miraglio, N., Langella, P., and Poquet, I. (2008). Lactococcus lactis, an efficient cell factory for recombinant protein production and secretion. Journal of molecular microbiology and biotechnology 14, 48-58. 125. Mosmann, T.R., Kobie, J.J., Lee, F.E., and Quataert, S.A. (2009). T helper cytokine patterns: defined subsets, random expression, and external modulation. Immunol Res. 126. Mowat, A.M. (2003). Anatomical basis of tolerance and immunity to intestinal antigens. Nat Rev Immunol 3, 331-341. 127. Muneer, M.A., Newman, J.A., Halvorson, D.A., Sivanandan, V., and Coon, C.N. (1987). Effects of avian infectious bronchitis virus (Arkansas strain) on vaccinated laying chickens. Avian Dis 31, 820-828. 128. Nash, A.D., Lofthouse, S.A., Barcham, G.J., Jacobs, H.J., Ashman, K., Meeusen, E.N.T., Brandon, M.R., and Andrews, A.E. (1993). Recombinant cytokines as immunological adjuvants. Immunol Cell Biol 71, 367-379. 129. Neutra, M.R., and Kozlowski, P.A. (2006). Mucosal vaccines: the promise and the challenge. Nat Rev Immunol 6, 148-158. 130. Neutra, M.R., Mantis, N.J., Frey, A., and Giannasca, P.J. (1999). The composition and function of M cell apical membranes: implications for microbial pathogenesis. Semin Immunol 11, 171-181. 131. Neutra, M.R., Phillips, T.L., Mayer, E.L., and Fishkind, D.J. (1987). Transport of membrane-bound macromolecules by M cells in follicle-associated epithelium of rabbit Peyer''s patch. Cell and tissue research 247, 537-546. 132. Niesters, H.G., Lenstra, J.A., Spaan, W.J., Zijderveld, A.J., Bleumink-Pluym, N.M., Hong, F., van Scharrenburg, G.J., Horzinek, M.C., and van der Zeijst, B.A. (1986). The peplomer protein sequence of the M41 strain of coronavirus IBV and its comparison with Beaudette strains. Virus Res 5, 253-263. 133. Nix, W.A., Troeber, D.S., Kingham, B.F., Keeler, C.L., Jr., and Gelb, J., Jr. (2000). Emergence of subtype strains of the Arkansas serotype of infectious bronchitis virus in Delmarva broiler chickens. Avian Dis 44, 568-581. 134. Nochi, T., Yuki, Y., Matsumura, A., Mejima, M., Terahara, K., Kim, D.Y., Fukuyama, S., Iwatsuki-Horimoto, K., Kawaoka, Y., Kohda, T., et al. (2007). A novel M cell-specific carbohydrate-targeted mucosal vaccine effectively induces antigen-specific immune responses. J Exp Med 204, 2789-2796. 135. Noguchi, N., Nakaminami, H., Nakase, K., and Sasatsu, M. (2011). Characterization of enterococcus strains contained in probiotic products. Biological & pharmaceutical bulletin 34, 1469-1473. 136. Ogier, J.-C., and Serror, P. (2008). Safety assessment of dairy microorganisms: The Enterococcus genus. International Journal of Food Microbiology 126, 291-301. 137. Ogra, P.L., Faden, H., and Welliver, R.C. (2001). Vaccination strategies for mucosal immune responses. Clinical microbiology reviews 14, 430-445. 138. Okano, K., Zhang, Q., Kimura, S., Narita, J., Tanaka, T., Fukuda, H., and Kondo, A. (2008). System using tandem repeats of the cA peptidoglycan-binding domain from Lactococcus lactis for display of both N- and C-terminal fusions on cell surfaces of lactic acid bacteria. Appl Environ Microbiol 74, 1117-1123. 139. Oliveira, M.L., Areas, A.P., Campos, I.B., Monedero, V., Perez-Martinez, G., Miyaji, E.N., Leite, L.C., Aires, K.A., and Lee Ho, P. (2006). Induction of systemic and mucosal immune response and decrease in Streptococcus pneumoniae colonization by nasal inoculation of mice with recombinant lactic acid bacteria expressing pneumococcal surface antigen A. Microbes Infect 8, 1016-1024. 140. Orla-Jensen, S. (1919). The Lactic acid bacteria (Host and Son: Copenhagen). 141. Owen, R.L. (1977). Sequential uptake of horseradish peroxidase by lymphoid follicle epithelium of Peyer''s patches in the normal unobstructed mouse intestine: an ultrastructural study. Gastroenterology 72, 440-451. 142. Pavot, V., Rochereau, N., Genin, C., Verrier, B., and Paul, S. (2012). New insights in mucosal vaccine development. Vaccine 30, 142-154. 143. Pelto, L., Isolauri, E., Lilius, E.M., Nuutila, J., and Salminen, S. (1998). Probiotic bacteria down-regulate the milk-induced inflammatory response in milk-hypersensitive subjects but have an immunostimulatory effect in healthy subjects. Clin Exp Allergy 28, 1474-1479. 144. Perdigon, G., Alvarez, S., Medina, M., Vintini, E., and Roux, E. (1999). Influence of the oral administration of lactic acid bacteria on iga producing cells associated to bronchus. Int J Immunopathol Pharmacol 12, 97-102. 145. Perdigon, G., Maldonado Galdeano, C., Valdez, J.C., and Medici, M. (2002). Interaction of lactic acid bacteria with the gut immune system. Eur J Clin Nutr 56 Suppl 4, S21-26. 146. Perrie, Y., Obrenovic, M., McCarthy, D., and Gregoriadis, G. (2002). Liposome (Lipodine)-mediated DNA vaccination by the oral route. J Liposome Res 12, 185-197. 147. Petryniak, J., and Goldstein, I.J. (1986). Immunochemical studies on the interaction between synthetic glycoconjugates and alpha-L-fucosyl binding lectins. Biochemistry 25, 2829-2838. 148. Pham, M., Lemberg, D.A., and Day, A.S. (2008). Probiotics: sorting the evidence from the myths. Med J Aust 188, 304-308. 149. Pozzi, G., Contorni, M., Oggioni, M.R., Manganelli, R., Tommasino, M., Cavalieri, F., and Fischetti, V.A. (1992). Delivery and expression of a heterologous antigen on the surface of streptococci. Infect Immun 60, 1902-1907. 150. Raha, A.R., Varma, N.R., Yusoff, K., Ross, E., and Foo, H.L. (2005). Cell surface display system for Lactococcus lactis: a novel development for oral vaccine. Appl Microbiol Biotechnol 68, 75-81. 151. Raj, G.D., and Jones, R.C. (1997). Infectious bronchitis virus: Immunopathogenesis of infection in the chicken. Avian Pathol 26, 677-706. 152. Ramsay, A., Husband, A., Ramshaw, I., Bao, S., Matthaei, K., Koehler, G., and Kopf, M. (1994). The role of interleukin-6 in mucosal IgA antibody responses in vivo. Science 264, 561-563. 153. Robinson, K., Chamberlain, L.M., Schofield, K.M., Wells, J.M., and Le Page, R.W. (1997). Oral vaccination of mice against tetanus with recombinant Lactococcus lactis. Nat Biotechnol 15, 653-657. 154. Ryan, E.J., Daly, L.M., and Mills, K.H. (2001). Immunomodulators and delivery systems for vaccination by mucosal routes. Trends Biotechnol 19, 293-304. 155. Samuelson, P., Gunneriusson, E., Nygren, P.A., and Stahl, S. (2002). Display of proteins on bacteria. J Biotechnol 96, 129-154. 156. Sato, A., Hashiguchi, M., Toda, E., Iwasaki, A., Hachimura, S., and Kaminogawa, S. (2003). CD11b+ Peyer''s patch dendritic cells secrete IL-6 and induce IgA secretion from naive B cells. J Immunol 171, 3684-3690. 157. Savidge, T.C., and Smith, M.W. (1995). Evidence that membranous (M) cell genesis is immuno-regulated. Adv Exp Med Biol 371A, 239-241. 158. Schijns, V.E., Weining, K.C., Nuijten, P., Rijke, E.O., and Staeheli, P. (2000). Immunoadjuvant activities of E. coli- and plasmid-expressed recombinant chicken IFN-alpha/beta, IFN-gamma and IL-1beta in 1-day- and 3-week-old chickens. Vaccine 18, 2147-2154. 159. Schillinger, U., and Lucke, F.K. (1987). Identificaiton of lactobacilli from meat and meat products. Food Microbiol 4, 199-208. 160. Secott, T.E., Lin, T.L., and Wu, C.C. (2004). Mycobacterium avium subsp. paratuberculosis fibronectin attachment protein facilitates M-cell targeting and invasion through a fibronectin bridge with host integrins. Infect Immun 72, 3724-3732. 161. Seegers, J.F. (2002). Lactobacilli as live vaccine delivery vectors: progress and prospects. Trends Biotechnol 20, 508-515. 162. Shapou
摘要: 黏膜組織表面常為病原附著繁殖並侵入宿主之區域,而黏膜性免疫反應能提供有效保護效果。本論文主要目的為研發乳酸菌 (LAB) 載體作為誘導黏膜性免疫反應的新疫苗策略;利用LAB攜帶兩種禽類病毒表面抗原-禽類傳染性支氣管炎病毒 (IBV) 與家禽里奧病毒 (ARV),並在小鼠模式中評估其免疫效果。IBV引起雞隻高度傳染性疾病,其棘蛋白 (spike) 為主要誘發免疫反應作用之抗原,此蛋白質包含S1與S2兩個次單位。已有研究利用單株抗體與短胜肽方式定位出位於S1次單位的抗原區域。然而此抗原特質分析只侷限在某些棘蛋白區域,例如:胺基酸高度變異區 (hypervariable regions, HVRs);此區段蛋白質之胺基酸序列並非保留於所有血清型的IBV中。本研究首先確定本土病毒株IBV棘蛋白抗原區域部位,將整段的S1和部分的S2次單位 (胺基酸序列:24-567 a.a) 分為五個片段,利用大腸桿菌原核系統表現並純化獲得蛋白質。這些純化蛋白質先以IBV高免疫血清確定其抗原性之後,再應用於ELISA偵測野外雞隻血清中之IBV抗體。相較市售IBV診斷試劑,S-E區域的結果顯示有較高特異性 (95.38%) 與敏感性 (96.29%);且這兩種ELISA檢驗法有相當高得一致性 (κ值為0.9172)。由於棘蛋白S-E區域 (IBV-S-1) 具有較強的抗原性,被選擇作為後續評估LAB載體疫苗之抗原之一,而另一個抗原為ARV sigma (σ) C蛋白質,其功能相似於哺乳類里奧病毒 σ1蛋白質,可能參與黏膜M細胞相互作用。研究所需的疫苗載體 (LAB) 為非病原性且具較強腸道細胞附著能力的新腸球菌株Enterococcus faecium。以兩種黏膜投予-胃內 (IG) 以及鼻腔給予 (IN) 的途徑來評估LAB攜帶抗原所誘發的免疫反應。相較於IG, IN途徑能誘導較強烈的體液性免疫反應。鼻腔免疫能在系統性 (血清) 與區域性 (肺臟沖洗液) 的檢體中測得較高的抗原特異性抗體IgA。而結合σC蛋白質的LAB能誘導更高的IgA抗體反應,但在血清檢體中對於σC蛋白質呈現比IBV-S-1蛋白質有較強的抗體免疫反應活性。這些結果指出使用LAB帶有σC蛋白質經鼻腔免疫後能誘發強烈的黏膜性免疫反應。針對經濟動物的呼吸道感染疾病,此免疫策略具有發展為無需針具、具經濟成本效益且方便有效的疫苗潛力。而且,σC蛋白質除了是ARV病毒的免疫抗原外,更對家禽類疫苗能提供免疫增強佐劑效果。
Mucosal surfaces are common sites of pathogen colonization/entry, therefore the mucosal immunity could provide an effective protection at these primary infection sites. The aim of this study was to develop a new vaccination strategy that elicits a mucosal immune response; specifically, the potential use of lactic acid bacteria (LAB) as a vaccine carrier for delivering two antigens including the viral surface proteins of avian infectious bronchitis virus (IBV) and avian reovirus (ARV), were evaluated in mice models. To do so, first of all, the immunodominant region of IBV spike protein was determined. IBV infection is a highly contagious disease of chickens. The spike (S) protein, containing S1 and S2 subunits, is the major immunity-eliciting antigen of IBV. Within the S1 subunit, several immunogenic regions have been identified by using selected monoclonal antibodies or using a short peptide approach. Nonetheless, these involve only certain limited region of the S protein. In addition, some immune-dominant regions are located in hypervariable regions (HVRs) which are not present in all serotypes. To determine a broader range of antigenic regions in IBV-S protein, S1 and partial S2 subunit protein (24-567 amino acids) were expressed as five fragments in prokaryotic system. The antigenicity was confirmed using IBV immunized sera. The potential application of these S subfragments as the coating antigen in ELISA for diagnosis of IBV infection was also investigated by using a panel of field chicken sera with known IBV titres determined by a commercial kit. Among the five antigenic recombinant proteins, the region S-E showed the highest specificity and sensitivity of 95.38 % and 96.29 %, respectively. The κ value for the in-house ELISA using the S-E fragment compared to a commercial kit was 0.9172, indicating a high agreement between these two methods. As region S-E harbors strong immunogenicity within the spike protein, it was chosen as one of the model antigens. Subsequently, the immune response induced by LAB conjugated with two viral proteins via mucosal vaccination was assessed. A new strain of Enterococcus faecium, a non pathogenic lactic LAB with strong cell adhesion ability, was identified and employed to deliver two model antigens. In addition to IBV, spike subfragment, sigma (σ) C protein of ARV, a functional homolog of mammalian reovirus σ1 protein and responsible for M-cell targeting, was co-administered to mice. Next, the effect of immunization route on the immune response was assessed by delivering the antigens via the LAB strain. Intranasal (IN) immunization induced stronger humoral responses than intragastic (IG) immunization. IN immunization produced antigen specific IgA both systemically and in the lungs. A higher IgA titer was induced by the LAB with ARV σC protein attached. Moreover, the serum of mice immunized with LAB displaying divalent antigens had much stronger immune reactivity against ARV σC protein compared to IBV-S1. Our results indicate that ARV σC protein delivered by LAB via the IN route elicits strong mucosal immunity. A needle-free delivery approach is a convenient and cost effective method of vaccine administration, especially for respiratory infections in economic animals. Collectively, application of LAB conjugated with avian viral proteins on development of mucosa vaccine was demonstrated for the first time. Furthermore, ARV σC, a strong immunogen of ARV, may be able to serve as an immunoenhancer for other vaccines, especially avian vaccines.
URI: http://hdl.handle.net/11455/14423
其他識別: U0005-2607201214484900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2607201214484900
Appears in Collections:獸醫學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.