Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/1521
標題: 吸附配對之特性對熱泵性能之影響
Effects of Characteristics of Adsorption Pairs on the Performance of an Adsorption Heat Pump
作者: 林瑋旻
Lin, Wei-Min
關鍵字: adsorption heat pump
吸附式熱泵
COP
specific cooling power
second-law efficiency
冷卻性能係數
冷卻能力
第二定律效率
出版社: 機械工程學系所
引用: 1. F. Meunier, “Solid sorption heat powered cycles for cooling and heat pumping applications”, Applied Thermal Engineering, Vol. 18, pp. 715-729, 1998. 2. N.C. Srivastava, I.W. Eames, “A review of adsorbents and adsorbates in solid-vapor adsorption heat pump system”, Applied Thermal Engineering, Vol. 18, pp. 707-714, 1998. 3. S.G. Wang, R.Z. Wang, X.R. Li, “Research and development of consolidated adsorbent for adsorption systems”, Renewable Energy, Vol. 30, pp. 1425-1441, 2005. 4. L. Yong, K. Sumathy, “Review of mathematical investigation on the closed adsorption heat pump and cooling system”, Renewable and Sustainable Energy Reviews, Vol. 6, pp. 305-337, 2002. 5. G. Cacciola, G. Restuccia, “Reversible adsorption heat pump: a thermodynamic model”, International Journal of Refrigeration, Vol. 18, pp. 100-106, 1995. 6. J.Y. Wu, R.Z. Wang, Y.X. Xu, “Dynamic analysis of heat recovery process for a continuous heat recovery adsorption heat pump”, Energy Conversion and Management, Vol. 43, pp. 2201-2211, 2002. 7. D. Wang, J. Wu, H. Shan, R. Wang, “Experimental study on the dynamic characteristics of adsorption heat pump driven by intermittent heat source at heat mode”, Applied Thermal Engineering, Vol. 25, pp. 927-940, 2005. 8. N. Ben Amar, L.M. Sun, F. Meunier,” Numerical analysis of adsorptive temperature wave regenerative heat pump”, Applied Thermal Engineering , Vol. 16, pp. 405-418, 1996. 9. B.K. Sward, M.D. LeVan, F. Meunier, “Adsorption heat pump modeling: the thermal wave process with local equilibrium”, Applied Thermal Engineering, Vol. 20, pp. 759-780, 2000. 10. L.M. Sun, Y. Feng, M. Pons, “Numerical investigation of adsorptive heat pump systems with thermal wave heat regeneration under uniform-pressure conditions”, International Journal of Heat and Mass Transfer, Vol. 40, pp. 281-293, 1997. 11. W. Zheng, W.M. Worek, G. Nowakowski, “Effect of design and operating parameters on the performance of two-bed sorption heat pump systems”, Journal of Energy Resources Technology, Vol. 117, pp. 67-74, 1995. 12. W. Zheng, W.M. Worek, G. Nowakowski, “Performance of multi-bed sorption heat pump system”, International Journal of Energy Research, Vol. 20, pp. 339-350, 1996. 13. M.H. Chahbani, J. Labidi, J. Paris, “Effect of mass transfer kinetics on the performance of adsorptive heat pump systems”, Applied Thermal Engineering, Vol. 22, pp. 23-40, 2002. 14. M.H. Chahbani, J. Labidi, J. Paris, “Modeling of adsorption heat pumps with heat regeneration”, Applied Thermal Engineering, Vol. 24, pp. 431-447, 2004. 15. Y. Liu, K.C. Leong, “The effect of operating conditions on the performance of zeolite/water adsorption cooling system”, Applied Thermal Engineering, Vol. 25, pp. 1403-1418, 2005. 16. R.Z. Wang, Y.X. Xu, J.Y. Wu, W. Wang, “Experiments on heat- regenerative adsorption refrigerator and heat pump”, International Journal of Energy Research, Vol. 22, pp. 935-941, 1998. 17. R.Z. Wang, J.Y. Wu, Y.X. Xu, Y. Teng, W. Shi, “Experiment on a continuous heat regenerative adsorption refrigerator using spiral plate heat exchanger as adsorbers”, Applied Thermal Engineering, Vol. 18 , pp. 12-23, 1998. 18. J.Y. San, Y.C. Hsu, L.J. Wu, “Adsorption of toluene on activated carbon in a packed bed”, International Journal of Heat and Mass Transfer, Vol. 41 pp. 3229-3238, 1998. 19. J.Y. San, “Analysis of the performance a multi-bed adsorption heat pump ”, Applied Thermal Engineering. Vol. 26 pp. 2219-2227, 2006. 20. M. Tokarev, L. Gordeeva, V. Romannikov, I. Glaznev, Y. Aristov, “New composite sorbent in mesopores for sorption cooling/heating”. International Journal of Thermal sciences, Vol. 41 pp. 470-474, 2002. 21. Yu.I. Aristov, I.S. Glaznev, A. Freni, G. Restuccia, “Kinetics of water sorption on SWS-1L (calcium chloride confined to mesoporous silica gel): Influence of grain size and temperature”. Chemical Engineering science, Vol. 61 pp. 1453-1458, 2006. 22. I.I. EI-Sharkawy, K. Kuwahara, B.B. Saha, S. Koyama, K.C. Ng, “Experimental investigation of activated carbon fibers/ethanol pairs for adsorption cooling system application”, Applied Thermal Engineering, Vol. 26 pp. 859-865, 2006. 23. K.J. Sladek, E.R. Gilliland, R.F. Baddour, “Diffusion on surface. II. Correlation of diffusivities of physically and chemically adsorbed species”, Industrial and Engineering Chemistry Fundamentals, Vol. 13 pp. 100-105, 1974. 24. 吳良箴,雙塔式活性碳吸附系統對甲苯吸附性能之模擬分析,碩士論文,中興大學機械系,1996. 25. Jurinak, J.J., “Open cycle solid desiccant cooling-component model and system simulation”, Ph. D Thesis, Mech. Engrg. Dept., University of Wisconsin-Madison, USA, 1980.
摘要: 本研究以電腦模擬分析探討一個具四個吸附器之吸附式熱泵之冷卻性能係數(COP)與冷卻能力,此熱泵中之四個吸附器依序經四個過程(吸附、預熱、再生與預冷)以達到連續製冷之能力。研究中使用具固體側質傳阻抗之分析模式(solid-side resistance model, SSR),系統中冷卻/加熱流體之溫度被考慮為流道位置與時間之函數,分析中並分別考慮三種不同之吸附劑-冷媒之配對(活性碳-甲醇、矽膠-水與13X分子篩-水)。分析中分別改變再生溫度、冷凝溫度、蒸發溫度、崁入體之時間常數、有效顆粒半徑、崁入體與吸附劑間之整體熱傳係數、崁入體與吸附劑間之熱容比及崁入體與冷卻/加熱水間之熱容比等參數,以探討不同參數對系統之COP、冷卻能力與第二定律效率之影響,並分別得到在三種不同吸附配對下系統之性能。分析之結果顯示,活性碳-甲醇之配對方式可提供較佳之系統性能,而系統欲得到較大之冷卻能力,則吸附劑-冷媒配對必須同時具備兩個特性,其中第一個特性為當吸附溫度為冷凝溫度,而冷媒之壓力為蒸發溫度相對之飽和壓力時,吸附劑所對應之冷媒含量必須高;而第二個特性為當吸附溫度為再生溫度,而冷媒之壓力為冷凝溫度相對之飽和壓力時,吸附劑所對應之冷媒含量必須低。
A computer simulation of the COP and specific cooling power for an adsorption heat pump with four adsorbers were performed. The adsorbers orderly and consecutively proceed four processes (adsorption, preheating, regeneration and precooling) to achieve a continuous cooling capability. A solid-side resistance model was adopted. The temperature of heating/cooling fluid is a function of time and location in the flow passage. There adsorption pairs (activated carbon-methanol, silica gel-water and 13X molecular sieves-water) were individually considered. Regeneration temperature, condensing temperature, evaporating temperature, insert's time constant, effective particle radius, overall heat transfer coefficient, insert-to-adsorbent heat capacitance ratio and insert-to-heating/cooling fluid heat capacitance ratio were treated as the variables. The effects of these variables on the COP, specific cooling power and second-law efficiency were obtained. The result reveals that, the activated carbon-methanol adsorption pair provides a better system perform. To achieve a large specific cooling power, the selected adsorption pair needs to possess two important characteristics. First, for the adsorption temperature equal to the condensing temperature and the vapor pressure equal to the saturation pressure corresponding to the evaporating temperature, the refrigerant content in the adsorbent must be large; Second, for the adsorption temperature equal to the regeneration temperature and the vapor pressure equal to the saturation pressure corresponding to the condensing temperature, the refrigerant content in the adsorbent must be small.
URI: http://hdl.handle.net/11455/1521
其他識別: U0005-0607200617510300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0607200617510300
Appears in Collections:機械工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.