Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/15250
標題: 紅外線熱影像法在混凝土結構CFRP修補品質之評估
Application of Infrared Thermography to Repair Quality Inspection of Concrete Structures Strengthened by CFRP.
作者: 林雅萍
Lin, Ya-Ping
關鍵字: CFRP
碳纖維
Infrared Thermography
ANSYS
紅外線
ANSYS
出版社: 土木工程學系所
引用: 1.徐耀賜,「複合材料(FRP)-混凝土橋梁結構物補強加固之利器」,土木技術,第四卷,第三期,橋梁工程專輯,第135-154 頁,2001 .03。 2.李有豐、朱國棟,「纖維強化高分子複合材料之材料測試標準與施工驗收準則之研擬」,結構工程,第十五卷,第三期,第73-99頁,2000.09。 3.朱國棟、李有豐、施邦築,「纖維強化高分子複合材料(FRP)應用於RC結構物補強之介紹」,現代營建, 第239期,第74-80頁,1999.11。 4.稻垣道夫/大谷杉郎/大谷朝男著,賴耿陽譯,「碳材料碳纖維工學」,復漢出版社,1986。 5.馬振基,高分子複合材料,正中書局,1995。 6. 林延宗,「碳纖維貼片補強混凝土構件之耐久性能測試研究」,碩士論文,朝陽科技大學營建工程研究所,2002。 7.林至聰,「碳纖維貼片補強鋼筋混凝土構件之研究」,博士論文,國立中央大學土木工程研究所,1999。 8. 施邦築、李有豐、朱國棟,「RC 結構補強之材料及工法」土木技術,第5期,第118~127頁,1998.07。 9.苗沛元,「夜視新境界-新一代紅外線熱像儀簡介」,軍品科技新知,第105 期,第73~84頁,1998.08。 10.工業技術研究院,「紅外線技術之應用」,計量產業透析,1992.04。 11 賴耿陽,「紅外線工學基礎應用」,復文書局,1995。 12 Weil, G.J., "Infrared Thermographic Techniques," Chapter 13 in Handbook on Nondestructive Testing of Concrete, V.M. Malhotra and N.J. Carino, Eds., CRC Press, Boca Raton, FL, pp. 305-316.1991 13. ASTM D4788, "Test Method for Detecting Delaminations in Bridge Decks Using Infrared Thermography," Annual Book of ASTM Standards, American Society for Testing and Materials, Philadelphia. 1987 14. Weil, G. J., and Rowe, T. J..“Nondestructive testing and repair of the concrete roof shell at the Seattle Kingdome.” NDT&E International, 31(6),389-400.1998 15.C.W. Hu,J.K.C., Shih+,R Delpak,D.B.,Tann,”Detection of air blisters and crack propagation in FRP strengthenened concrete elements using infrared thermography”,2002 16. Sakagami, T., and Kubo, S..“Development of a new non-destructive testing technique for quantitative evaluations of delamination defects in concrete structures based on phase delay measurement using lock-in thermography.” Infrared Physics& Technology, 43, 311-316.2002 17. Balaras, C. A., Argiriou, A. A., “Infrared thermography for building diagnostics”, Energy and Buildings, Vol 34, 171-183, 2002. 18. 張真良,「紅外線熱影像分析在混凝土品質評估之應用」,碩士論文,高雄應用科技大學土木工程與防災科技研究所,高雄,2003。 19.Levar, J.M. and Hamilton III, H.R., “Nondestructive Evaluation of carbon Fiber-reinforced Polymer-Concrete bond using Infrared Thermography,” ACI Materials Journal, Vol. 100, No. 1, pp. 63-72. (2003) 20.邱添輝,「遠紅外線加熱的理論與實務」,文生書局,1998。 21.嚴定萍、雷明遠、陳俊勳,「建築材料熱傳導測試基準之應用研究」,計畫編號:MOIS 860005 ,委託單位:內政部建築研究所,執行單位 :財團法人臺灣營建研究院,1997.06。 22. J.P. Holman著,楊春欽 譯,「熱傳遞學」,科技圖書股份有限公司,台北,1978.09。 23. Wei, C. Y., and Woodbury, H. H., and Wang, S. C. H.(1990). “A Novel CID Structure for Improved Breakdown Voltage.” IEEE TRANSACTION ON ELEECTRON DEVICES, 37(3), 611-617. 24. Rogalskl, A., and Chrzanowski, K.(2002). “Infrared devices and techniques.”OPTO-ELECTRONICS REVIEW, 10(2), 111–136. 25. Mohamedbhai G.T.G.,「Effect of exposure time and rates of heating and cooling on residual strength of heated concrete」,Magazine of Concrete Research,vol.38,No.136,September,pp.151-158,(1986) 26.NEC TH7102 紅外線熱影像儀使用說明書。 27.鄭子揚,「建築物之紅外線熱影像法檢測」,碩士論文,朝陽科技大學營建工程研究所,2005。 28. Bathe, K. J., Finite element procedures, Englewood Cliffs, Prentice-Hall, (1996). 29.康淵,陳信吉,「ANSYS入門」,全華科技圖書股份有限公司,2004.03。 30.危時秀,「普通混凝土熱傳導性質之研究」,碩士論文,中原大學土木工程研究所,2003。 31.李豔紅,張存林,金萬平,楊黨綱,沈京玲,陳繼華,張小川,蔣淑芳,「碳纖維複合材料的紅外熱波檢測」,鐳射與紅外雜誌,2005年4月,第35卷第4期。
摘要: 一般混凝土結構經損害後時常有進行補強之需要,而補強材料與原混凝土之間的黏結品質影響其補強效益甚鉅。本研究對一般混凝土及火害後混凝土進行CFRP(Carbon Fiber-Reinforced Polymer)貼片補強工法,並於混凝土與碳纖維貼片之間放置薄塑膠片與珍珠板以模擬膠結不良或脫層瑕疵存在之狀況,再使用紅外線熱影像法進行檢測。觀察不同之缺陷厚度試驗紅外線對溫度之敏感性,以及不同碳纖維貼片層數或不同熱源對缺陷檢測的難易度。最後再輔以數值模擬結果跟實驗結果進行比對。 實驗結果顯示對於施加之熱源不管是太陽光或鹵素燈,在熱影像中皆能看到預埋之缺陷。並發現無論混凝土試體是否經過火害,在其他條件相同下,缺陷厚度愈厚,缺陷表面溫度愈高,愈容易在熱影像中顯示出來;在相同碳纖維積層數下,加熱時間愈長,缺陷表面溫度也會愈高;在相同加熱時間下,缺陷表面溫度及降溫速率雖會隨著碳纖維積層數增加而降低,但仍能看到預埋之缺陷,顯示即使貼覆了三層碳纖維,紅外線熱影像 法仍能維持其有效性。在以ANSYS軟體進行數值模擬後也得到與實驗結果相同之趨勢,因此以紅外線熱影像法檢測碳纖維貼片補強結構物之膠結不良或脫層瑕疵存在狀況確有其可行性。
The concrete structures after damage often need to be strengthened. The bond between the repair material and original concrete is the key factor to determine the repair quality. In this research, concrete structures were strengthened with CFRP (Carbon Fiber-Reinforced Polymer). Both normal concrete and concrete after fire damage were considered as strengthening specimens. To simulate bad bond quality, thin and thick plastic sheets were placed at specific locations at the interface between CFRP and concrete. The infrared thermography technique was used to inspect the repair quality of concrete structures strengthened by CFRP. The number of CFRP layers and the heating source were considered as experimental parameters. In addition, how the thickness of the flaw affects the temperature distribution on the surface detected by the infrared will be studied. Finally, the results obtained from numerical analysis were compared with the experimental results. The experimental results show that both the sunlight and halogen light are suitable heating source for detection of the flaws at the interface between CFRP and concrete in the thermal image. It was found that the thicker the flaw thickness the higher the surface temperature. For the same number of CFRP layers, a longer duration of heating results in a higher surface temperature on the top of the flaw. The flaw surface temperature and the temperature decreasing rate are reduced by increasing the number of CFRP layers. The infrared thermography is still valid for detection of flaws beneath CFRP with three layers. The numerical results show the similar heat flow phenomenon to that observed in the experimental results. It is concluded that application of infrared thermography to repair quality inspection of concrete structures strengthened by CFRP is highly feasible
URI: http://hdl.handle.net/11455/15250
其他識別: U0005-0708200613401800
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0708200613401800
Appears in Collections:土木工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.