Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/15260
標題: 豬瘟病毒Erns封套蛋白之選殖表現與酵素結合免疫吸附法之開發
Development of enzyme-linked immunosorbent assay with baculovirus-expressed Erns glycoprotein of classical swine fever virus
作者: 王予雯
Wang, Yu-Wen
關鍵字: classical swine fever
豬瘟
Erns
ELISA
DIVA
Erns
ELISA
DIVA
出版社: 獸醫病理生物學研究所
引用: 李淑慧、鍾明華、林有良、丁履紉、陽喜金,1997。豬實驗感染野外豬瘟病毒之組織病理變化。台灣省家畜衛生試驗所研究報 33:13-28。 張文傑,2010。豬瘟 E2 重組次單位疫苗安全性與保護效力之評估。碩士論文。中興大學。獸醫病理生物學研究所。台中。台灣。 劉振軒、張文發、邱慧英,2002。甲類動物傳染病之簡介。財團法人台灣野豬科學研究所。苗栗。台灣。 Altmann, F., Schwihla, H., Staudacher, E., Glossl, J., Marz, L., 1995. Insect cells contain an unusual, membrane-bound b-N-acetylglucosaminidase probably involved in the processing of protein N-glycans. J. Biol. Chem. 270, 17344-17349. Baker, J.A., 1946. Serial passage of hog cholera virus in rabbits. Proc. Soc. Exp. Biol. Med. 63, 183-187. Beer, M., Reimann, I., Hoffmann, B., Depner, K., 2007. Novel marker vaccines against classical swine fever. Vaccine 25, 5665-5670. Bensaude, E., Turner, J.L., Wakeley, P.R., Sweetman, D.A., Pardieu, C., Drew, T.W., Wileman, T., Powell, P.P., 2004. Classical swine fever virus induces proinflammatory cytokines and tissue factor expression and inhibits apoptosis and interferon synthesis during the establishment of long-term infection of porcine vascular endothelial cells. The Journal of general virology 85, 1029-1037. Björklund, H., Lowings, P., Stadejek, T., Vilcek, S., Greiser-Wilke, I., Paton, D., Belák, S., 1999. Phylogenetic comparison and molecular epidemiology of classical swine fever virus. Virus Genes 19, 189-195. Bouma, A., De Smit, A.J., De Kluijver, E.P., Terpstra, C., Moormann, R.J., 1999. Efficacy and stability of a subunit vaccine based on glycoprotein E2 of classical swine fever virus. Vet. Microbiol. 66, 101-114. Branza-Nichita, N., Lazar, C., Dwek, R.A., Zitzmann, N., 2004. Role of N-glycan trimming in the folding and secretion of the pestivirus protein Erns. Biochem. Biophys. Res. Commun. 319, 655-662. Brown, E.A., Zhang, H., Ping, L., Lemon, S.M., 1992. Secondary structure of the 5'' nonstranslated regions of hepatitis C virus and pestivirus genomic RNAs. Nucleic Acids Res. 20, 5041-5045. Bruschke, C.J., Hulst, M.M., Moormann, R.J., Van Rijn, P.A., Van Oirschot, J.T., 1997. Glycoprotein Erns of pestiviruses induces apoptosis in lymphocytes of several species. J. Virol. 71, 6692-6696. Cereghino, J.L., Cregg, J.M., 2000. Heterologous expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol. 24, 45-66. Chang, C.Y., Huang, C.C., Lin, Y.J., Deng, M.C., Chen, H.C., Tsai, C.H., Chang, W.M., Wang, F.I., 2010. Antigenic domains analysis of classical swine fever virus E2 glycoprotein by mutagenesis and conformation-dependent monoclonal antibodies. Virus Res. 149, 183-189. Chen, L., Xia, Y.H., Pan, Z.S., Zhang, C.Y., 2007. Expression and functional characterization of classical swine fever virus Erns protein. Protein Expr. Purif. 55, 379-387. Chen, N., Hu, H., Zhang, Z., Shuai, J., Jiang, L., Fang, W., 2008. Genetic diversity of the envelope glycoprotein E2 of classical swine fever virus: recent isolates branched away from historical and vaccine strains. Vet. Microbiol. 127, 286-299. Chen, N., Tong, C., Li, D., Wan, J., Yuan, X., Li, X., Peng, J., Fang, W., 2010. Antigenic analysis of classical swine fever virus E2 glycoprotein using pig antibodies identifies residues contributing to antigenic variation of the vaccine C-strain and group 2 strains circulating in China. Virol. J. 7, 378. Clavijo, A., Lin, M., Riva, J., Mallory, M., Lin, F., Zhou, E.M., 2001. Development of a competitive ELISA using a truncated E2 recombinant protein as antigen for detection of antibodies to classical swine fever virus. Res. Vet. Sci. 70, 1-7. Cruz, J.L.G., Zúñiga, S., Bécares, M., Sola, I., Ceriani, J.E., Juanola, S., Plana, J., Enjuanes, L., 2010. Vectores vaccines to protect against PRRSV. Virus Res. 154, 150-160. Davis, T.R., Trotter, K.M., Granados, R.R., Wood, H.A., 1992. Baculovirus expression of alkaline phosphatase as a reporter gene for evaluation of production, glycosylation and secretion. Nat. Biotechnol. 10, 1148-1150. De Smit, A.J., Bouma, A., de Kluijver, E.P., Terpstra, C., Moormann, R.J., 2001. Duration of the protection of an E2 subunit marker vaccine against classical swine fever after a single vaccination. Vet. Microbiol. 78, 307-317. Deng, M.C., Huang, C.C., Huang, T.S., Chang, C.Y., Lin, Y.J., Chien, M.S., Jong, M.H., 2005. Phylogenetic analysis of classical swine fever virus isolated from Taiwan. Vet. Microbiol. 106, 187-193. Deng, R., Brock, K.V., 1993. 5'' and 3'' untranslated regions of pestivirus genome: primary and secondary structure analyses. Nucleic Acids Res. 21, 1949-1957. Depner, K., Gruber, A., Leiss, B., 1994. Experimental infection of weaner pigs with a field isolate of Hog Cholera/ Classical Swine Fever Virus derived from a recent outbreak in Lower Saxony. I: Clinical, viological and serological findings. Weiner Tierárztliche Monatsschrift 81, 370-373. Dong, X.N., Chen, Y.H., 2007. Marker vaccine strategies and candidate CSFV marker vaccines. Vaccine 25, 205-230. Fernandez-Sainz, I., Holinka, L.G., Gavrilov, B.K., Prarat, M.V., Gladue, D., Lu, Z., Jia, W., Risatti, G.R., Borca, M.V., 2009. Alteration of the N-linked glycosylation condition in E1 glycoprotein of Classical Swine Fever Virus strain Brescia alters virulence in swine. Virology 386, 210-216. Floegel-Niesmann, G., 2001. Classical swine fever (CSF) marker vaccine Trial III. Evaluation of discriminatory ELISAs. Vet. Microbiol. 83, 121-136. Floegel-Niesmann, G., Bunzenthal, C., Fischer, S., Moennig, V., 2003. Virulence of recent and former classical swine fever virus isolates evaluated by their clinical and pathological signs. J. Vet. Med. B Infect. Dis. Vet. Public Health 50, 214-220. Gavrilov, B.K., Rogers, K., Fernandez-Sainz, I.J., Holinka, L.G., Borca, M.V., Risatti, G.R., 2011. Effects of glycosylation on antigenicity and immunogenicity of classical swine fever virus envelope proteins. Virology 420, 135-145. Greiser-Wilke, I., Blome, S., Moennig, V., 2007. Diagnostic methods for detection of Classical swine fever virus—Status quo and new developments. Vaccine 25, 5524-5530. Greiser-Wilke, I., Depner, K., Fritzemeier, J., Haas, L., Moennig, V., 1998. Application of a computer program for genetic typing of classical swine fever virus isolates from Germany. J. Virol. Methods. 75, 141-150. Haigwood, N.L., Nara, P.L., Brooks, E., Van Nest, G.A., Ott, G., Higgins, K.W., Dunlop, N., Scandella, C.J., Eichberg, J.W., Steimer, K.S., 1992. Native but not denatured recombinant human immunodeficiency virus type 1 gp120 generates broad-spectrum neutralizing antibodies in baboons. J. Virol. 66, 172-182. Harada, T., Tautz, N., Thiel, H.J., 2000. E2-p7 region of the bovine viral diarrhea virus polyprotein: processing and functional studies. J. Virol. 74, 9498-9506. Helle, F., Vieyres, G., Elkrief, L., Popescu, C.I., Wychowski, C., Descamps, V., Castelain, S., 2010. Role of N-linked glycans in the function of hepatitis C virus envelope proteins incorporated into infectious virions. J. Virol. 84, 11905-11915. Héricourt, F., Blanc, S., Redeker, V., Jupin, I., 2000. Evidence for phosphorylation and ubiquitinylation of the turnip yellow mosaic virus RNA-dependent RNA polymerase domain expressed in a baculovirus-insect cell system. Biochem. J. 349, 417-425. Hitchman, R.B., Possee, R.D., King, L.A., 2009. Baculovirus expression systems for recombinant protein production in insect cells. Recent Pat Biotechnol 3, 46-54. Hodder, A.N., Crewther, P.E., Methew, M.L., Reisd, G.E., Moritz, R.L., Simpson, R.J., Anders, R.F., 1996. The disulfide bond structure of Plasmodium apical membrane antigen-1. J. Biol. Chem. 271, 29446-29452. Huang, C., Chien, M.S., Hu, C.M., Chen, C.W., Hsieh, P.C., 2006. Secreted expression of the classical swine fever virus glycoprotein Erns in yeast and application to a sandwich blocking ELISA. J. Virol. Methods 132, 40-47. Hulst, M.M., Himes, G., Newbigin, E., Moormann, R.J.M., 1994. Glycoprotein E2 of classical swine fever virus: expression in insect cells and identification as a ribonuclease. Virology 200, 558-565. Hulst, M.M., Moormann, R.J.M., 1997. Inhibition of pestivirus infection in cell culture by envelope proteins Erns and E2 of classical swine fever virus: Erns and E2 interact with different receptors. The Journal of general virology 78, 2779-2787. Hulst, M.M., Panoto, F.E., Hoekman, A., Van Gennip, H.G., Moormann, R.J.M., 1998. Inactivation of the RNase activity of glycoprotein Erns of classical swine fever virus results in a cytopathogenic virus. J. Virol. 72, 151-157. Hulst, M.M., Van Gennip, H.G., Vlot, A.C., Schooten, E., De Smit, A.J., Moormann, R.J.M., 2001. Interaction of classical swine fever virus with membrane-associated heparan sulfate: role for virus replication in vivo and virulence. J. Virol. 75, 9585-9595. Hulst, M.M., Westra, D.F., Wensvoort, G., Moormann, R.J.M., 1993. Glycoprotein E1 of hog cholera virus expressed in insect cells protects swine from hog cholera. J. Virol. 67, 5435-5442. Ivanyi-Nagy, R., Lavergne, J.P., Gabus, C., Ficheux, D., Darlix, J.L., 2008. RNA chaperoning and intrinsic disorder in the core proteins of Flaviviridae. Nucleic Acids Res. 36, 712-725. James, D.C., Freedman, R.B., Hoare, M., Oqonah, O.W., Rooney, B.C., Larionov, O.A., Dobrovolsky, V.N., Laqutin, O.V., Jenkins, N., 1995. N-glycosylation of recombinant human interferon-g produced in different animal expression systems. Nat. Biotechnol. 13, 592-596. Johns, H.L., Bensaude, E., La Rocca, S.A., Seago, J., Charleston, B., Steinbach, F., Drew, T.W., Crooke, H., Everett, H., 2010. Classical swine fever virus infection protects aortic endothelial cells from pIpC-mediated apoptosis. The J. Gen. Virol. 91, 1038-1046. Kaden, V., Lange, E., Polster, U., Klopfleisch, R., Teifke, J.P., 2004. Studies on the virulence of two field isolates of the classical swine fever virus genotype 2.3 Rostock in wild boars of different age groups. J. Vet. Med. B Infect. Dis. Vet. Public Health 51, 202-208. Kaden, V., Ziegler, U., Lange, E., Dedek, J., 2000. Classical swine fever virus: clinical, virological, serological and hematological findings after infection of domestic pigs and wild boars with the field isolate "Spante" originating from wild boar. Berl. Múnch. Tierärztl. Wochenschr. 113, 412-416. Kalliampakou, K.I., Kalamvoki, M., Mavromara, P., 2005. Hepatitis C virus (HCV) NS5A protein downregulates HCV IRES-dependent translation. J. Gen. Virol. 86, 1015-1025. Kitts, P.A., Possee, R.D., 1993. A method for reducing recombinant baculovirus expression vectors at high frequency. Biotechniques 14, 810-817. König, M., Lengsfeld, T., Pauly, T., Stark, R., Thiel, H.J., 1995. Classical swine fever virus: independent induction of protective immunity by two structural glycoproteins. J. Virol. 69, 6479-6486. Koprowski, H., James, T.R., Cox, H.R., 1946. Propagation of hog cholera virus in rabbits. Proc. Soc. Exp. Biol. Med. 63, 178-183. Kost, T.A., Condreay, J.P., Ames, R.S., Rees, S., Romanos, M.A., 2007. Implementation of BacMam virus gene delivery technology in a drug discovery setting. Drug Discov. Today 12, 396-403. Kost, T.A., Condreay, J.P., Jarvis, D.L., 2005. Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat. Biotechnol. 23, 567-575. Lackner, T., Müller, A., Pankraz, A., Becher, P., Thiel, H.J., Corbalenya, A.E., Tautz, N., 2004. Temporal modulation of an autoprotease is crucial for replication and pathogenicity of an RNA virus. J. Virol. 78, 10765-10775. Langedijk, J.P., Middel, W.G., Meloen, R.H., Kramps, J.A., De Smit, J.A., 2001. Enzyme-linked immunosorbent assay using a virus type-specific peptide based on a subdomain of envelope protein Erns for serologic diagnosis of pestivirus infections in swine. J. Clin. Microbiol. 39, 906-912. Langedijk, J.P.M., Van Veelen, P.A., Schaaper, W.M.M., De Ru, A.H., Meloen, R.H., Hulst, M.M., 2002. A structural model of pestivirus Erns based on disulfide bond connectivity and homology modeling reveals an extremely rare vicinal disulfide. J. Virol. 76, 10383-10392. Leifer, I., Everett, H., Hoffmann, B., Sosan, O., Crooke, H., Beer, M., Blome, S., 2010. Escape of classical swine fever C-strain vaccine virus from detection by C-strain specific real-time RT-PCR caused by a point mutation in the primer-binding site. J. Virol. Methods 166, 98-100. Lin, M., Lin, F., Mallory, M., Clavijo, A., 2000. Deletions of structural glycoprotein E2 of classical swine fever virus strain alfort/187 resolve a linear epitope of monoclonal antibody WH303 and the minimal N-terminal domain essential for binding immunoglobulin G antibodies of a pig hyperimmune serum. J. Virol. 74, 11619-11625. Lin, M., McRae, H., Dan, H., Tangorra, E., Laverdiere, A., Pasick, J., 2010. High-resolution epitope mapping for monoclonal antibodies to the structural protein Erns of classical swine fever virus using peptide array and random peptide phage display approaches. J. Gen. Virol. 91, 2928-2940. Lin, M., Trottier, E., Mallory, M., 2005. Enzyme-linked immunosorbent assay based on a chimeric antigen bearing antigenic regions of structural proteins Erns and E2 for serodiagnosis of classical swine fever virus infection. Clin. Diagn. Lab. Immunol. 12, 877-881. Lin, T.C., Shieh, C.M., Su, J.F., 1974. Virus multiplication in pigs inoculated with lapinized hog cholera live vaccine. Zhonghua Minguo wei sheng wu xue za zhi 7, 13-19. Lin, T.T.C., Lee, R.C.T., 1981. An overall report on the development of a highly safe and potent lapinized hog cholera virus strain for hog cholera control in Taiwan. Natl. Sci. Coun. Spec. Publ. 5, 1-44. Liu, L., Hoffmann, B., Baule, C., Beer, M., Belák, S., Widén, F., 2009. Two real-time RT-PCR assays of classical swine fever virus, developed for the genetic differentiation of naturally infected from vaccinated wild boars. J. Virol. Methods 159, 131-133. Liu, L., Xia, H., Everett, H., Sosan, O., Crooke, H., Meindl-Böhmer, A., Qiu, H.J., Moennig, V., Belák, S., Widén, F., 2011. A generic real-time TaqMan assay for specific detection of lapinized Chinese vaccines against classical swine fever. J. Virol. Methods 175, 170-174. Loeffen, W. 2005. Evaluation of live commercially available CSF-ELISA kits. Report on the annual meeting of National Swine Fever Laboratories (Brussels), 143. Lowings, P., Ibata, G., Needham, J., Paton, D., 1996. Classical swine fever virus diversity and evolution. The Journal of general virology 77, 1311-1321. Luckow, V.A., Summers, M.D., 1988. Trends in the development of baculovirus expression vectors. Nat. Biotechnol. 6, 47-55. Luo, X., Ling, D., Li, T., Wan, C., Zhang, C., Pan, Z., 2009a. Classical swine fever virus Erns glycoprotein antagonizes induction of interferon-β by double-stranded RNA. Can. J. Microbiol. 55, 698-704. Luo, X., Pan, R., Wan, C., Liu, X., Wu, J., Pan, Z., 2009b. Glycosylation of classical swine fever virus Erns is essential for binding double-stranded RNA and preventing interferon-beta induction. Virus Res. 146, 135-139. Magkouras, I., Mätzener, P., Rümenapf, T., Peterhans, E., Schweizer, M., 2008. RNase-dependent inhibition of extracellular, but not intracellular, dsRNA-induced interferon synthesis by Erns of pestiviruses. J. Gen. Virol. 89, 2501-2506. Marchal, I., Jarvis, D.L., Cacan, R., Verbert, A., 2001. Glycoproteins from insect cells: sialylated or not? Biol. Chem. 382, 151-159. Mätzener, P., Magkouras, I., Rümenapf, T., Peterhans, E., Schweizer, M., 2009. The viral RNase Erns prevents IFN type-I triggering pestiviral single- and double- stranded RNAs. Virus Res. 140, 15-23. McCormick, C.J., Brown, D., Griffin, S., Challinor, L., Rowlands, D.J., Harris, M., 2006. A link between translation of the hepatitis C virus polyprotein and polymerase function; possible consequences for hyperphosphorylation of NS5A. The Journal of general virology 87, 93-102. McCullough, K.C., Ruggli, N., Summerfield, A., 2009. Dendritic cells-at the front-line of pathogen attack. Vet. Immunol. Immunopathol. 128, 7-15. Meyers, G., Saalmüller, A., Büttner, M., 1999. Mutations abrogating the RNase activity in glycoprotein Erns of the pestivirus classical swine fever virus lead to virus attenuation. J. Virol. 73, 10224-10235. Meyers, G., Thiel, H.J., 1995. Cytopathogenicity of classical swine fever virus caused by defective interfering particles. J. Virol. 69, 3683-3689. Moennig, V., 2000. Introduction to classical swine fever: virus, disease and control policy. Vet. Microbiol. 73, 93-102. Moormann, R.J.M., Bouma, A., Kramps, J.A., Terpstra, C., De Smit, H.J., 2000. Development of a classical swine fever subunit marker vaccine and companion diagnostic test. Vet. Microbiol. 73, 209-219. Moser, C., Ruggli, N., Tratschin, J.D., Hofmann, M.A., 1996. Detection of antibodies against classical swine fever virus in swine sera by indirect ELISA using recombinant envelope glycoprotein E2. Vet. Microbiol. 51, 41-53. Müller, A., Depner, K.R., Liess, B., 1996. Evaluation of a gp 55 (E2) recombinant-based ELISA for the detection of antibodies induced by classical swine fever virus. Dtsch. Tierärztl. Wochenschr. 103, 451-453. Murray, C.L., Marcotrigiano, J., Rice, C.M., 2008. Bovine viral diarrhea virus core is an intrinsically disordered protein that binds RNA. J. Virol. 82, 1294-1304. Narita, M., Kawashima, K., Kimura, K., Mikami, O., Shibahara, T., Yamada, S., Sakoda, Y., 2000. Comparative immunohistopathology in pigs infected with highly virulent or less virulent strains of hog cholera virus. Vet. Pathol. 37, 402-408. Pan, C.H., Jong, M.H., Huang, T.S., Liu, H.F., Lin, S.Y., Lai, S.S., 2005. Phylogenetic analysis of classical swine fever virus in Taiwan. Arch. Virol. 150, 1101-1119. Paton, D.J., McGoldrick, A., Greiser-Wilke, I., Parchariyanon, S., Song, J.Y., Liou, P.P., Stadejek, T., Lowings, J.P., Björklund, H., Belák, S., 2000. Genetic typing of classical swine fever virus. Vet. Microbiol. 73, 137-157. Pauly, T., König, M., Thiel, H.J., Saalmüller, A., 1998. Infection with classical swine fever virus: effects on phenotype and immune responsiveness of porcine T lymphocytes. J. Gen. Virol. 79, 31-40. Rice, M.C., Lindenbach, B.D. 2001. Flaviviridae: the viruses and their replication., In: Knipe, D.M., Howley, P.M. (Eds.) Fields Virology. Lippincott Williams & Wilkins, Philadelphia, 991-1041. Risatti, G.R., Holinka, L.G., Fernandez Sainz, I., Carrillo, C., Kutish, G.F., Lu, Z., Zhu, J., Rock, D.L., Borca, M.V., 2007. Mutations in the carboxyl terminal region of E2 glycoprotein of classical swine fever virus are responsible for viral attenuation in swine. Virology 364, 371-382. Ruggli, N., Summerfield, A., Fiebach, A.R., Guzylack-Piriou, L., Bauhofer, O., Lamm, C.G., Waltersperger, S., Matsuno, K., Liu, L., Gerber, M., Choi, K.H., Hofmann, M.A., Sakoda, Y., Tratschin, J.D., 2009. Classical swine fever virus can remain virulent after specific elimination of the interferon regulatory factor 3-degrading function of Npro. J. Virol. 83, 817-829. Rümenapf, T., Unger, G., Strauss, J.H., Thiel, H.J., 1993. Processing of the envelope glycoproteins of pestiviruses. J. Virol. 67, 3288-3294. Sainz, I.F., Holinka, L.G., Lu, Z., Risatti, G.R., Borca, M.V., 2008. Removal of a N-linked glycosylation site of classical swine fever virus strain Brescia Erns glycoprotein affects virulence in swine. Virology 370, 122-129. Sato, M., Mikami, O., Kobayashi, M., Nakajima, Y., 2000. Apoptosis in the lymphatic organs of piglets inoculated with classical swine fever virus. Vet. Microbiol. 75, 1-9. Seago, J., Goodbourn, S., Charleston, B., 2010. The classical swine fever virus Npro product is degraded by cellular proteasomes in a manner that does not require interaction with interferon regulatory factor 3. The Journal of general virology 91, 721-726. Sheng, C., Xiao, M., Geng, X., Liu, J., Wang, Y., Gu, F., 2007. Characterization of interaction of classical swine fever virus NS3 helicase with 3'' untranslated region. Virus Res. 129, 43-53. Smith, G.E., Summers, M.D., Fraster, M.J., 1983. Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol. Cell Biol. 3, 2156-2165. Stark, R., Meyers, G., Rümenapf, T., Thiel, H.J., 1993. Processing of pestivirus polyprotein: cleavage site between autoprotease and nucleocapsid protein of classical swine fever virus. J Virol 67, 7088-7095. Suradhat, S., Damrongwatanapokin, S., 2003. The influence of maternal immunity on the efficacy of a classical swine fever vaccine against classical swine fever virus, genogroup 2.2, infection. Vet. Microbiol. 92, 187-194. Susa, M., König, M., Saalmüller, A., Reddehase, M.J., Thiel, H.J., 1992. Pathogenesis of classical swine fever: B-lymphocyte deficiency caused by hog cholera virus. J. Virol. 66, 1171-1175. Suzich, J.A., Tamura, J.K., Palmer-Hill, F., Warrener, P., Grakoui, A., Rice, C.M., Feinstone, S.M., Collett, M.S., 1993. Hepatitis C virus NS3 protein polynucleotide-stimulated nucleoside triphosphatase and comparison with the related pestivirus and flavivirus enzymes. J. Virol. 67, 6152-6158. Tellinghuisen, T.L., Paulson, M.S., Rice, C.M., 2006. The NS5A protein of bovine viral diarrhea virus contains an essential zinc-binding site similar to that of the hepatitis C virus NS5A protein. J. Virol. 80, 7450-7458. Terpstra, C., 1991. Hog cholera: an update of present knowledge. Br. Vet. J. 147, 397-406. Thiel, H.J., Stark, R., Weiland, E., Rümenapf, T., Meyers, G., 1991. Hog cholera virus: molecular composition of virions from a pestivirus. J. Virol. 65, 4705-4712. Van Aarle, P., 2003. Suitability of an E2 subunit vaccine of classical swine fever in combination with the Erns-marker-test for eradication through vaccination. Dev. Biol. (Basel) 114, 193-200. Van Oirschot, J.T., 1999. Diva vaccines that reduce virus transmission. J. Biotechnol. 73, 195-205. Van Oirschot, J.T., 2003. Vaccinology of classical swine fever: from lab to field. Vet. Microbiol. 96, 367-384. Van Oirschot, J.T., De Jong, D., Huffels, N.D., 1983. Effect of infections with swine fever virus on immune functions. II. Lymphocyte response to mitogens and enumeration of lymphocyte subpopulations. Vet. Microbiol. 8, 81-95. Van Oirschot, J.T., Terpstra, C.A., 1977. A congenital persistant swine fever infection. I. Clinical and virological observations. Vet. Microbiol. 2, 121-132. Van Rijn, P.A., 2007. A common neutralizing epitope on envelope glycoprotein E2 of different pestiviruses: implications for improvement of vaccines and diagnostics for classical swine fever (CSF)? Vet. Microbiol. 125, 150-156. Van Rijn, P.A., Miedema, G.K.M., Wensvoort, G., Van Gennip, H.G.P., Moormann, R.J.M., 1994. Antigenic structure of envelope glycoprotein E1 of hog cholera virus. J. Virol. 68, 3934-3942. Volkman, L.E., Summers, M.D., 1977. Autographa californica nuclear polyhrdrosis virus: comparative infectivity of the occluded, alkali-liberated, and nonoccluded forms. J. Invertebr. Pathol. 30, 102-103. Wang, Y., Xiao, M., Chen, J., Zhang, W., Luo, J., Bao, K., Nie, M., Li, B., 2007. Mutational analysis of the GDD sequence motif of classical swine fever virus RNA-dependent RNA polymerases. Virus Genes 34, 63-65. Warrener, P., Collett, M.S., 1995. Pestivirus NS3 (p80) protein prossesses RNA helicase activity. J. Virol. 69, 1720-1726. Weesendorp, E., Stegeman, A., Loeffen, W.L., 2009. Quantification of classical swine fever virus in aerosols originating from pigs infected with strains of high, moderate or low virulence. Vet. Microbiol. 135, 222-230. Wensvoort, G., Bloemraad, M., Terpstra, C., 1988. An enzyme immunoassay employing monoclonal antibodies and detecting specifically antibodies to classical swine fever virus. Vet. Microbiol. 17, 129-140. Windisch, J.M., Schneider, R., Stark, R., Weiland, E., Meyers, G., Thiel, H.J., 1996. RNase of classical swine fever virus: biochemical characterization and inhibition by virus-neutralizing monoclonal antibodies. J. Virol. 70, 352-358. Wu, C.W., Chien, M.S., Liu, T.Y., Lin, G.J., Lee, W.C., Huang, C., 2011. Characterization of the monoclonal antibody against classical swine fever virus glycoprotein Erns and its application to an indirect sandwich ELISA. Appl. Microbiol. Biotechnol. 92, 815-821. Xiao, M., Bai, Y., Xu, H., Geng, X., Wang, Y., Chen, J., Li, B., 2008. Effect of NS3 and NS5B proteins on classical swine fever virus internal ribosome entry site-mediated translation and its host cellular translation. J. General. Virol. 89, 994-999. Xiao, M., Zhang, C.Y., Pan, Z.S., Wu, H.X., Guo, J.Q., 2002. Classical swine fever virus NS5B-GFP fusion protein possesses an RNA-dependent RNA polymerase activity. Arch. Virol. 147, 1779-1787. Xu, J., Mendez, E., Caron, P.R., Lin, C., Murcko, M.A., Collett, M.S., Rice, C.M., 1997. Bovine viral diarrhea virus NS3 serine proteinase: polyprotein cleavage sites, cofactor requirement, and molecular model of an enzyme essential for pestivirus replication. J. Virol. 71, 5312-5322.
摘要: 豬瘟病毒 (classical swine fever virus) 屬於黃病毒科 (Flaviviridae) 瘟疫病毒屬 (Pestivirus),為豬隻重要法定傳染性病原之一,可導致產業嚴重之經濟損失。酵素連結免疫吸附法 (enzyme-linked immunosorbent assay, ELISA) 為目前現場普遍使用之抗體檢測方法,而針對豬瘟之 ELISA 診斷試劑可區分為檢測 E2 與 Erns 抗體兩種,前者可作為疫苗免疫效力與免疫適期之評估;而後者則可搭配使用 E2 次單位疫苗之豬群進行檢測,一旦豬隻受到野外毒感染時,可利用 Erns 抗體呈現與否,來區別免疫 E2 次單位疫苗或是被感染之豬群,以篩選出野外毒感染個體進行淘汰,而達到清淨之目的。因此本實驗嘗試將豬瘟病毒 LPC strain 之 Erns 序列轉殖入昆蟲桿狀病毒載體,並以懸浮性培養方式將轉殖病毒感染昆蟲細胞大量表現重組蛋白 (BacErns),再經濃縮與純化等步驟,最後以西方墨點法證實其抗原性,並具完整醣基化結構。於間接型 ELISA 的製備上,先以棋盤格 (checkerboard) 模式檢測 ELISA 最佳化條件,經以每孔以加入適當之抗原濃度塗鍍,再以血清稀釋樣本進行檢測,較可得到最精確與一致性之結果。進一步選取 E2 次單位疫苗免疫組、免疫攻毒組及對照組之 SPF 豬隻血清,與免疫 LPC 活毒疫苗之商用豬隻等不同血清樣本進行檢測,結果顯示若以桿狀病毒表現重組 Erns 塗鍍之間接型 ELISA,其敏感性為 85.6% (77/90),特異性為 91.3% (21/23)。此外,本試驗也另嘗試於檢測過程中加入 Erns 特異性單株抗體,並製備間接競爭型 ELISA來增加檢測時之敏感性與特異性。經由最佳化條件測試後,分別以適當濃度之重組蛋白塗鍍,再以適當濃度之單株抗體混合稀釋待測血清製備競爭反應,實驗結果顯示競爭型 ELISA 具備低成本與操作便利等特性,可應用於使用 E2 次單位疫苗免疫豬群,篩選出野外毒感染豬隻,以達到豬瘟清淨的目的。
Classical swine fever (CSF) is a highly contagious disease causing major losses in pig populations almost worldwide. Enzyme-linked immunosorbent assays (ELISA) is one of the most commonly used tests for detection of specific antibody titer in sera. ELISAs for the detection of antibodies against the viral E2 glycoprotein of CSFV are widely used for monitoring of immunized efficacy after vaccination and/or infection. Besides, Erns ELISA can be designated as a companion test to screen either CSFV infected or vaccinated pigs via immunization of E2 subunit marker vaccines in swine population. In this experiment, recombinant subunit Erns protein based on the genome of attenuated CSFV (LPC strain) was cloned and expressed with baculovirus expression system. The baculovirus-expressed Erns (BacErns) indicated to retain the authentic antigenicity of CSFV Erns with appropriate conformation and glycosylation after concentration and purification. In addition, a checkerbroad model of applying with 50 μL of coating antigen and detected sera were assessed to determine the optimum condition for further BacErns-based indirect ELISA. Positive and negative control sera, including samples from mock SPF pigs, SPF pigs immunized with LPC or E2 subunit vaccines, or immunized pigs and challenged with CSFV, were selected to evaluate the sensitivity and specificity. The result showed the sensitivity of 85.6% (77/90) and specificity of 91.3% (21/23) respectively in this established indirect ELISA diagnostic assay. Moreover, monoclonal antibody against yeast-expressed Erns was utilized to perform an indirect competitive ELISA to elevate the sensitivity and specificity for detection. After applying with 100 μL of monoclonal antibody competed with diluted detected sera on an optimal by adding 100 μL of coating BacErns showed the most significant effect in indirect competitive ELISA. The results indicated BacErns-based indirect competitive ELISA may provide a more accurate with low cost and easy manipulation system for massive screening to discriminate vaccinated or CSFV infected pigs in the field.
URI: http://hdl.handle.net/11455/15260
其他識別: U0005-0507201222163600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0507201222163600
Appears in Collections:獸醫病理生物學所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.