Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/15268
標題: 丁壩流場邊界效應之數值模擬研究
Numerical Simulation of Boundary Effects on the Groyne flow
作者: 王永興
Wang, Yung-Hsing
關鍵字: Finite Element Method
有限元素法
Groyne
mesh relocation
No-slip Boundary Condition
丁壩
網格調整
無滑移邊界條件
出版社: 土木工程學系所
引用: 1.中國土木水利工程學會(1995),“治河與防洪”,科技圖書股份有限公司,pp.73-90。 2.中華民國水土保持學會編印(1996),“水土保持技術規範”,pp.185-186。 3.石佳弘(1998),“多重網格法在連續障礙物流場中之應用”,國立中興大學土木工程研究所碩士論文。 4.林輝燿(1994),“多重網格分析法在黏性流體之應用”,國立中興大學土木工程研究所碩士論文。 5.原著者:C. Taylor and T. G. Hughes, 譯述者:蔡武原 (1988),“有限元素程式解Navier-Stokes方程式”,科技圖書股份有限公司。 6.高偉騰(1996),“沖積河流底床演變二維模擬之研究”,國立成功大學水利及海洋工程研究所碩士論文。 7.徐義人(1995),“應用水文學”,pp.272,大中國圖書公司。 8.許中杰,巫唐宏(1990),“深度平均二維性正交側入明渠流數值模式”,第五屆水利工程研討會論文集,pp.319-325。 9.許銘熙,吳瑞濱(1993),“河川二維流場水理之模擬”,臺灣水利季刊,第41卷,第1期,pp.18-29。 10.張益家(2005),“二維彎道動床模式之發展研究”,國立交通大學土木工程研究所碩士論文。 11.陳漢克(2001),“多重網格法於丁壩流場剪應力及沖刷之應用”,國立中興大學土木工程研究所碩士論文。 12.董耀生(1993),“有限元素法網格自動調整技巧之探討”,國立中興大學土木工程研究所碩士論文。 13.廖德滄(1990),“有限元素法格點調整技巧之應用”,國立中興大學土木工程研究所碩士論文。 14.廖克燦(2001),“圓柱橋墩周圍二維流場之數值模擬”,逢甲大學土木及水利工程研究所碩士論文。 15.蔡智恆,蔡長泰(1999),“水深平均二維明渠變量流有限元素模式之研究”,臺灣水利季刊,第47卷,第3期,pp.22-33。 16.鄭志斌(2000),“有限元素法於丁壩流場的應用”,國立中興大學土木工程研究所碩士論文。 17.Biglari Bahram and Terry W. Sturm (1998),“Numerical modeling of flow around bridge abutments in compound channel.”, J. Hydr. Eng., ASCE, 124(2), 156-164. 18.Durst, F. and Rastogi, A. k. (1981), “Turbulent flow over two-dimensional fences.”, Proc., Int. Symp. on Turbulent Shear Flows, Univ. of California, Davis, Calif., 218-232. 19.Francis, J. R.; Pattanicd, A. and Wearne, S. (1968), “Observations of flow patterns around some simplified groyne structures in channels.”, Technical Note No. 8, Proc., Inst. of Civil Engineers, London, England, Dec., 829-846. 20.H. C. Lien; T. Y. Hsieh; J. C. Yang and K. C. Yeh (1999),“Bend-flow simulation using 2D depth-averaged model.”, J. Hydr. Eng., ASCE, 125(10), 1097-1999. 21.Herbert F. Wang and Mary P. Anderson (1981), “Introduction to Groundwater Modeling—Finite Difference and Finite Element Methods”, The Maple-Vail Book Manufacturing Group. 22.Y. S. Li and J. M. Zhan (1998),“Three-dimensional finite-element model for stratified coastal seas.”, J. Hydr. Eng. ASCE, 124(7), 699-715. 23.Nallamuthu Rajaratnam and Benjamin A. Nwachukwu (1983), “Flow near groin-like structures.”, J. Hydr. Eng. ASCE, 109(3), 463-480. 24.Nobuhisa Nagata; Takashi Hosoda; Tatsuaki Nakato and Yoshio Muramoto (2005),“Three-dimensional numerical model for flow and bed deformation around river hydraulic structures.”, J. Hydr. Eng., ASCE, 131(12), 1074-1087. 25.R. Mayerle; F. M. Toro and S. S. Wang (1995), “Verification of a three-dimensional numerical model simulation of the flow in the vicinity of spur dikes.”, Journal of Hydraulic Research, 33(2), 234-256. 26.Sylvain Ouillon and Denis Dartus (1997),“Three-dimensional computation of flow around groyne.”, J. Hydr. Eng., ASCE, 123(11), 962-970. 27.Tawatchai Tingsanchali and Selvaratnam Maheswaran (1990),“2-D depth-averaged flow computation near groyne.”, J. Hydr. Eng., ASCE, 116(1), 71-86. 28.Thomas Molls and M. Hanif Chaudhry (1995),“Depth-averaged open-channel flow model.”, J. Hydr. Eng., ASCE, 121(6), 453-465. 29.Tarek M. Salaheldin; Jasim Imran and M. Hanif Chaudhry (2004),“Numerical modeling of three-dimensional flow field around circular piers.”, J. Hydr. Eng., ASCE, 130(2), 91-100. 30.Victor M. Ponce and Steven B. Yabusaki (1981), “Modeling circulation in depth-averaged flow.”, J. Hydr. Div., ASCE, 1501-1518.
摘要: 本研究是以有限元素法模擬求解二維、穩定、不可壓縮的黏性紊流流場。首先將水深平均連續方程式與動量方程式轉換成有限元素模式,進行數值模擬的運算。由於元素大小不同及格點位置分布未能符合局部精度的需求,導致演算的誤差,利用均方根誤差範數的定義,估算出每一個元素在求解過程中所產生的誤差,並根據此誤差量進行網格調整。網格調整的方式採用r型網格調整,即在不增加元素數目與不提高元素形狀函數的自由度之條件下,重新分配元素大小及格點的位置,期望能調整至最佳的網格配置。 本研究以上述數值方法探討丁壩流場,邊界設定分別採用可滑移(free slip)邊界與無滑移(no slip)邊界進行演算,並討論均勻網格及網格自動化調整作運算之效益。為提高計算精度及效率,採用二次分區加密方式,提昇丁壩區之流場描述。數值模擬結果與前人研究的結果相比較,其無滑移邊界模式的模擬結果較趨近真實流況,並進一步應用此模式模擬探討在不同福祿數、雷諾數、曼寧係數,其對於丁壩後方迴流區域的影響。
Using the finite element method, this research simulates and solves the two-dimensional, steady, incompressible, and viscous turbulence flow. First, it changes the depth-averaged governing equation into the finite element model so as to proceed the operation of numerical simulation. In the process of the operation, arithmetic errors are made because of the side differences among elements and also because of the unfitness between the positions and distributions of nodes and the need of local accuracy. Therefore, the research uses the definition of the root-mean-square norm to estimate the errors, produced in the process of operation, of each element, and also to do the mesh relocation. In other words, to R-refinement the size and the location of each element without adding the number of elements and raising the degree of freedom of the shape function, so as to get the best mesh relocation. Centered on the groyne flow, this research uses boundary condition with free slip boundary and no slip boundary to do the operation separately, and further to discuss the results of uniform mesh and the automatic adaptive refinement. In order to raise the accuracy and the efficiency of the operation as well as the description of groyne flow field , the study uses two stages to push the mesh more densely .Then, compare the results of no slip boundary model according to the studies made before to get the identical tendency. The final step is to discuss the influences made by the Froude number, the Reynolds number, and the manning coefficient in the recirculation region of groyne.
URI: http://hdl.handle.net/11455/15268
其他識別: U0005-0908200619023300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0908200619023300
Appears in Collections:土木工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.