請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/15296
標題: 交叉拉桿對施工架支撐能力之影響
Influence of Cross Braces on Scaffolding
作者: 陳其民
Chen, Chi-Min
關鍵字: Scaffolding
施工架
Cross braces
Full scale tests
Numerical analysis
交叉拉桿
實體試驗
數值分析
出版社: 土木工程學系所
引用: 1.陳瀛洲,“從營造災變資料資及現場實務調查探討我國營造職業災害之特質”,國立中興大學碩士論文,1991年6月。 2.中國國家標準(CNS)總號4750,類號A2067( 鋼管鷹架)。 3.中國國家標準(CNS)總號 2857,類號A1009 (營建業架設工程標準)。 4.中國國家標準(CNS)總號4751,類號A3079(鋼管鷹架檢驗法)。 5.行政院勞委會,“營造安全衛生設施標準”,行政院勞工委員會: 52pp,1994。 6.“建築技術規則-建築設計施工編”,內政部營建署,1994。 7. “臨時架設物安全設施構造及試驗相關基準”行政院勞工委員會勞工安全衛生研究所,台北,1997年8月。 8.呂良正,高健章,楊永斌,黃偉熙,黃木源,鄒慶暉,吳世雄,林楨中,“鋼管鷹架之承載力及頻率量測研究”,行政院勞工委員會勞工安全衛生研究季刊, 1997。 9.呂良正,楊永斌,高健章,黃偉熙,黃木源,黃仲偉,“營建災害預警技術研究-模板倒塌預警系統安全指標之確定”,行政院勞工委員會勞工安全衛生研究所,IOSH85-S 126,臺北,1996。 10.楊永斌,高健章,張國緯,范清舜,“模板工程倒塌預警系統之開發研究-預警訊號之分析與研判技術”,行政院勞工委員會勞工安全衛生研究所,研究計劃報告,1995。 11.楊永斌,高健章,呂良正,張國緯,吳世雄,杜偉民,“模板倒塌預警系統研究-模板支撐架縮小模型之自然頻率量測及理論分析”,行政院勞工委員會勞工安全衛生研究季刊, 1995。 12.高健章,“國內鋼管鷹架使用現況安全之探討”,財團法人台灣 營建研究中心,1983。 13.Jan,T.S.,“General Instability of Scaffolds”International Conference on Structural Analysis Failure ,Singapore, 1987. 14.Jan,T.S., and Lee, M.Z.,“Piping System Buckling Analysis”,Journal of Nuclear Engineering and Design,July,1984. 15.Peng, J.L., Chan, S.L., and Wu, C.L., “Effects of geometrical shape and incremental loads on scaffold systems,” Journal of Constructional Steel Research, July, 2006. 16.Pan, C.L., and Peng, J.L., “performance of Cold-Formed Steel Wall Frames under Compression,” Steel & Composite Structures, Vol. 5, No. 5, pp.407-420, October, 2005. 17.Peng, J.L., “Structural Modeling and Design Considerations for Double-layer Shoring Systems,” Journal of Construction Engineering and Management, ASCE, Vol. 130, No. 3, pp.368-377, June, 2004. 18.Peng, J.L., Wu, C.L., and Chan, S.L., “Sequential Pattern Load Modeling and Warning-System Plan in Modular Falsework,” Structural Engineering and Mechanics, Vol. 16, No. 4, pp.441-468, October, 2003. 19.Peng, J.L., “Stability Analyses and Design Recommendations for Practical Shoring Systems during Construction,” Journal of Construction Engineering and Management, ASCE, Vol. 128, No. 6, pp.536-544, December, 2002. 20.Peng, J.L., Pan, A.D.E., and Chen, W.F., “Approximate Analysis Method for Modular Tubular Falsework,” Journal of Structural Engineering, ASCE, Vol. 127, No. 3, pp.256-263, March, 2001. 21.Peng, J.L., Pan, A.D.E., and Chan, S.L., “Simplified Models for Analysis and Design of Modular Falsework,” Journal of Constructional Steel Research (Special Issue on Nonlinear Behaviour and Design of Steel Frames and Members), Vol. 48, No. 2/3, pp.189-209, November-December, 1998. 22.Peng, J.L., Rosowsky, D.V., Pan, A.D.E., Chen, W.F., and Chan, S.L., “Simplified Modeling and Analysis of Pattern Loading Effects on Shoring Systems During Construction,” Advances in Structural Engineering, Vol. 1, No. 3, pp.203-218, April, 1998. 23.Peng, J.L., Pan, A.D.E., Chen, W.F., Yen, T., and Chan, S.L., “Structural Modeling and Analysis of Modular Falsework Systems,” Journal of Structural Engineering, ASCE, Vol. 123, No. 9, pp.1245-1251, September, 1997. 24.Chan, S.L., Zhou, Z.H., Chen, W.F., Peng, J.L., and Pan, A.D., “Stability Analysis of Semirigid Steel Scaffolding,” Engineering Structures, Vol. 17, No. 8, pp.568-574, September, 1995. 25.Huang, Y.L., “Gravity Load and Resistance Factor Design Guidelines for High Clearance Scaffold Systems,” Ph.D. Dissertation, Purdue University, West Lafayette, IN., 217pp., 1995. 26.Peng, J.L., “Analysis Models and Design guidelines for High-Clearance Scaffold Systems,” Ph.D. Dissertation, Purdue University, West Lafayette, IN., 330pp., 1994. 27.Peng, J.L., Yen, T., Lin, I., Wu, K.L., and Chen, W.F., “Performance of scaffold Frame Shoring Under Pattern Loads and Load Paths,” ASCE Construction Engineering and Management Journal, Vol. 123, No. 2, pp.138-145, June, 1997. 28.Peng, J.L., Pan, A.D., Rosowsky, D.V., Chen, W.F., Yen, T., and Chan, S.L., “High Clearance Scaffold Systems During Construction, Part I: Structural Modeling and Modes of Failure,” Engineering Structures, Vol. 18, No. 3, pp.247-257, March, 1996. 29.Peng, J.L., Rosowsky, D.V., Pan, A.D., Chen, W.F., Chan, S.L., and Yen, T., “High Clearance Scaffold Systems During Construction, Part II: Structural Analysis and Development of Design Guidelines,” Engineering Structures, Vol. 18, No. 3, pp.258-267, March, 1996. 30.Peng, J.L., Rosowsky, D.V., Pan, A.D., Chen, W.F., and Yen, T., “Analysis of Concrete Placement Load Effects Using Influence Surfaces,” ACI Structural Journal, V. 93, No. 2, pp.180-186, March-April, 1996. 31.Rosowsky, D.v., Huston, D., Fuhr, P., and, Chen, W.F., “Measuring Formwork Loads during Construction,” Concrete International, Nov., pp.21-25, 1994. 32.Rosowsky, D.V., Huang, Y.L., Chen, W.F., and, Yen, T., “Modeling Concrete Placement Loads during Construction,” Structural Engineering Review, Vol. 6, No. 2, pp.71-84, 1994. 33.林宜清,彭瑞麟,何崇銘,林宏坤,“鋼索補強對鋼管鷹架與木支撐聯合系統承載力影響之試驗研究”,建築學報,2006。 34.彭瑞麟,潘吉齡,黃培松,“營建工程鋼管施工架結構承載力之探討”,中國土木水利工程學刊,第十六卷,第三期,第425-435頁,2004.09。 35.彭瑞麟,顏聰,郭清吉,“由大岡山北嶺加壓站配水池工程模板支撐倒塌檢討棚架式模板支撐之安全性”,勞工安全衛生研究季刊,第十卷,第三期,pp.252-271,2002.09。 36.顏聰,彭瑞麟,林宜清,黃玉麟,陳豪吉,施一鳴,“我國框式鋼管施工架檢定制度之研究”,勞工安全衛生研究季刊,第十卷,第二期,pp.127-139,2002.06。 37.彭瑞麟,顏聰,施一鳴,“營造鋼管施工架宖途及破壞之初步探討”,勞工安全衛生研究季刊,第九卷,第三期,第335-355頁,2001.09。 38.顏聰,彭瑞麟,林宜清,陳豪吉,耿彥偉,“鷹架模板支撐系統使用木支撐之承載力”,中國土木水利工程學刊,第十一卷,第一期,第55-65頁,1999.03。 39.顏聰,彭瑞麟,陳惠發,潘德恩,陳紹禮,“鋼管鷹架之應用及其模板支撐破壞模式之探討”,營建知訊,158期,pp.13-22,1996.03。 40.顏聰,彭瑞麟,林宜清,陳惠發,潘德恩,“鋼管鷹架模板支撐使用現況與安全要求”,營建知訊,155期,pp32-43,1995.12。 41.顏聰,陳惠發,林建宏,郭其珍,朱明信,林宜清,黃玉麟,陳豪吉,Rosowsky, D.V.,Pan, A.D.,黃傳欣等,“營造工程各種木材模板支撐材質強度及施工自動檢查技術研究”,行政院勞工委員會,台北,1994年6月。 42.顏聰,陳惠發,林宜清,黃玉麟,陳豪吉,彭瑞麟等,“模板支撐倒塌預警系統—鋼管架與木材支撐之互制影響及倒塌預警系統之建立”,行政院勞工委員會,IOSH84-S121,台北,1995年6月。 43.林宜清,顏聰,黃玉麟,陳豪吉,彭瑞麟,“行政院勞工委員會委託研究報告—鋼管鷹架施工安全規範”,行政院勞工委員會,台北,1995年6月。 44.顏聰,黃玉麟,紀人超,林宜清,陳惠發,“鋼管鷹架支撐能力之探討”,中國土木水利工程學刊,第八卷,第一期,pp.33-42,1996。 45.顏聰,林宜清,黃玉麟,彭瑞麟,蔡慰龍,“鋼管鷹架模板支撐在偏心載重作用下之承載力”,中國土木水利工程學刊,第九卷,第四期, pp.655-663,1997 。 46.顏聰,林宜清,黃玉麟,陳豪吉,蔡慰龍,巫昆霖,彭瑞麟, 陳惠發,“鋼管支撐架承受非對稱荷重及側向位移之研究”,勞工安全衛生研究季刊,第三卷,第一期, pp.5-69,1995。 47.黃玉麟、林樹根、陳豪吉、單一凡,“台灣鋼管門型鷹架最佳形狀研究”,興大工程學刊,第十一卷,第三期,pp.25-38,2000。 48.Yue-Lin Huang, Wei-Fah Chen, Tsong Yen, How-Ji Chen, and Yu-Ghian Kao, Dec., “A Monitoring Method for Scaffold-frame Shoring Systems for Elevated Concrete Formwork,” Computers & Structures, Vol. 78, No. 5, pp. 681-690, 2000. (SCI, EI)。 49.林穎,“我國營造工程假設構造物(框式鋼管施工架)檢驗技術暨檢定制度之研究”,國立中興大學土木工程研究所碩士論文,1999年6月。 50.陳昭仁,“台灣鋼管鷹架支撐能力改良方式之探討與建議”,國立中興大學土木工程研究所碩士論文,2002年6月。 51.王仁昭, “施工架支撐能力探討”,國立中興大整土木工程研究所碩士論文,2002年6月。 52.黃培松,“鋼管施工架之使用安全評估及承載力之探討”,私立朝陽科技大學營建工研究所碩士論文,2001年6月。 53.El-Sheikh, M. and W.F. Chen, “Maximum Probability Shore Load in Multistory R.C. Building”,Computers & Structures ,pp1347-1357, 1989. 54.Masalam, K.H. and Chen, W.F.,“Determining Shoring Load for Reinforced Construction”,ACI Structural Journal , May-June, pp.340 -350,1991. 55.Masallam, K.H. and Chen, W.F.,“Construction Load Distributions for Laterally Braced Formwork”,ACI Structural Journal, July-August, pp.412-424,1992. 56. Duan , L. and Chen, W.F.“ Effective Length Factor for Columns in Unbranced Frames” ,Journal of Structural Engineering, ASCE, Vol.115, No.1, pp.149-165,1989. 57.El-Shahhat, A.M. Rosowsky, D.V., and Chen, W.F.“Construction Safety of Multistory Concrete Buildings”,ACI Structural Journal,July -August, Vol.90,No4,pp.335-341,1993. 58.Grant,M., “Scaffold Falsework Design,” Wexham Springs, English: Cement and Concrete Association, 1978. 59.Brand, R.E., “Falsework and Access Scaffolds in Tubular Steel,” London; New York: Mcgraw-Hill, 1975. 60.Peuritoy,R.L., “Formwork for Concrete Structures,” New York; Mcgraw-Hill, 1976. 61.Richardson, J.G., “Fromwork Construction and Practice,” Slough: Cement and Concrete Association; Flushing: Scholium International Inc., Distributor in the U.S.A., 1977. 62.Gill, H.R., “Concrete formwork Designer’s handbook,” London, Concrete Publications, 1960. 63.Richardson, J.G., “Formwork Notebook,” London, Cement and Concrete Association, 1970. 64.AMERICAN NATIONAL STANDARDS INSTITUTE, “American National Standard for Construction and demolition Operations: Scaffolding-safety Requirements (ANSI A10.8 ~ 1988),” American National Standards Institute, New York, 1988. 65.AMERICAN NATIONAL STANDARDS INSTITUTE, “American National Standard for Construction and Demolition Operations: Concrete and Masonry Work-Safety Requirements (ANSI 10.9 ~ 1983),” American National Standards Institute, New York, 1983. 66.UNITED STATES DEPARTMENT OF LABOR, Occupational Safety and Health Administration, Occupational Safety and Health Standard (Part 1910 & 1926), United States Department of Labor, Washington, D.C., 1974. 67.Canadian Standards Association-S269.1, “Falsework for Construction Purposes,” 1975. 68.行政院勞工委員會, “加拿大安大略省營造安全衛生設施標準” ,勞工安全衛生叢書 02-02-01,1993年12月。 69.JAPAN SOCIETY OF CIVIC ENGINEERS, “Standard Specification for Design and Construction of Concrete Structures-Part 2 (Construction),” Japan Society of Civil Engineers, Tokyo, 1986.
摘要: 工地現場之施工鷹架系統,常常為了施工方便會拆除部份交叉拉桿,本研究即在探討拆除交叉拉桿對於施工架支撐能力之影響,本文以數值分析模擬與實體試驗兩種方式進行研究,主要探討其承載力和破壞模式兩種特性。 實體試驗皆以雙排三層之鷹架試體進行加載,本研究規劃六組不同交叉拉桿組裝方式之施工架,其試體編號分別為F3R3、F2R3、F1R3、F0R3、F2R2及F1R1。而數值分析方面除建立以上六組實體試驗之模型外,另建立多排三層施工架系統,以探討複雜結構系統中之變化關係。 研究結果顯示,數值分析與實體試驗之研究結果相當符合,均顯示交叉拉桿都沒有拆除之標準型施工架F3R3,其承載力為最大,隨著交叉拉桿之逐漸拆除,其承載力也跟著逐漸降低,其中試體以F0R3和F1R1降幅最大,分別折減了30~35%與52~60%。另外,數值分析中之多排三層施工架系統,其荷重能力隨排數增加而呈一定比例線性遞增,本文以遞增坡度代表施工架系統之穩定程度,其中以(F3R3、F2R3、F1R3及F2R2)施工架之穩定度最好,而(F0R3與F1R1)施工架之穩定程度就明顯變差。
In a scaffolding system in the field, some of cross braces are often removed for the convenience of laboring. The purpose of this research is to investigate the influence of the removal of cross braces on the scaffolding systems. This paper studied this subject through both numerical analysis and test methods mainly to check the loading capacities and failure modes of the scaffolding systems. Full scale tests were performed in the form of two-row, three-story scaffolding systems. This research planned six different types of cross brace combinations named F3R3, F2R3, F1R3, F0R3, F2R2, and F1R1 for tests. In addition to these six types, multi-row, three-story scaffolding systems were modeled for numerical analysis to check their variations. The research results show that the numerical analysis results quite match the test results. The standard scaffolding type of F3R3 with full cross braces has the largest loading capacity. With more removal of the cross braces, the loading capacity becomes smaller. Types of F0R3 and F1R1 have the smallest loading capacities which are 30~35% and 52~60% less than the standard type respectively. In addition, the loading capacities of multi-row, three-story scaffolding systems increase at a constant linear rate with the increase of the row number. This paper adopts the linear slopes to stand for the stability of scaffolding systems. They indicate that types of F3R3, F2R3, F1R3, and F2R2 have the best stability while types of F0R3 and F1R1 have obviously worse stabilities.
URI: http://hdl.handle.net/11455/15296
其他識別: U0005-1608200615135700
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1608200615135700
顯示於類別:土木工程學系所

文件中的檔案:
沒有與此文件相關的檔案。
顯示文件完整紀錄
 
TAIR 相關文章
 
Citations:


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。