Please use this identifier to cite or link to this item:
標題: 不同毒力之豬瘟病毒對於肺泡巨噬細胞及周邊血液淋巴細胞感染之細胞凋亡訊號表現
Expression of Apoptotic Signals Mediated by Different Virulent Classical Swine Fever Virus Infected Pulmonary Alveolar Macrophages and Peripheral Blood Lymphocytes
作者: 林家鈺
Lin, Chia-Yu
關鍵字: 豬瘟病毒
出版社: 獸醫病理生物學研究所
引用: 王金順。豬瘟病毒之免疫抑制現象。碩士論文。國立中興大學。獸醫學研究所。台中市。台灣。1997。 黃億銘。利用流式細胞儀及Time-resolved fluorometer建立非放射性細胞毒殺作用分析法及豬瘟病毒感染與毒殺細胞交互關係之探討。碩士論文。國立中興大學。獸醫學研究所。台中市。台灣。1999。 陳筱青。豬瘟病毒對單核球衍生之巨噬細胞的表現型及功能影響。碩士論文。國立中興大學。獸醫病理學研究所。台中市。台灣。2003。 蔡佳錚。豬瘟持續污染場豬瘟病毒基因序列與毒力之變異性。碩士論文。國立中興大學。獸醫病理學研究所。台中市。台灣。2007。 謝獲光。以real time PCR檢測潛在性弱毒豬瘟病毒感染後在組織之分布。碩士論文。國立中興大學。獸醫病理生物學研究所。台中市。台灣。2008。 Abbas AK, Lichtman AH, and Pober JS. Congenital and acquired immunodeficiencies. In: Cellular and molecular immunology, 4th ed. W. B. Saunders Company Press, New York, 445-467, 2000. Abbas AK and Lichtman AH. Immunity to microbes. In: Cellular and molecular immunology, 5th ed. Saunders, Philadelphia, 345-366, 2003. Alcami A and Koszinowski UH. Viral mechanisms of immune evasion. Immunol. Today 21: 447-455, 2000. Alcami A. Viral mimicry of cytokines, chemokines and their receptors. Nat. Rev. Immunol. 3: 36-50, 2003. Alvarez E, Menendez-Arias L, and Carrasco L. The eukaryotic translation initiation factor 4GI is cleaved by different retroviral proteases. J. Virol. 77: 12392-12400, 2003. Armengol E, Wiesmuller KH, Wienhold D, Buttner M, Pfaff E, Jung G, and Saalmüller A. Identification of T-cell epitopes in the structural and non-structural proteins of classical swine fever virus. J. Gen. Virol. 83: 551-561, 2002. Balachandran S, Roberts PC, Brown LE, Truong H, Pattnaik AK, Archer DR, and Barber GN. Essential role for the dsRNA-dependent protein kinase PKR in innate immunity to viral infection. Immunity 13: 129-141, 2000a. Balachandran S, Roberts PC, Kipperman T, Bhalla KN, Compans RW, Archer DR, and Barber GN. Alpha/beta interferons potentiate virus-induced apoptosis through activation of the FADD/Caspase-8 death signaling pathway. J. Virol. 74: 1513-1523, 2000b. Barouch DH and Letvin NL. CD8+ cytotoxic T lymphocytes responses to lentiviruses and herpesviruses. Curr. Opin. Immunol. 13: 479-482, 2001. Basler CF and Garcia-Sastre A. Virus and the type I interferon antiviral system: induction and evasion. Int. Immunol. 21: 305-337, 2002. Bauhofer O, Summerfield A, McCulloughn KC, and Ruggli N. Role of double-stranded RNA and Npro of classical swine fever virus in the activation of monocyte-derived dendritic cells. Virology 343: 93-105, 2005. Bauhofer O, Summerfield A, Sakoda Y, Tratschin JD, Hofmann MA, and Ruggli N. Npro of classical swine fever virus interacts with interferon regulatory factor 3 and induces its proteasomal degradation. J. Virol. 81: 3087-3096, 2007. Becher P, Orlich M, Kosmidou A, Konig M, Baroth M, and Thiel HJ. Genetic diversity of pestiviruses: Identification of novel groups and implications for classification. Virology 262: 64-71, 1999. Bendfeldt S, Ridpath JF, and Neill JD. Activation of cell signaling pathways is dependant on the biotype of bovine viral diarrhea viruses type 2. Virus Res. 126: 96-105, 2007. Bensaude E, Turner JLE, Wakeley PR, Sweetman DA, Pardieu C, Drew TW, Wileman T, and Powell PP. Classical swine fever virus induces proinflammatory cytokines and tissue factor expression and inhibits apoptosis and interferon synthesis during the establishment of long-term infection of porcine vascular endothelial cells. J. Gen. Virol. 85: 1029-1037, 2004. Bonina L, Nash AA, Arena A, Leung KN, and Wildy P. T cell-macrophage interaction in arginase-mediated resistance to herpes simplex virus. Virus Res. 1: 501-505, 1984. Boucher JL, Moali C, and Tenu JP. Nitric oxide biosynthesis, nitric oxide synthase inhibitors and arginase competition for L-arginine utilization. Cell Mol. Life Sci. 55: 1015-1028, 1999. Bouma A, De Smit AJ, De Kluijver EP, Terpstra C, and Moormann RJ. Efficacy and stability of a subunit vaccine based on glycoprotein E2 of classical swine fever virus. Vet. Microbiol. 66: 101-114, 1999. Bouma A, De Smit AJ, De Jong MCM, De Kluijver EP, and Moormann RJ. Determination of the onset of the herd-immunity induced by the E2 subunit vaccine against classical swine fever virus. Vaccine 18: 1374-1381, 2000. Bowie AG and Fitzgerald KA. RIG-I: tri-ing to discriminate between self and non-self RNA. Trends Immunol. 28: 147-150, 2007. Bruschke CJM, Hulst MM, Moormann RJM, van Rijn PA, and van Oirschot JT. Glycoprotein Erns of Pestiviruses induces apoptosis in lymphocytes of several species. J. Virol. 71: 6692-6696, 1997. Burgering BM and Medema RH. Decisions on life and death: FOXO Forkhead transcription factors are in command when PKB/Akt is off duty. J. Leukoc. Biol. 73: 689-701, 2003. Campos E, Revilla C, Chamorro S, Alvarez B, Ezquerra A, Dominguez J, and Alonso F. In vitro effect of classical swine fever virus on a porcine aortic endothelial cell line. Vet. Res. 35: 623-633, 2004. Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, Frisch S, and Reed JC. Regulation of cell death protrease caspase-9 by phosphorylation. Science 282: 1318-1321, 1998. Carr JM, Hocking H, Bunting K, Wright PJ, Davidson A, Gamble J, Burrell CJ, and Li P. Supernatants from dengue fever virus type-2 infected macrophages induce permeability changes in endothelial cell monolayers. J. Med. Virol. 69: 521-528, 2003. Carrasco CP, Rigden RC, Vincent IE, Balmelli C, Ceppi M, Bauhofer O, Tache V, Hjertner B, McNeilly F, van Gennip HG, McCullogh KC, and Summerfield A. Interactions of classical swine fever with dendritic cells. J. Gen. Virol. 85: 1633-1641, 2004. Charles A and Dinarello MD. Proinflammatory cytokines. Chest 118: 503-508, 2000. Charnsilpa W, Takhampumya R, Endy TP, Mammen MP, Jr Libraty DH, and Ubol S. Nitric oxide radical suppresses replication of wild-type dengue 2 viruses in vitro. J. Med. Virol. 77: 89-95, 2005. Chen RH, Su YH, Chuang RL, and Chang TY. Suppression of transforming growth factor induced apoptosis through a phosphatidylinositol 3-kinase/Akt-dependent pathway. Oncogene 17: 1959-1968, 1998. Cheville NF and Mengeling WL. The pathogenesis of chronic hog cholera (swine fever). Histologic, immunofluorescent, and electron microscopic studies. Lab. Invest. 20: 261-274, 1969. Choi C, Jeong E, and Benveniste EN. Caspase-1 mediates Fas-induced apoptosis and is up-regulated by interferon-gamma in human astrocytoma cells. J. Neurooncol. 67: 167-176, 2004a. Choi C, Hwang KK, and Chae C. Classical swine fever virus induces tumor necrosis factor-β-induced apoptosis through a phosphatidylinositol 3-kinase/Akt-dependent pathway. Oncogene 17: 1959-1968, 1998. Cheville NF and Mengeling WL. The pathogenesis of chronic hog cholera (swine fever). Histologic, immunofluorescent, and electron microscopic studies. Lab. Invest. 20: 261-274, 1969. Choi C, Jeong E, and Benveniste EN. Caspase-1 mediates Fas-induced apoptosis and is up-regulated by interferon-gamma in human astrocytoma cells. J. Neurooncol. 67: 167-176, 2004a. Choi C, Hwang KK, and Chae C. Classical swine fever virus induces tumor necrosis factor-α and lymphocyte apoptosis. Arch. Virol. 149: 875-889, 2004b. Claas EC and Osterhaus AD. New clues to the emergence of flu pandemics. Nat. Med. 4: 1122-1123, 1998. Clemens MJ. Initiation factor eIF2 alpha phosphorylation in stress responses and apoptosis. Prog. Mol. Subcell. Biol. 27: 57-89, 2001. Cochrane A, Orr A, Shaw ML, Mills PR, and McCruden EA. The amino acid sequence of the PKR-eIF2alpha phosphorylation homology domain of hepatitis C virus envelope 2 protein and response to interferon-alpha. J. Infect. Dis. 182: 1515-1518, 2000. Cooray S. The pivotal role of phosphatidylinositol 3-kinase-Akt signal transduction in virus survival. J. Gen. Virol. 85: 1065-1076, 2004. Cossarizza A, Baccarani-Contri M, Kalashnikova G, and Franceschi C. A new method for the cytofluorimetric analysis of mitochondrial membrane potential using the J-aggregate forming lipophilic cation 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolcarbocyanine iodide (JC-1). Biochem. Biophys. Res. Commun. 197: 40–45, 1993. Cronshaw DG, Owen C, Brown Z, and Ward SG. Activation of phosphoinositide 3-kinases by the CCR4 ligand macrophage-derived chemokine is a dispensable signal for T lymphocyte chemotaxis. J. Immunol. 172: 7761-7770, 2004. Cross DA, Alessi DR, Cohen P, Anjlkovic M, and Hemmings BA. Inhibition of glycogen synthetase-3 by insulin mediated by protein kinase B. Nature 378: 785-789, 1995. Davila S, Cariolet R, and Le Potier MF. Etude de l’influence de la virulence des souches de peste porcine classique sur l’immunopathogénécité du virus chez les suidés et sur la propagation de la maladie en zone de forte densité porcine. Journées de la Recherche Porcine 35: 375-382, 2003. de las Mulas JM, Ruiz-Villamor E, Donoso S, Quezada M, Lecocq C, and Sierra MA. Immunohistochemical detection of hog cholera viral glycoprotein 55 in paraffin-embedded tissues. J. Vet. Diagn. Invest. 9: 10-16, 1997. del Peso L, Gonzalez-Garcia M, Page C, Herrera R, and Nunez G. Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 278: 687-689, 1997. Deng MC, Huang CC, Huang TS, Chang CY, Lin YJ, Chien MS, and Jong MH. Phylogenetic analysis of classical swine fever virus isolated from Taiwan. Vet. Microbiol. 106: 187-193, 2005. Depner KR, Hinrixdhs U, Bickhardt K, Greiser-Wilke I, Pohlenz J, Moennig V, and Liess B. Influence of breed-related factors on the course of classical swine fever virus infection. Vet. Rec. 140: 107-120, 1997. Depner KR, Bouma A, Koenen F, Klinkenberg D, Lange E, De Smit JA, and Vanderhallen H. Classical swine fever (CSF) marker vaccine. Trial II. Challenge study in pregnant sows. Vet. Microbiol. 83: 107-120, 2001. Dewulf J, Laevens H, Koenen F, Mintiens K, and De Kruif A. Evaluation of the potential of dogs, cats and rats to spread classical swine fever virus. Vet. Rec. 149: 212-213, 2001. DiPerna G, Stack J, Bowie AG, Boyd A, Kotwal G, Zhang Z, Arvikar S, Latz E, Fitzgerald KA, and Marshall WL. Poxvirus protein N1L targets the I-kappaB kinase complex, inhibits signaling to NF-kappaB by the tumor necrosis factor superfamily of receptors, and inhibits NF-kappaB and IRF3 signaling by toll-like receptors. J. Biol. Chem. 279: 36570-36578, 2004. Earnshaw WC, Martins LM, and Kaufmann SH. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu. Rev. Biochem. 68: 383-424, 1999. Edwards S, Moennig V, and Wensvoort G. The development of an international reference panel of monoclonal antibodies for the differentiation of hog cholera virus from other pestiviruses. Vet. Microbiol. 29: 101-108, 1991. Edwards S, Fukusho A, Lefèvre PC, Lipowski A, Pejsak Z, Roehe P, and Westergaard J. Classical swine fever: the global situation. Vet. Microbiol. 73: 103-119, 2000. Ehrdardt C, Wolff T, Pleschka S, Planz O, Beermann W, Bode JG, Schmolke M, and Ludwig S. Influenza A virus NS1 protein-activates the PI3K/Akt pathway to mediate antiapoptosis signaling responses. J. Virol. 81: 3058-3067, 2007. Evan G and Littlewood T. A matter of life and cell death. Science 281: 1317-1322, 1998. Eves EM, Xiong W, Bellacosa A, Kennedy SG, Tsichlis PN, Rosner MR, and Hay N. Akt, a target of phosphatidylinositol 3-kinase, inhibits apoptosis in a differentiating neuronal cell line. Mol. Cell Biol. 18: 2143-2152, 1998. Fehniger TA. Acquisition of murine NK cell cytotoxicity requires the translation of a pre-existing pool of granzyme B and perforin mRNAs. Immunity 26: 798-811, 2007. Fischer U, Jänicke RU, and Schulze-Osthoff K. Many cuts to ruin: a comprehensive update of caspase substrates. Cell Death Differ. 10: 76-100, 2003. Floegel-Niesmann G. Classical swine fever (CSF) marker vaccine. Trial III. Evaluation of discriminatory ELISAs. Vet. Microbiol. 83: 121-136, 2001. Floegel-Niesmann G, Bunzenthal C, Fischer S, and Moennig V. Virulence of recent and former classical swine fever virus isolates evaluated by their clinical and pathological signs. J. Vet. Med. B. Infect. Dis. Vet. Public Health 50: 214-220, 2003. Gale JM, Tan SL, and Katze MG. Translational control of viral gene expression in eukaryotes. Microbiol. Mol. Biol. Rev. 64: 239-280, 2000. Gedey R, Jin XL, Hinthong O, and Shisler JL. Poxviral regulation of the host NF-kappaB response: the vaccinia virus M2L protein inhibits induction of NF-kappaB activation via an ERK2 pathway in virus-infected human embryonic kidney cells. J. Virol. 80: 8676-8685, 2006. Ghebrehiwet B and Peerschke EIB. The C1q-R participates in immunoregulation and signal transduction. Behring Inst. Mitt. 93: 236-240, 1993. Gómez-Villamandos JC, Ruiz-Villamor E, Bautista MJ, Quezada M, Sánchez CP, Salguero FJ, and Sierra MA. Pathogenesis of classical swine fever: renal hemorrhages and erythrodiapedesis. J. Comp. Pathol. 123: 47-54, 2000. Goodbourn S, Didcock L, and Randall RE. Interferons: cell signaling, immune modulation, antiviral response and virus countermeasures. J. Gen. Virol. 81: 2341-2364, 2000. Grummer B, Bendfeldt S, Wagner B, and Greiser-Wilke I. Introduction of the intrinsic apoptotic pathway in cells infected with cytopathic bovine virus diarrhea virus. Virus Res. 90: 143-153, 2002. Guma M, Angulo A, and Lopez-Botet M. NK cell receptors involved in the response to human cytomegalovirus infection. Curr. Top. Microbiol. Immunol. 298: 207-223, 2006. Hanson RP. Origin of hog cholera. J. Am. Vet. Med. Assoc. 131: 211, 1957. Harding HP, Zhang Y, Bertolotti A, Zeng H, and Ron D. Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol. Cell 5: 897-904, 2000. Harte MT, Haga IR, Maloney G, Gray P, Reading PC, Bartlett NW, Smith GL, Bowie A, and O''Neill LA. The poxvirus protein A52R targets Toll-like receptor signaling complexes to suppress host defense. J. Exp. Med. 197: 343-351, 2003. Harty JT, Tvinnereim AR, and White DW. CD8+ T cell effector mechanisms in resistance to infection. Annu. Rev. Immunol. 18: 275-308, 2000. Hulst MM, Westra DF, Wensvoort G, and Moormann RJM. Glycoprotein E1 of hog cholera virus expressed in insect cells protects swine from hog cholera. J. Virol. 67: 5435-5442, 1993. Ishii KJ, Coban C, Kato H, Takahashi K, Torii Y, Takeshita F, Ludwig H, Sutter G, Suzuki K, Hemmi H, Sato S, Yamamoto M, Uematsu S, Kawai T, Takeuchi O,and Akira S. A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA. Nat. Immunol. 7: 40-48, 2006. Jones TC, Hunt RD, and King NW. Introduction: cell death and tissue. In: Veterinary Pathology, 6th ed. Lippincott Williams & Wilkins, Baltimore, 1-24, 1997. Jonjić S, Babić M, Polić B, and Krmpotić A. Immune evasion of natural killer cells by viruses. Curr. Opin. Immunol. 20: 30-38, 2008. Jordan R, Wang L, Graczy TM, Block TM, and Romano PR. Replication of a cytopathic strain of bovine viral diarrhea virus activates PERK and induces endoplasmatic reticulum stress-mediated apoptosis in MDBK cells. J. Virol. 76: 9588-9599, 2002. Kaden V, Lange E, Steyer H, Bruer W, and Langner CH. Role of birds in transmission of classical swine fever virus. J. Vet. Med. B. Infect. Dis. Vet. Public Health 50: 357-359, 2003. Karre K, Ljunggren HG, Piontek G, and Kiessling R. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 319: 675-678, 1986. Kaiserlian D and Dubois B. Dendritic cells and viral immunity: friends or foes? Semin. Immunol. 13: 303-310, 2001. Kaufmann SH, Lee SH, Meng XW, Loegering DA, Kottke TJ, Henzing AJ, Ruchaud S, Samejima K, and Earnshaw WC. Apoptosis-associated caspase activation assays. Methods 44: 262-272, 2008. Kitanaka C and Kuchino Y. Caspase-independent programmed cell death with necrotic morphology. Cell Death Differ. 6: 508-515, 1999. Knoetig SM, Summerfield A, Spagnuolo-Weaver M, and McCullough KC. Immunopathogenesis of classical swine fever: Role of monocytic cells. Immunology 97: 359-366, 1999. Krammer PH. CD95''s deadly mission in the immune system. Nature 407: 789-795, 2000. Krauss G. Apoptosis. In: Biochemistry of signal transduction and regulation, 3rd ed. Wiley-VCH Verlag GmbH & Co. KGaA, Weinhein, 511-532, 2003. Kummerer BM and Meyers G. Correlation between point mutations in NS2 and the viability and cytopathogenicity of bovine viral diarrhea virus strain Oregen analyzed with an infectious cDNA clone. J. Virol. 74: 390-400, 2000. Kyriakis JM and Avruch J. Protein kinase cascades activated by stress and inflammatory cytokines. Bioessays 18: 567-577, 1996. Kyriakis JM and Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress an inflammation. Physiol. Rev. 81: 807-869, 2001. La Rocca SA, Herbert RJ, Crooke H, Drew TW, Wilemann TE, and Powell PP. Loss of interferon regulatory factor 3 in cells infected with classical swine fever virus involves the N-terminal protease, Npro. J. Virol. 79: 7239-7247, 2005. Lanier LL. NK cell recognition. Annu. Rev. Immunol. 23: 225-274, 2005. Lanier LL. Evolutionary struggles between NK cells and viruses. Nat. Rev. Immunol. 8: 259-268, 2008. Le J and Vilcek J. Tumor necrosis factor and interleukin-1: cytokines with multiple overlapping biological activities. Lab. Invest. 56: 234-248, 1987. Le Potier MF, Mesplède A, and Vannier P. Classical swine fever and other pestiviruses. In: Straw BE, Zimmerman JJ, D’Allaire S, and Taylor DJ ed. Diseases of swine, 9th ed. Blackwell Publishing, Iowa, 309-322, 2006. Lee JC, Laydon JT, McDonnell PC, Gallagher TF, Kumar S, Green D, McNulty D, Blumenthal MJ, Heys JR, and Landvatter SW. A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 372: 739-746, 1994. Lee WC, Wang CS, and Chien MS. Virus antigen expression and alterations in peripheral blood mononuclear cell subpopulations after classical swine fever virus infection. Vet. Microbiol. 67: 17-29, 1999. Lin TC and Lee CT. An overall report on the development of a highly safe and potent lapinized hog cholera virus strain for hog cholera control in Taiwan. NSC. Spec. Publ. 5: 1-44, 1981. Lodoen MB and Lanier LL. Viral modulation of NK cell immunity. Nature Rev. Microbiol. 3: 59-69, 2005. Lüthi AU and Martin SJ. The CASBAH: a searchable database of caspase substrates. Cell Death Differ. 14: 641-650, 2007. Malmgaard L. Induction and regulation of IFNs during viral infections. J. Interferon Cytokine Res. 24: 439-454, 2004. Maloney G, Schröder M, and Bowie AG. Vaccinia virus protein A52R activates p38 mitogen-activated protein kinase and potentiates lipopolysaccharide-induced interleukin-10. J. Biol. Chem. 280: 30838-30844, 2005. Mannova P and Beretta L. Activation of the N-Ras-PI3K-Akt-mTOR pathway by hepatitis C virus: control of cell survival and viral replication. J. Virol. 79: 8742-8749, 2005. Matsumoto M, Hsieh TY, Zhu N, VanArsdale T, Hwang SB, Jeng KS, Gorbalenya AE, Lo SY, Ou JH, Ware CF, and Lai MC. Hepatitis C virus core protein interacts with the cytoplasmic tail of lymphotoxin-β receptor. J. Virol. 71: 1301-1309, 1997. Mauël J, Ransijn A, Corradin SB, and Buchmüller-Rouiller Y. Effect of PGE2 and of agents that raise cAMP levels on macrophage activation induced by IFN-gamma and TNF-alpha. J. Leukoc. Biol. 58: 217-224, 1995. Mayer D, Hofmann MA, and Tratschin JD. Attenuation of classical swine fever virus by deletion of the viral Npro gene. Vaccine 22: 317-329, 2004. Meyers G and Thiel HJ. Molecular characterization of pestiviruses. Advances in virus research. 47: 53-118, 1996. Miller DM, Rahill BM, Boss JM, Lairmore MD, Durbin JE, Waldman JW, and Sedmak DD. Human cytomegalovirus inhibits major histocompatibility complex class II expression by disruption of the Jak/Stat pathway. J. Exp. Med. 187: 675-683, 1998. Mittelholzer C, Moser C, Tratschin JD, and Hofmann MA. Analysis of classical swine fever virus replication kinetics allows differentiation of highly virulent from avirulent strains. Vet. Microbiol. 74: 293-308, 2000. Mizutani T, Fukushi S, Saijo M, Kurane I, and Morikawa S. Importance of Akt signaling pathway for apoptosis in SARS-CoV-infected Verp E6 cells. Virology 327: 169-174, 2004a. Mizutani T, Fukushi S, Saijo M, Kurane I, and Morikawa S. Phosphorylation of p38 MAPK and its downstream targets in SARS coronavirus-infected cells. Biochem. Biophys. Res. Commun. 319: 1228-1234, 2004b. Moennig V, Floegel-Niesmann G, and Greiser-Wilke I. Clinical signs and epidemiology of classical swine fever: A review of new knowledge. Vet. J. 165: 11-20, 2003. Morilla A and Carvajal MA. Experiences with classical swine fever vaccination in Mexico. In: Morilla A, Yoon KJ, and Zimmerman J ed. Trends in emerging viral infections of swine. Ames: Iowa State University Press, 159-164, 2002. Morilla A and Rosales C. Reemergence of classical swine fever virus in Mexico. In: Morilla A, Yoon K-J, and Zimmerman J ed. Trends in Emerging Viral Infections of Swine. Ames: Iowa State University Press, 149-152, 2002. Moynagh PN. TLR signalling and activation of IRFs: revisiting old friends from the NF-kappa B pathway. Trends Immunol. 26: 469-476, 2005. Murtaugh MP and Foss DL. Inflammatory cytokines and antigen presenting cell activation. Vet. Immunol. Immunopathol. 87: 109-121, 2002. Narita M, Kawashima K, and Shimizu M. Viral antigen and B and T lymphocytes in lymphoid tissues of gnotobiotic piglets infected with hog cholera virus. J. Comp. Pathol. 114: 257-263, 1996. Noel W, Raes G, Hassanzadeh GG, de Baetselier P, and Beschin A. Alternatively activated macrophages during parasite infections. Trends Parasitol. 20: 126-133, 2004. Orange JS, Fassett MS, Koopman LA, Boyson JE, and Strominger JL. Viral evasion of natural killer cells. Nat. Immunol. 3: 1006-1012, 2002. Pan CH, Jong MH, Huang TS Liu HF, Lin SY, and Lai SS. Phylogenetic analysis of classical swine fever virus in Taiwan. Arch. Virol. 150: 1101-1119, 2005. Parchariyanon S, Inui K, Damrongwatanapokin S, Pinyochon W, Lowings P, and Paton DJ. Sequence analysis of E2 glycoprotein genes of classical swine fever viruses: identification of a novel group in Thailand. Dtsch. Tierarztl. Wschr. 107: 213-252, 2000. Parone PA, James D, and Martinou JC. Mitochondria: regulating the inevitable. Biochimie. 84: 105-111, 2002. Paton DJ, McGoldrick A, Greiser-Wilke I, Parchariyanon S, Song JY, Liou PP, Stadejek T, Lowings JP, Björklund H, and Belák S. Genetic typing of classical swine fever virus. Vet. Microbiol. 73: 137-157, 2000. Paton DJ and Greiser-Wilke I. Classical swine fever – An update. Res. Vet. Sci. 75: 169-178, 2003. Pauly T, Elbers K, König M, Thiel HJ, Lengsfeld T, and Saalmüller A. Classical swine fever virus-specific cytotoxic T lymphocytes and identification of a T cell epitope. J. Gen. Virol. 76: 3039-3049, 1995. Pauly T, König M, Thiel HJ, and Saalmüller A. Infection with classical swine fever virus: effects on phenotype and immune responsiveness of porcine T lymphocytes. J. Gen. Virol. 79: 31-40, 1998. Perales C, Carrasco L, and Ventoso I. Cleavage of eIF4G by HIV-1 protease: effects on translation. FEBS Lett. 533: 89-94, 2003. Pruett PS and Air GM. Critical interactions in binding antibody NC41 to influenza N9 neuramidase: amino acid contacts on the antibody heavy chain. Biochemistry 37: 10660-10670, 1998. Quinn PJ, Markey BK, Carter ME, Donnelly WJ, and Leonard FC. Pathogenesis of viral diseases. In: Veterinary microbiology and microbial disease. Blackwell Science Ltd., Blackwell Publishing company, Oxford, 2002. Rau H, Revets H, Balmelli C, McCullough KC, and Summerfield A. Immunological properties of recombinant classical swine fever virus NS3 protein in vitro and in vivo. Vet. Res. 37: 155-168, 2006. Rauh MJ, Sly LM, Kalesnikoff J, Hughes MR, Cao LP, Lam V, and Krystal G. The role of SHIP1 in macrophage programming and activation. Biochem. Soc. Trans. 32: 785-788, 2004. Rauh MJ, Ho V, Pereira C, Sham A, Syl LM, Lam V, Huxham L, Minchinton AI, Mui A, and Krystal G. SHIP represses the generation of alternatively activated macrophages. Immunity 23: 361-374, 2005. Razvi ES and Welsh RM. Programmed cell death of T-lymphocytes during acute viral infection. A mechanism for virus induced immune deficiency. J. Virol. 67: 5754-5765, 1993. Rena G, Guo S, Cichy SC, Unterman TG, and Cohen P. Phosphotylation of the transcriptional factor forkhead family membrane FKHR by protein kinase B. J. Biol. Chem. 274: 17179-17183, 1999. Renatus M, Stennicke HR, Scott FL, Liddington RC, and Salvesen GS. Dimer formation drives the activation of the cell death protease caspase-9. Proc. Natl. Acad. Sci. U S A. 98: 14250-14255, 2001. Ressang AA. Studies on the pathogenesis of hog cholera. II. Virus distribution in tissue and morphology of the immune response. Zentralbl. Veterinaermed. Reihe B 20: 272-288, 1973. Ridpath JF, Bendfeldt S, Neill JD, and Liebler-Tenorio E. Lymphocytopathogenic activity in vitro correlates with high virulence in vivo for BVDV type 2 strains: criteria for a third biotype of BVDV. Virus Res. 118: 62-69, 2006. Risatti GR, Borca MV, Kutish GF, Lu Z, Holinka LG, French RA, Tulman ER, and Rock DL. The E2 glycoprotein of classical swine fever virus is a virulence determinant in swine. J. Virol. 79: 3787-3796, 2005. Rodriguez-Sosa M, Satoskar AR, Calderon R, Gomez-Garcia L, Saavedra R, Bojalil R, and Terrazas LI. Chronic helminth infection induces alternatively activated macrophages expressing high levels of CCR5 with low interleukin-12 production and Th2-biasing ability. Infect. Immun. 70: 3656-3664, 2002. Ruggli N, Tratschin JD, Schweizer M, McCullough KC, Hofmann MA, and Summerfield A. Classical swine fever virus interferes with cellular antiviral defense: evidence for a novel function of Npro. J. Virol. 77: 7645-7654, 2003. Ruggli N, Bird BH, Liu L, Bauhofer O, Tratschin JD, and Hofmann MA. Npro of classical swine fever virus is an antagonist of double-stranded RNA-mediated apoptosis and IFN-α/β induction. Virology 340: 265-276, 2005. Rumenapf T, Stark R, Heiman M, and Theil HJ. N-termianl protease of pestiviruses: identification of putative catalytic residues by site-directed mutagenesis. J. Virol. 72: 2544-2547, 1998. Saalmüller A. New understanding of immunological mechanisms. Vet. Microbiol. 117: 32-38, 2006. Salguero FJ, Ruiz-Villamour E, Bautista MJ, Sánchez-Cordón PJ, Carrasco L, and Gómez-Villamandos JC. Changes in macrophages in spleen and lymph nodes during acute African swine fever: expression of cytokines. Vet. Immunol. Immunopathol. 90: 11-22, 2002. Samuel CE. Antiviral actions of interferons. Clin. Microbiol. Rev. 14: 778-809, 2001. Sánchez-Cordón PJ, Romanini S, Salguero FJ, Núnez A, Bautista MJ, Jover A, and Gómez-Villamandos JC. Apoptosis of thymocytes related to cytokine expression in experimental classical swine fever. J. Comp. Pathol. 127: 239-248, 2002. Sánchez-Cordón PJ, Núnez A, Salguero FJ, Pedrera M, Fernández de Marco M, and Gómez-Villamandos JC. Lymphocyte apoptosis and thrombocytopenia in spleen during classical swine fever: role of macrophages and cytokines. Vet. Pathol. 42: 477-488, 2005. Sarkar SN, Peters KL, Elco CP, Sakamoto S, Pal S, and Sen GC. Novel roles for TLR tyrosine phosphorylation and PI3 kinase in double-stranded RNA signaling. Nat. Struct. Mol. Biol. 11: 1060-1067, 2004. Sato M, Mikami O, Kobayashi M, and Nakajima Y. Apoptosis in the lymphatic organs of piglets inoculated with classical swine fever virus. Vet. Microbiol. 75: 1-9, 2000. Savi P, Torlone V, and Titoli F. Recherches sur la survive du virus de la peste porcine classique dans certains produits de charcuterie. Bull. OIE 63: 87-96, 1965. Scalzo AA, Corbett AJ, Rawlinson WD, Scott GM, and Degli-Esposti M. The interplay between host and viral factors in shaping the outcome of cytomegalovirus infection. Immunol. Cell Biol. 85: 46-54, 2007. Schröder M and Bowie AG. TLR3 in antiviral immunity: key player or bystander? Trends Immunol. 26: 462-468, 2005. Schröder M and Bowie AG. An arms race: innate antiviral responses and counteracting viral strategies. Biochem. Soc. Trans. 35: 1512-1514, 2007. Seago J, Hilton L, Reid E, Doceul V, Jeyatheesan J, Moganeradj K, McCauley J, Charleston B, and Goodbourn S. The Npro product of classical swine fever virus and bovine viral diarrhea virus uses a conserved mechanism to target interferon regulatory factor-3. J. Gen. Virol. 88: 3002-3006, 2007. Shi Y and Gaestel M. In the cellular garden of forking paths: how p38 MAPKs signal for downstream assistance. Biol. Chem. 383: 1519-1536, 2002. Shi Y. Caspase activation, inhibition, and reactivation: a mechanistic view. Protein Sci. 13: 1979-1987, 2004. Shin YK, Liu Q, Tikoo SK, Babiuk LA, and Zhou Y. Influenza A virus NS1 protein activates the phosphatidylinositol 3-kinase (PI3K)/Akt pathway by direct interaction with the p85 subunit of PI3K. J. Gen. Virol. 88: 13-18, 2007a. Shin YK, Liu Q, Tikoo SK, Babiuk LA, and Zhou Y. Effect of the phosphatidylinositol 3-kinase/Akt pathway on influenza A virus propagation. J. Gen. Virol. 88: 942-950, 2007b. Shisler JL and Jin XL. The vaccinia virus K1L gene product inhibits host NF-kappaB activation by preventing IkappaBalpha degradation. J. Virol. 78: 3553-3560, 2004. Srivastava AK and Pandey SK. Potential mechanisms involved in the regulation of glycogen synthesis by insulin. Mol. Cell Biochem. 182: 135-141, 1998. Stack J, Haga IR, Schröder M, Bartlett NW, Maloney G, Reading PC, Fitzgerald KA, Smith GL, and Bowie AG. Vaccinia virus protein A46R targets multiple Toll-like-interleukin-1 receptor adaptors and contributes to virulence. J. Exp. Med. 201: 1007-1018, 2005. Stetson DB, Mohrs M, Reinhardt RL, Baron JL, Wang ZE, Gapin L, Kronenberg M, and Locksley RM. Constitutive cytokine mRNA mark natural killer (NK) and NK T cells poised for rapid effector function. J. Exp. Med. 198: 1069-1076, 2003. Stetson DB and Medzhitov R. Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity 24: 93-103, 2006. Summerfield A, Hofmann MA, and McCullough KC. Low density blood granulocytic cells induced during classical swine fever are targets for virus infection. Vet. Immunol. Immunopathol. 63: 289-301, 1998a. Summerfield A, Knötig SM, and McCullough KC. Lymphocyte apoptosis during classical swine fever: Implication of activation-induced cell death. J. Virol. 72: 1853-1861, 1998b. Summerfield A, Knoetig SM, Tschudin R, and McCullough KC. Pathogenesis of granulocytopenia and bone marrow atrophy during classical swine fever involves apoptosis and necrosis of uninfected cells. Virology 272: 50-60, 2000. Summerfield A, McNeilly F, Walker I, Allan G, Knoetig SM, and McCullough KC. Depletion of CD4+ and CD8high+ T-cells before the onset of viraemia during classical swine fever. Vet. Immunol. Immunopathol. 78: 3-19, 2001. Summerfield A, Alves M, Ruggli N, De Bruin MGM, and McCullough KC. High IFN-α responses associated with depletion of lymphocytes and natural IFN-producing cells during classical swine fever. J. Interferon and Cytokine Res. 26: 248-255, 2006. Suradhat S, Damrongwatanapokin S, and Thanawongnuwech R. Factors critical for successful vaccination against classical swine fever in endemic areas. Vet. Microbiol. 119: 1-9, 2007. Susa M, König M, Saalmüller A, Reddehase MJ, and Thiel HJ. Pathogenesis of classical swine fever: B-lymphocyte deficiency caused by hog cholera virus. J. Virol. 66: 1171-1176, 1992. Takamatsu H, Denyer MS, Oura C, Childerstone A, Andersen JK, Pullen L, and Parkhouse RM. African swine fever virus: a B cell-mitogenic virus in vivo and in vitro. J. Virol. 80: 1453-1461, 1999. Takaoka A, Wang Z, Choi MK, Yanai H, Negishi H, Ban T, Lu Y, Miyagishi M, Kodama T, Honda K, Ohba Y, and Taniguchi T. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448: 501-505, 2007. Thiel HJ, Plagemann GW, and Moennig V. Pestivirus. In: Fields BN, Knipe DM, Howley PM, ed. Fields virology, Lippincott-Raven Publishers, Philadelphia, 1059-1073, 1996. Torre D, Pugliese A, and Speranza F. Role of nitric oxide in HIV-1 infection: friend or foe? Lancet. Infect. Dis. 2: 273-280, 2002. Trautwein G. Pathology and pathogenesis of the disease. In: Liess B ed. Classical swine fever and related infections. Martinus Nijhoff Publishing, Boston, 1988. Uddin S, Majchrzak B, Woodson J, Arunkumar P, Alsayed Y, Pine R, Young PR, Fish EN, and Platanias LC. Activation of the p38 mitogen-activated protein kinase by type I interferons. J. Biol. Chem. 274: 30127-30131, 1999. Unanue ER. Antigen presenting function of macrophages. Ann. Rev. Immunol. 2: 395-428, 1984. Vanderhallen H, Mittelholzer C, Hofmann MA, Koenen F, and Mittelhozer C. Classical swine fever virus is genetically stable in vitro and in vivo. Arch. Virol. 144: 1669-1677, 1999. Vanhaesebroeck B and Alessi DR. The PI3K-
摘要: 豬瘟病毒在豬隻感染可造成免疫系統功能失調及呈現持續性感染現象,其分別與豬瘟病毒對淋巴細胞之傷害及與豬瘟病毒在網狀內皮系統之巨噬細胞的感染有著密切關聯。本實驗目的為探討豬瘟病毒感染肺泡巨噬細胞與淋巴細胞後的細胞凋亡(apoptotic)相關訊號表現,並比較不同毒力之豬瘟病毒在於訊號傳遞上是否有所差異,以期了解本病之致病機轉。本實驗中使用三株不同毒力之豬瘟病毒,包括無毒力的疫苗毒LPC病毒、與弱毒力的RL06-2病毒及強毒力的RL03-5病毒分別感染肺泡巨噬細胞及周邊血液淋巴細胞,並以流式細胞儀分析細胞之粒線體膜電位改變、細胞膜之完整性、pan-caspases活化情形,並使用西方墨點法偵測細胞之caspase-3活化與Akt磷酸化的程度。結果顯示,豬瘟病毒感染肺泡巨噬細胞後,僅RL03-5病毒感染後之細胞有較高細胞存活率,且發生apoptosis的比例較低,但在於粒線體膜電位改變與pan-caspases活化的程度相較於mock組而言,表現仍有增加,且具有顯著性差異(P < 0.01);以西方墨點法偵測結果顯示,豬瘟病毒感染肺泡巨噬細胞後可活化Akt及下游的GSK-3beta,且表現程度與病毒毒力呈現相關性(P < 0.05),而在細胞中caspase-3的表現則會受到豬瘟病毒的感染而降低。相對於豬瘟病毒感染淋巴細胞,除RL06-2感染淋巴細胞會造成pan-caspases活化的程度低於mock組外,其餘各種毒力之豬瘟病毒感染後,細胞存活率皆下降,apoptosis的比例增加,粒線體膜電位改變程度與pan-caspases活化的程度均增加;在西方墨點法偵測結果亦顯示豬瘟病毒感染淋巴細胞後可活化caspases-3。整體結果顯示,強毒豬瘟病毒RL03-5感染肺泡巨噬細胞雖仍會造成粒線體膜電位改變與pan-caspases活化程度增加,但其亦可強化anti-apoptotic protein phospho-Akt的表現,進而阻斷下游細胞凋亡作用蛋白之表現,造成細胞死亡率下降;而豬瘟病毒感染淋巴細胞後,可強化粒線體膜電位改變程度與pan-caspases的活化,導致淋巴細胞死亡,但其是否激活磷酸化Akt的表現,尚待進一步確認。
Infection of classical swine fever virus (CSFV) causes immunosuppression and virus persistence in swine, closely related to the injury of lymphocytes and persistent infection in macrophages. The aim of this study was to investigate the expression of apoptotic signals in pulmonary alveolar macrophages (PAMs) and peripheral blood lymphocytes (PBLs) after infected with different virulence of CSFV. Three different CSFV isolates including the avirulent LPC, low virulent RL06-2, and virulent RL03-5 were used in this study. The disruption of cellular mitochondrial membrane potential, cell membrane integrity, and activation of pan-caspases were analyzed by flow cytometry, and activation of caspase-3 and Akt were detected by Western blotting. The results show that the apoptotic signals of mitochondrial membrane potential disruption and pan-caspases activation were all increased in PAMs infected with CSFV, but the signal of cleaved caspase-3 was not significantly enhanced. In contrast, the anti-apoptotic signal of Akt phosphorylation and its down-stream GSK-3beta of CSFV-infected PAMs were also increased with virulence dependency. However, only RL03-5 infected PAMs had higher cell viability than mock infection and PAMs infected with LPC and RL06-2 CSFV. In contrast, besides RL06-2, increased mitochondrial membrane potential disruption, loss of cell membrane integrity, activation of caspases, and cell viability were less conspicuous in CSFV-infected PBLs than mock infection. Taken these results together, both CSFV infection in PAMs and PBLs initiated apoptotic signals, but the signals may be blocked in the down-stream of caspase effector proteins by the activation of anti-apoptotic signal of phospho-Akt in PAMs, leading to higher cell survival rate in virulent CSFV-infected PAMs. Whether CSFV induces activation of Akt in PBLs, need to be further elucidated.
其他識別: U0005-1208200820163200
Appears in Collections:獸醫病理生物學所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.