Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/15398
標題: 多元調諧質量阻尼器之設計參數比較分析
Comparative Study of Designed Parameter of Multiple Tuned Mass damper
作者: 楊正文
Yang, Cheng-Wen
關鍵字: MTMD
多元調諧質量阻尼器
出版社: 土木工程學系所
引用: 1. Fhram,H. (1911).“Device for Damping Vibration of Bodies”, U.S. Patent No. 989-958. 2. 鍾立來,呉賴雲,林昭葳,黃國倫,曾建創,連冠華,(2005)“結構加裝圓棒型加勁阻尼器之動力分析及試驗驗證”,國家地震中心研究報告,報告編號:NCREE-05-024. 3. Den Hartog, J. P. (1956). Mechanical Vibrations, 4th edition, McGraw-Hill, New York. 4. McNamara, R. J. (1977). “Tuned Mass Dampers for Buildings”, Journal of the Structural Division, ASCE, Vol. 103, pp. 1785-1798. 5. Luft, R. W. (1979). “Optimal Tuned Mass Dampers for Buildings”, Journal of the Structural Division, ASCE, Vol. 105, pp.2766-2772. 6. Wiesner, K. B. (1979). “Tuned Mass Dampers to Reduce Building Wind Motion”, ASCE, Convention and Exposition, Boston, Mass., April 2-6. 7. Rainer, J. H., and Swallow, J. C. (1986). “Dynamic Behavior of a Gymnasium Floor”, Canadian Journal of Civil Engineering, Vol. 13, pp. 270-277. 8. Thornton, C. H., Cuoco, D. A., and Velivasakis, E. E. (1990). “Taming Structural Vibrations”, Civil Engineering, Vol. 60, pp. 57-59. 9. Setareh, M., and Hanson, R. D. (1992). “Tuned Mass Dampers for Balcony Vibration Control”, Journal of Structural Engineering, ASCE, Vol. 118, pp. 723-740. 10. Kwon, H. C., Kim, M. C. and Lee, I. W. (1998). “Vibration Control of Bridges under Moving Loads”, Computers & Structures, Vol. 66, pp. 473-480. 11. 王哲夫, 林其璋, 陳博亮, (1998), “高鐵橋梁裝設調諧質量阻尼器之減振分析”, 第四屆結構工程研討會, Vol. 2, pp. 1203-1210, 臺北, 9月9-11日. 12. Wang, J. F., Lin, C. C., and Chen, B. L. (2003). “Vibration Suppression for High Speed Railway Bridges Using Tuned Mass Dampers”, International Journal of Solids and Structures, Vol.40, pp. 465-491. 13. Crandall, S. H., and Mark, W. D. (1973). Random Vibration in Mechanical Systems, Academic Press, Inc., N. Y. 14. Wirsching, P. H., and Campbell, G. W. (1974). “Minimal Structural Response Under Random Excitation Using the Vibration Absorber”, Earthquake Engineering and Structural Dynamics, Vol. 2, pp. 303-312. 15. Kaynia, A. M., Veneziano, D., and Biggs, J. M. (1981). “Seismic Effectiveness of Tuned Mass Dampers”, Journal of Structural Division, ASCE, Vol. 107, pp. 1465-1484. 16. Sladek, J. R. and Klinger,R. E. (1983).“Effect of Tuned-Mass Dampers on Seismic Response”, Journal of Structural Engineering, ASCE, Vol. 109, pp.2004-2009. 17. Lin, C. C., Hu, C. M., Wang, J. F., and Hu, R. Y. (1994). “Vibration Control Effectiveness of Passive Tuned Mass Dampers”, Journal of the Chinese Institute of Engineers, Vol. 17, pp.367-376. 18. Lin, C. C., Wang, J. F., and Ueng J. M. (2001). “Vibration Control Identification of Seismically-Excited MDOF Structure-PTMD Systems”, Journal of Sound and Vibration, Vol. 240, pp. 87-115. 19. Warburton, G. B. (1982). “Optimal absorber parameters for various combinations of response and excitation parameters”, Earthquake Engineering and Structural Dynamics, Vol. 10, pp.381-401. 20. Asami, T., Wakasono, T., Kameoka, K., Hasegawa, M. and Sekiguchi, H. (1991). “Optimum design of dynamics absorbers for a system subjected to random excitation” JSME International Journal, Series III, Vol. 34, pp. 218-226. 21. Fujino, Y. and Abe, M. (1993). “Design formulas for tuned mass dampers based on a perterbation technique”, Earthquake Engineering and Structural Dynamics, Vol. 22, pp.833-854. 22. Xu, Y. L., and Kwok, K. C. S. (1994). “Semianalytical method for parameteric study of tuned mass dampers”, Journal of Structural Engineering, ASCE, Vol. 120, pp.747-764. 23. Ueng, J. M., Lin, C. C., and Huang, T.C. (1997). “Passive TMDs for Seismic Response Reduction of Multi-story Torsionally-Coupled Buildings”, Proceedings of the 14th International Conference on Structural Mechanics in Reactor Technology (SMiRT-14), Lyon, France, August 17-22. 24. Ueng, J. M., Lin, C. C., Huang, T. C., and Chen, B.R. (1998). “Practical Considerations in TMD Design for Vibration Control of Buildings”, Proceedings of the Sixth East Asia-Pacific Conference on Structural Engineering and Construction (EASEC-6), Vol. 2, pp. 1461-1468. Taipei, ROC, January 14-16. 25. Lin, C. C., Ueng, J. M., and Huang, T. C. (2000). “Seismic Response Reduction of Irregular Buildings Using Passive Tuned Mass Dampers”, International Journal of Engineering Structures, Vol. 22, pp. 513-524. 26. Iwanami, K., and Seto, K. (1984). “Optimum design of dual mass dampers and their effectiveness”, Proceedings of the JSME(C); Vol. 50, pp.44-52 (in Japanese). 27. Igusa, T., and Xu, K. (1990). “Wide-band response characteristics of multiple subsystem with high modal density”, Proceedings of the Second International Conference on Stochastic Structural Dynamics, FL, U.S.A. 28. Igusa, T., and Xu, K. (1991). “Vibration reduction characteristics of distributed tuned mass dampers”, Proceedings of the Fourth International Conference on Recent Advances in Structural Dynamics, Southampton, U.K. 29. Xu, K., and Igusa, T. (1992). “Dynamic characteristics of multiple substructures with closely spaced frequencies”, Earthquake Engineering and Structural Dynamics, 21, 1059-1070. 30. Igusa, T., and Xu, K. (1994). “Vibration control using multiple tuned mass dampers”, Journal of Sound Vibration, Vol. 175, pp. 491-503. 31. Yamaguchi, H. and Harnpornchai, N. (1993). “Fundamental characteristics of multiple tuned mass dampers for suppressing harmonically forced oscillations”, Earthquake Engineering and Structural Dynamics, Vol. 22, pp. 51-62. 32. Abe, M., and Fujino, Y. (1994). “Dynamic characteriszation of multiple tuned mass dampers and some design formulas”, Earthquake Engineering and Structural Dynamics, Vol. 23, pp. 813-835. 33. Abe, M., and Igusa, T. (1995). “Tuned mass dampers for structures with closely spaced natural frequencies”, Earthquake Engineering and Structural Dynamics, Vol. 24, pp. 247-261. 34. Kareem, A. and Kline, S. (1995). “Performance of multiple tuned mass dampers under random loading”, Journal of Structural Engineering, ASCE, Vol. 121, pp.348-361. 35. Jangid, R. S. (1995). “Dynamic characteristics of structures with multiple tuned mass dampers”, Structural Engineering and Mechanics, Vol. 3, pp. 497-509. 36. Jangid, R. S. (1999). “Optimum multiple tuned mass dampers for base-excited undamped system”, Earthquake Engineering and Structural Dynamics, Vol. 28, pp. 1041-1049. 37. Li, C. (1998) “Research on the optimum theories and methods for wind and earthquake resistant control design of high-rise steel structure”, Ph.D. Thesis, Tongji University, Department of Civil Engineering, Shanghai. 38. Li, C. (2000). “Performance of multiple tuned mass dampers for attenuating undesirable oscillations of structures under the ground acceleration”, Earthquake Engineering and Structural Dynamics, Vol. 29, 1405-1421. 39. Lin, C. C., Wang, J. F., and Chen, B. L (2005). “Train-Induced Vibration Control of High-Speed Railway Bridges Equipped with Multiple Tuned Mass Dampers”, Journal of Bridge Engineering. Vol. 10, No. 4, pp. 398-414 40. 王哲夫, 林其璋, 陳博亮, (2000). “考慮扭轉效應橋梁受高速列車荷重之減振分析”, 第五屆結構工程研討會, Vol. 1, pp. 301-308, 南投溪頭, 8月28-30日. 41. 林其璋, 王哲夫, (2001). “多元調諧質量阻尼器於高速鐵路橋梁之減振效用”, 南部科學園區振動防治策略研討會, pp. 109-120, 台南, 11月27日. 42. Ueng, J. M., Lin, C. C., and Wang, J. F. (2005), “Practical Design Issues of Tuned Mass Dampers for Torsionally-Coupled Buildings under Earthquake Loadings”, Structural Design of Tall and Special Buildings.(in press) 43. Lin, C. C., Hong, L. L., Ueng, J. M., Wu, K. C., and Wang, C.E. (2005), “Parametric Identification of Asymmetric Buildings From Earthquake Response Records”, Smart Materials and Structures, Vol. 14, No. 4 , pp. 850-861. 44. Wang, J. F., Lin, C. C. (2005), “Seismic Performance of Multiple Tuned Mass Dampers for Soil-Irregular Building Interaction System”, International Journal of Solids and Structures, Vol. 42, No. 20, pp. 5536-5554.
摘要: 本文主要探討比較建築結構裝設三種不同設計方式之多元調諧質量阻尼器(Multiple Tuned Mass Damper,簡稱MTMD)之控制效用,並在考量經濟效益及控制效用之下,選擇最實用之MTMD設計方法,以期日後進行振動台模型結構試驗。在MTMD總質量固定之下,第一種方法為每一TMD具有相同質量,採用相同阻尼比、均佈頻率比之最佳設計,第二種方法是每一TMD具有相同質量,相同阻尼比,但每個TMD頻率比皆為獨立變數之最佳設計,第三種方法為設定每一TMD質量都不相同,但具有相同之阻尼係數及相同勁度係數,而其頻率比為獨立變數之最佳設計,由於阻尼係數及勁度係數相等,具有同一規格,因此相較於前二種設計方法,更具實用性。根據國家地震工程研究中心之標竿三層樓鋼構架,本文模擬分析裝設三種不同設計方法之MTMD,經由數值模擬分析發現三種設計方式具有等值的控制效用,未來將可與實驗結果比較與驗證。
The thesis deals with the comparison of three types of multiple tuned mass damper (MTMD) design for a shaking-table test building to choose the most practical design method with the consideration of economical and vibration control effectiveness. With the same total MTMD mass, the first type is to assign each MTMD substructure to has the same mass and damping ratio, and to let the MTMD frequencies being uniform distributed. For the second type, each MTMD substructure has the same mass and damping ratio but independent frequency ratio. As to the third type, each MTMD substructure has the same damping and stiffness coefficients with independent frequency ratio, which results in different MTMD substructure mass. Because the spring and damper can be identical, the third type design becomes more practical than the others. Using the three-story steel structure model in the National Center for Research on Earthquake Engineering, the optimal MTMD parameters of the three types were calculated and the analysis of MTMD vibration control effectiveness was performed numerically. It is shown that the three type MTMDs have almost the similar control efficiency, which can be validated through the shake table test in the future.
URI: http://hdl.handle.net/11455/15398
其他識別: U0005-2408200618362600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2408200618362600
Appears in Collections:土木工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.