Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/15417
標題: 胸膜肺炎放線桿菌外毒素宿主細胞特異性之研究
Effects of Actinobacillus pleuropneumoniae exotoxin on different cells
作者: 張乃云
Chang, Nai-Yun
關鍵字: Actinobacillus pleuropneumoniae
胸膜肺炎放線桿菌
APP
Apx
外毒素
出版社: 獸醫病理生物學研究所
引用: 林俊宏。豬胸膜肺炎放線桿菌及豬巴氏桿菌疫苗市場現況與發展趨勢。農業生技產業季刊 20: 18 – 23,2009。 Bandara, A. B., Lawrence, M. L., Veit, H. P., and Inzana, T. J. Association of Actinobacillus pleuropneumoniae capsular polysaccharide with virulence in pigs. Infect Immun 71: 3320-8, 2003. Beck, M., van den Bosch, J. F., Jongenelen, I. M., Loeffen, P. L., Nielsen, R., Nicolet, J., and Frey, J. RTX toxin genotypes and phenotypes in Actinobacillus pleuropneumoniae field strains. J Clin Microbiol 32: 2749-54, 1994. Bei, W., He, Q., Yan, L., Fang, L., Tan, Y., Xiao, S., Zhou, R., Jin, M., Guo, A., Lv, J., Huang, H., and Chen, H. Construction and characterization of a live, attenuated apxIICA inactivation mutant of Actinobacillus pleuropneumoniae lacking a drug resistance marker. FEMS Microbiol Lett 243: 21-7, 2005. Bertram, T. A. Pathobiology of Acute pulmonary lesions in swine infected with Haemophilus (Actinobacillus) pleuropneumoniae. Can Vet J 29: 574-77, 1988. Blackall, P. J., Klaasen, H. L., van den Bosch, H., Kuhnert, P., and Frey, J. Proposal of a new serovar of Actinobacillus pleuropneumoniae: serovar 15. Vet Microbiol 84: 47-52, 2002. Boekema, B. K., Stockhofe-Zurwieden, N., Smith, H. E., Kamp, E. M., van Putten, J. P., and Verheijden, J. H. Adherence of Actinobacillus pleuropneumoniae to primary cultures of porcine lung epithelial cells. Vet Microbiol 93: 133-44, 2003. Bosse, J. T., Janson, H., Sheehan, B. J., Beddek, A. J., Rycroft, A. N., Kroll, J. S., and Langford, P. R. Actinobacillus pleuropneumoniae: pathobiology and pathogenesis of infection. Microbes Infect 4: 225-35, 2002. Chang, Y. F., Shi, J., Ma, D. P., Shin, S. J., and Lein, D. H. Molecular analysis of the Actinobacillus pleuropneumoniae RTX toxin-III gene cluster. DNA Cell Biol 12: 351-62, 1993. Chatellier, S., Harel, J., Dugourd, D., Chevallier, B., Kobisch, M., and Gottschalk, M. Genomic relatedness among Actinobacillus pleuropneumoniae field strains of sterotypes 1 and 5 isolated from healthy and diseased Pigs. Can J Vet Res 63: 170-6, 1999. Chien, M. S., Chan, Y. Y., Chen, Z. W., Wu, C. M., Liao, J. W., Chen, T. H., Lee, W. C., Yeh, K. S., and Hsuan, S. L. Actinobacillus pleuropneumoniae serotype 10 derived ApxI induces apoptosis in porcine alveolar macrophages. Vet Microbiol 135: 327-33, 2009. Chiers, K., van Overbeke, I., De Laender, P., Ducatelle, R., Carel, S., and Haesebrouck, F. Effects of endobronchial challenge with Actinobacillus pleuropneumoniae serotype 9 of pigs vaccinated with inactivated vaccines containing the Apx toxins. Vet Q 20: 65-9, 1998. Cho, W. S., Choi, C., and Chae, C. In Situ hybridization for the detection of the ApxIV gene in the lungs of pigs experimentally infected with twelve Actinobacillus pleuropneumoniae serotypes. Vet Res 33: 653-60, 2002. Chung, W. B., Backstrom, L. R., McDonald, J., and Collins, M. T. The (3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium) colorimetric assay for the quantitation of Actinobacillus pleuropneumoniae cytotoxin. Can J Vet Res 57: 159-65, 1993. Deneer, H. G., and Potter, A. A. Effect of iron restriction on the outer membrane proteins of Actinobacillus (Haemophilus) pleuropneumoniae. Infect Immun 57: 798-804, 1989. del Solar, G., Giraldo, R., Ruiz-Echevarria, M. J., Espinosa, M., and Diaz-Orejas, R. Replication and control of circular bacterial plasmids. Microbiol Mol Biol Rev 62: 434-64, 1998. Deslandes, V., Nash, J. H., Harel, J., Coulton, J. W., and Jacques, M. Transcriptional profiling of Actinobacillus pleuropneumoniae under iron-restricted conditions. BMC Genomics 8: 72, 2007. Devenish, J., Brown, J. E., and Rosendal, S. Association of the RTX proteins of Actinobacillus pleuropneumoniae with hemolytic, CAMP, and neutrophil-cytotoxic activities. Infect Immun 60: 2139-42, 1992. Dileepan, T., Thumbikat, P., Walcheck, B., Kannan, M. S., and Maheswaran, S. K. Recombinant expression of bovine LFA-1 and characterization of its role as a receptor for Mannheimia haemolytica leukotoxin. Microb Pathog 38: 249-57, 2005. Dom, P., Haesebrouck, F., Ducatelle, R., and Charlier, G. in vivo association of Actinobacillus pleuropneumoniae serotype 2 with the respiratory epithelium of pigs. Infect Immun 62: 1262-7, 1994. Dubreuil, J. D., Letellier, A., Stenbaek, E., and Gottschalk, M. Serotyping of Actinobacillus pleuropneumoniae serotype 5 strains using a monoclonal-based polystyrene agglutination test. Can J Vet Res 60: 69-71, 1996. Faldyna, M., Nechvatalova, K., Sinkora, J., Knotigova, P., Leva, L., Krejci, J., and Toman, M. Experimental Actinobacillus pleuropneumoniae infection in piglets with different types and levels of specific protection: immunophenotypic analysis of lymphocyte subsets in the circulation and respiratory mucosal lymphoid tissue. Vet Immunol Immunopathol 107: 143-52, 2005. Fiser, R., and Konopasek, I. Different modes of membrane permeabilization by two RTX toxins: HlyA from Escherichia coli and CyaA from Bordetella pertussis. Biochim Biophys Acta 1788: 1249-54, 2009. Frey, J. Virulence in Actinobacillus pleuropneumoniae and RTX toxins. Trends Microbiol 3: 257-61, 1995. Frey, J., Bosse, J. T., Chang, Y. F., Cullen, J. M., Fenwick, B., Gerlach, G. F., Gygi, D., Haesebrouck, F., Inzana, T. J., Jansen, R., and et al. Actinobacillus pleuropneumoniae RTX-toxins: uniform designation of haemolysins, cytolysins, pleurotoxin and their genes. J Gen Microbiol 139: 1723-8, 1993. Frey, J., and Nicolet, J. Hemolysin patterns of Actinobacillus pleuropneumoniae. J Clin Microbiol 28: 232-6, 1990. Fuller, C. A., Yu, R., Irwin, S. W., and Schryvers, A. B. Biochemical evidence for a conserved interaction between bacterial transferrin binding protein A and transferrin binding protein B. Microb Pathog 24: 75-87, 1998. Gonzalez, G. C., Yu, R. H., Rosteck, P. R., Jr., and Schryvers, A. B. Sequence, genetic analysis, and expression of Actinobacillus pleuropneumoniae transferrin receptor genes. Microbiology 141 ( Pt 10): 2405-16, 1995. Gottschalk, M., Lebrun, A., Lacouture, S., Harel, J., Forget, C., and Mittal, K. R. Atypical Actinobacillus pleuropneumoniae isolates that share antigenic determinants with both serotypes 1 and 7. J Vet Diagn Invest 12: 444-9, 2000. Grayson, M. H., Van der Vieren, M., Sterbinsky, S. A., Michael Gallatin, W., Hoffman, P. A., Staunton, D. E., and Bochner, B. S. αdβ2 integrin is expressed on human eosinophils and functions as an alternative ligand for vascular cell adhesion molecule 1 (VCAM-1). J Exp Med 188: 2187-91, 1998. Haesebrouck, F., Chiers, K., Van Overbeke, I., and Ducatelle, R. Actinobacillus pleuropneumoniae infections in pigs: the role of virulence factors in pathogenesis and protection. Vet Microbiol 58: 239-49, 1997. Haga, Y., Ogino, S., Ohashi, S., Ajito, T., Hashimoto, K., and Sawada, T. Protective efficacy of an affinity-purified hemolysin vaccine against experimental swine pleuropneumonia. J Vet Med Sci 59: 115-20, 1997. Hall, P. A. Assessing apoptosis: A critical survey. Endocr Relat Cancer 6: 3-8, 1999. Harlan, J. M., Vedder, N. B., Winn, R. K., and Rice, C. L. Mechanisms and consequences of leukocyte-endothelial interaction. West J Med 155: 365-9, 1991. Higgins, R., Lariviere, S., Mittal, K. R., Martineau, G. P., Rousseau, P., and Cameron, J. Evaluation of a killed vaccine against porcine pleuropneumonia due to Haemophilus pleuropneumoniae. Can Vet J 26: 86-89, 1985. Huang, H., Potter, A. A., Campos, M., Leighton, F. A., Willson, P. J., Haines, D. M., and Yates, W. D. Pathogenesis of porcine Actinobacillus pleuropneumonia, Part II: roles of proinflammatory cytokines. Can J Vet Res 63: 69-78, 1999. Huang, H., Potter, A. A., Campos, M., Leighton, F. A., Willson, P. J., and Yates, W. D. Pathogenesis of porcine Actinobacillus pleuropneumonia: part I. effects of surface components of Actinobacillus pleuropneumoniae in vitro and in vivo. Can J Vet Res 62: 93-101, 1998. Hughes, J., and Gobe, G. Identification and quantification of apoptosis in the kidney using morphology, biochemical and molecular markers. Nephrology (Carlton) 12: 452-8, 2007. Inzana, T. J., Todd, J., Ma, J. N., and Veit, H. Characterization of a non-hemolytic mutant of Actinobacillus pleuropneumoniae serotype 5: role of the 110 kilodalton hemolysin in virulence and immunoprotection. Microb Pathog 10: 281-96, 1991. Jacobsen, I., Gerstenberger, J., Gruber, A. D., Bosse, J. T., Langford, P. R., Hennig-Pauka, I., Meens, J., and Gerlach, G. F. Deletion of the ferric uptake regulator Fur impairs the in vitro growth and virulence of Actinobacillus pleuropneumoniae. Infect Immun 73: 3740-4, 2005. Jacques, M. Surface Polysaccharides and iron-uptake systems of Actinobacillus pleuropneumoniae. Can J Vet Res 68: 81-5, 2004. Jansen, R., Briaire, J., Smith, H. E., Dom, P., Haesebrouck, F., Kamp, E. M., Gielkens, A. L., and Smits, M. A. Knockout mutants of Actinobacillus pleuropneumoniae serotype 1 that are devoid of RTX toxins do not activate or kill porcine neutrophils. Infect Immun 63: 27-37, 1995. Jensen, A. E., and Bertram, T. A. Morphological and biochemical comparison of virulent and avirulent isolates of Haemophilus pleuropneumoniae serotype 5. Infect Immun 51: 419-24, 1986. Jeyaseelan, S., Hsuan, S. L., Kannan, M. S., Walcheck, B., Wang, J. F., Kehrli, M. E., Lally, E. T., Sieck, G. C., and Maheswaran, S. K. Lymphocyte function-associated antigen 1 is a receptor for Pasteurella haemolytica leukotoxin in bovine leukocytes. Infect Immun 68: 72-9, 2000. Jolie, R. A., Mulks, M. H., and Thacker, B. J. Antigenic differences within Actinobacillus pleuropneumoniae serotype 1. Vet Microbiol 38: 329-49, 1994. Kamp, E. M., and van Leengoed, L. A. Serotype-related differences in production and type of heat-labile hemolysin and heat-labile cytotoxin of Actinobacillus (Haemophilus) pleuropneumoniae. J Clin Microbiol 27: 1187-91, 1989. Khodarev, N. N., Sokolova, I. A., and Vaughan, A. T. Mechanisms of induction of apoptotic DNA fragmentation. Int J Radiat Biol 73: 455-67, 1998. Kim, T., and Lee, J. Cloning and expression of genes encoding transferrin-binding protein A and B from Actinobacillus pleuropneumoniae serotype 5. Protein Expr Purif 45: 235-40, 2006. Komal, J. P., and Mittal, K. R. Grouping of Actinobacillus pleuropneumoniae strains of serotypes 1 through 12 on the basis of their virulence in mice. Vet Microbiol 25: 229-40, 1990. Kroemer, G., Dallaporta, B., and Resche-Rigon, M. The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol 60: 619-42, 1998. Kuhnert, P., Berthoud, H., Straub, R., and Frey, J. Host cell specific activity of RTX toxins from haemolytic Actinobacillus equuli and Actinobacillus suis. Vet Microbiol 92: 161-7, 2003. Lally, E. T., Hill, R. B., Kieba, I. R., and Korostoff, J. The interaction between RTX toxins and target cells. Trends Microbiol 7: 356-61, 1999. Lally, E. T., Kieba, I. R., Sato, A., Green, C. L., Rosenbloom, J., Korostoff, J., Wang, J. F., Shenker, B. J., Ortlepp, S., Robinson, M. K., and Billings, P. C. RTX toxins recognize a beta2 integrin on the surface of human target cells. J Biol Chem 272: 30463-9, 1997. Lancellotti, M., Pereira, R. F., Cury, G. G., and Hollanda, L. M. Pathogenic and opportunistic respiratory bacteria-induced apoptosis. Braz J Infect Dis 13: 226-31, 2009. Lin, L., Bei, W., Sha, Y., Liu, J., Guo, Y., Liu, W., Tu, S., He, Q., and Chen, H. Construction and immunogencity of a ∆apxIC/∆apxIIC double mutant of Actinobacillus pleuropneumoniae serovar 1. FEMS Microbiol Lett 274: 55-62, 2007. Loo, D. T., and Rillema, J. R. Measurement of cell death. Methods Cell Biol 57: 251-64, 1998. McWhinney, D. R., Chang, Y. F., Young, R., and Struck, D. K. Separable domains define target cell specificities of an RTX hemolysin from Actinobacillus pleuropneumoniae. J Bacteriol 174: 291-7, 1992. Maheswaran, S. K., Kannan, M. S., Weiss, D. J., Reddy, K. R., Townsend, E. L., Yoo, H. S., Lee, B. W., and Whiteley, L. O. Enhancement of neutrophil-mediated injury to bovine pulmonary endothelial cells by Pasteurella haemolytica leukotoxin. Infect Immun 61: 2618-25, 1993. Maier, E., Reinhard, N., Benz, R., and Frey, J. Channel-forming activity and channel size of the RTX toxins ApxI, ApxII, and ApxIII of Actinobacillus pleuropneumoniae. Infect Immun 64: 4415-23, 1996. Miller, L. J., Schwarting, R., and Springer, T. A. Regulated expression of the Mac-1, LFA-1, P150,95 glycoprotein family during leukocyte differentiation. J Immunol 137: 2891-900, 1986. Morova, J., Osicka, R., Masin, J., and Sebo, P. RTX cytotoxins recognize β2 integrin receptors through N-linked oligosaccharides. Proc Natl Acad Sci U S A 105: 5355-60, 2008. Nielsen, R. Haemophilus pleuropneumoniae serotypes--cross protection experiments. Nord Vet Med 36: 221-34, 1984. Nielsen, R., Andresen, L. O., Plambeck, T., Nielsen, J. P., Krarup, L. T., and Jorsal, S. E. Serological characterization of Actinobacillus pleuropneumoniae biotype 2 strains isolated from pigs in two Danish herds. Vet Microbiol 54: 35-46, 1997. Niven, D. F., Donga, J., and Archibald, F. S. Responses of Haemophilus pleuropneumoniae to iron restriction: changes in the outer membrane protein profile and the removal of iron from porcine transferrin. Mol Microbiol 3: 1083-9, 1989. Omori, K., and Idei, A. Gram-negative bacterial ATP-binding cassette protein exporter family and diverse secretory proteins. J Biosci Bioeng 95: 1-12, 2003. Paradis, S. E., Dubreuil, D., Rioux, S., Gottschalk, M., and Jacques, M. High-molecular-mass lipopolysaccharides are involved in Actinobacillus pleuropneumoniae adherence to porcine respiratory tract cells. Infect Immun 62: 3311-9, 1994. Park, C., Ha, Y., Kim, S., Chae, C., and Ryu, D. Y. Construction and characterization of an Actinobacillus pleuropneumoniae serotype 2 mutant lacking the Apx toxin secretion protein genes apxIIIB and apxIIID. J Vet Med Sci 71: 1317-23, 2009. Prideaux, C. T., Lenghaus, C., Krywult, J., and Hodgson, A. L. Vaccination and protection of pigs against pleuropneumonia with a vaccine strain of Actinobacillus pleuropneumoniae produced by site-specific mutagenesis of the ApxII operon. Infect Immun 67: 1962-6, 1999. Prideaux, C. T., Pierce, L., Krywult, J., and Hodgson, A. L. Protection of mice against challenge with homologous and heterologous serovars of Actinobacillus pleuropneumoniae after live vaccination. Curr Microbiol 37: 324-32, 1998. Ramjeet, M., Cox, A. D., Hancock, M. A., Mourez, M., Labrie, J., Gottschalk, M., and Jacques, M. Mutation in the LPS outer core biosynthesis gene, galU, affects LPS interaction with the RTX toxins ApxI and ApxII and cytolytic activity of Actinobacillus pleuropneumoniae serotype 1. Mol Microbiol 70: 221-35, 2008. Ramjeet, M., Deslandes, V., St Michael, F., Cox, A. D., Kobisch, M., Gottschalk, M., and Jacques, M. Truncation of the lipopolysaccharide outer core affects susceptibility to antimicrobial peptides and virulence of Actinobacillus pleuropneumoniae serotype 1. J Biol Chem 280: 39104-14, 2005. Rioux, S., Galarneau, C., Harel, J., Kobisch, M., Frey, J., Gottschalk, M., and Jacques, M. Isolation and characterization of a capsule-deficient mutant of Actinobacillus pleuropneumoniae serotype 1. Microb Pathog 28: 279-89, 2000. Rosendal, S., Devenish, J., MacInnes, J. I., Lumsden, J. H., Watson, S., and Xun, H. Evaluation of heat-sensitive, neutrophil-toxic, and hemolytic activity of Haemophilus (Actinobacillus) pleuropneumoniae. Am J Vet Res 49: 1053-8, 1988. Saraste, A. Morphologic criteria and detection of apoptosis. Herz 24: 189-95, 1999. Schaller, A., Kuhn, R., Kuhnert, P., Nicolet, J., Anderson, T. J., MacInnes, J. I., Segers, R. P., and Frey, J. Characterization of ApxIVA, a New RTX determinant of Actinobacillus pleuropneumoniae. Microbiology 145 ( Pt 8): 2105-16, 1999. Seah, J. N., Frey, J., and Kwang, J. The N-terminal domain of RTX toxin ApxI of Actinobacillus pleuropneumoniae elicits protective immunity in mice. Infect Immun 70: 6464-7, 2002. Seah, J. N., and Kwang, J. Localization of linear cytotoxic and pro-apoptotic epitopes in RTX toxin ApxIII of Actinobacillus pleuropneumoniae. Vaccine 22: 1494-7, 2004. Serebrin, S., Rosendal, S., Valdivieso-Garcia, A., and Little, P. B. Endothelial cytotoxicity of Actinobacillus pleuropneumoniae. Res Vet Sci 50: 18-22, 1991. Shin, S. J., Bae, J. L., Cho, Y. W., Yang, M. S., Kim, D. H., Jang, Y. S., and Yoo, H. S. Expression of apxIA of Actinobacillus pleuropneumoniae in Saccharomyces cerevisiae. J Vet Sci 4: 225-8, 2003. Shewen, P. E., and Wilkie, B. N. Cytotoxin of Pasteurella haemolytica acting on bovine leukocytes. Infect Immun 35: 91-4, 1982. Simpson, D. L., Berthold, P., and Taichman, N. S. Killing of human myelomonocytic leukemia and lymphocytic cell lines by Actinobacillus actinomycetemcomitans leukotoxin. Infect Immun 56: 1162-6, 1988. Tarigan, S., Slocombe, R. F., Browning, G. F., and Kimpton, W. Functional and structural changes of porcine alveolar macrophages induced by sublytic doses of a heat-labile, hemolytic, cytotoxic substance produced by Actinobacillus pleuropneumoniae. Am J Vet Res 55: 1548-57, 1994. Thumbikat, P., Dileepan, T., Kannan, M. S., and Maheswaran, S. K. Characterization of Mannheimia (Pasteurella) haemolytica leukotoxin interaction with bovine alveolar macrophage β2 integrins. Vet Res 36: 771-86, 2005. Udeze, F. A., and Kadis, S. Effects of Actinobacillus pleuropneumoniae hemolysin on porcine neutrophil function. Infect Immun 60: 1558-67, 1992. van de Kerkhof, A., Haesebrouck, F., Chiers, K., Ducatelle, R., Kamp, E. M., and Smits, M. A. Influence of Actinobacillus pleuropneumoniae and its metabolites on porcine alveolar epithelial cells. Infect Immun 64: 3905-7, 1996. Van Overbeke, I., Chiers, K., Charlier, G., Vandenberghe, I., Van Beeumen, J., Ducatelle, R., and Haesebrouck, F. Characterization of the in vitro adhesion of Actinobacillus pleuropneumoniae to swine alveolar epithelial cells. Vet Microbiol 88: 59-74, 2002. Vanden Bergh, P. G., Zecchinon, L. L., Fett, T., and Desmecht, D. Probing of Actinobacillus pleuropneumoniae ApxIIIA toxin-dependent cytotoxicity towards mammalian peripheral blood mononucleated cells. BMC Res Notes 1: 121, 2008. Vanden Bergh, P. G., Zecchinon, L. L., Fett, T., and Desmecht, D. Porcine CD18 mediates Actinobacillus pleuropneumoniae ApxIII species-specific toxicity. Vet Res 40: 33, 2009. Willson, P. J., Deneer, H. G., Potter, A., and Albritton, W. Characterization of a streptomycin-sulfonamide resistance plasmid from Actinobacillus pleuropneumoniae. Antimicrob Agents Chemother 33: 235-8, 1989. Xu, Z., Zhou, Y., Li, L., Zhou, R., Xiao, S., Wan, Y., Zhang, S., Wang, K., Li, W., Jin, H., Kang, M., Dalai, B., Li, T., Liu, L., Cheng, Y., Zhang, L., Xu, T., Zheng, H., Pu, S., Wang, B., Gu, W., Zhang, X. L., Zhu, G. F., Wang, S., Zhao, G. P., and Chen, H. Genome biology of Actinobacillus pleuropneumoniae Jl03, an isolate of serotype 3 prevalent in China. PLoS One 3: e1450, 2008. Yakubenko, V. P., Belevych, N., Mishchuk, D., Schurin, A., Lam, S. C., and Ugarova, T. P. The role of integrin αdβ2 (CD11d/CD18) in monocyte/macrophage migration. Exp Cell Res 314: 2569-78, 2008. Yong, K., and Khwaja, A. Leucocyte cellular adhesion molecules. Blood Rev 4: 211-25, 1990.
摘要: 胸膜肺炎放線桿菌Actinobacillus pleuropneumoniae (APP)外毒素Apx為APP強毒力因子之一,該毒素具有溶血性及細胞毒性,於APP感染豬隻可發現毒素所造成嚴重的肺臟病變。本研究主要目的為探討不同種類或不同來源細胞對於Apx之敏感性。首先以APP血清型第10型所分泌毒素ApxI氣管內接種豬隻,利用H&E染色、免疫化學染色、TUNEL、及Hoechst染色等方法探討ApxI對豬肺臟組織所造成之影響。結果顯示,豬隻經ApxI毒素接種後,肺臟組織中可見嗜中性球浸潤及肺臟間質組織增厚,伴隨輕度炎症反應;並於TUNEL標幟後發現較高比例之細胞呈凋亡,而凋亡細胞中吞噬及非吞噬細胞各佔54%與46%。接種經熱不活化ApxI毒素的肺臟組織則可見輕度炎症反應,而生理食鹽水處理組組則無明顯組織病變,且TUNEL染色結果發現熱不活化毒素與生理食鹽水處理組細胞凋亡比例無顯著差異,且細胞凋亡數明顯較ApxI毒素處理組低。為進一步瞭解不同種類細胞對於不同血清型別之Apx毒素之敏感性,本研究利用不同來源之細胞(株)包括豬肺臟巨噬細胞(PAM)、BL-3、BL-3.1、RAW 264.7、PK-15、Vero細胞,比較這些細胞對APP血清型第1及2型外毒素的敏感性。結果發現,BL-3、BL-3.1與PAM對於APP血清型第1及2型菌株所產生的毒素具最高之敏感性,三者間差異不明顯;小鼠巨噬細胞株RAW 264.7對APP血清型第1型分泌毒素有微弱感受性,而腎臟上皮細胞PK-15與Vero則對Apx毒素不具敏感性。此外,本研究利用自殺載體及同源重組互換原理,成功構築APP血清型第10型之apxIA突變菌株,經PCR及基因定序確定其具有正確之基因型,亦利用生長曲線、Biolog生化代謝、溶血試驗、細胞毒性試驗、細胞凋亡試驗及西方轉漬法進行表現型分析。結果顯示,apxIA基因突變菌株與親代株有相似的生長曲線及生化代謝性狀;此外,由於該菌株失去產生ApxI毒素能力,因此突變菌株之培養上清液不具溶血性、細胞毒性,不會誘發PAM凋亡。
Actinobacillus pleuropneumoniae (APP) exotoxin (Apx) is one of the strong virulent factors of APP. Apx possesses hemolytic and cytotoxic activities which cause serious lung damage in APP infected pigs. The aim of this study was to evaluate the sensitivity of different cell types or cell lines originated from different species toward Apx. APP serotype 10-derived exotoxin ApxI was used to intratracheally inoculate piglets; lung sections were subjected to H&E, immunohistochemical, TUNEL, and Hoechst stains in order to assess the effects of ApxI on porcine lung tissue. Lung sections of ApxI treated group had mild neutrophil infiltration and interstitial hyperplaisa. TUNEL staining revealed higher percentage of apoptotic cells in ApxI treated group of which 54% were phagocytic cells. Piglets inoculated with heat-inactivated ApxI showed mild inflammation in lungs while no obvious histopathological changes observed in saline treated piglets. Both groups had lower percentage of apoptotic cells in lung sections as compared to ApxI treated group. To further understand the sensitivities of cell lines from different species toward Apx of different serotypes, porcine alveolar macrophage (PAM), BL-3, BL-3.1, RAW 264.7, PK-15, and Vero cells were used for comparison. Results showed that BL-3, BL-3.1, and PAM had the highest sensitivity toward exotoxins derived from APP serotype 1 (APP1) and 2 (APP2), and no significant difference was found between these cells. RAW 264.7 cells were mildly sensitive toward APP1 exotoxin, and PK-15 and Vero cells were not sensitive toward exotoxins of APP. Further, an APP serotype 10 apxIA mutant was successfully constructed through homologous recombination of APP genomic DNA with a suicide vector carrying apxIA gene inserted with a kanamycin-resistant determinant. The mutant with desired mutation was selected and confirmed by antibiotic resistance, PCR, and DNA sequence analysis. Growth curves, Biolog metabolic profiles, hemolytic assay, cytotoxic assay, TUNEL assay, and Western blot analysis were used to verify the phenotypes of mutant strain. The apxIA mutant had similar growth rate and exhibited similar metabolic profiles compared to the parental strain. In addition, apxIA mutant strain lost its ability to produce ApxI, therefore no hemolytic, cytotoxic, or apoptosis inducing activity was observed in the bacterial culture supernatant.
URI: http://hdl.handle.net/11455/15417
其他識別: U0005-1407201016365600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1407201016365600
Appears in Collections:獸醫病理生物學所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.