Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/15453
標題: 應用流場可視化與PIV系統於孤立波通過對稱穴槽之渦流特性研究
Study on Characteristics of Vortices Generated by a Solitary Wave Propagation Over a Symmetric Cavity
作者: 張錦鑲
Chang, Chin Shiang
關鍵字: Solitary wave
孤立波
出版社: 土木工程學系所
引用: 參考文獻 1. Chang, K. A., Hsu, T. J., and Liu P. L. –F., 2001. “Vortex generation and evolution in water waves propagating over a submerged rectangular obstacle Part I. solitary waves,” Coastal Engineering, Vol. 44, pp. 13~36. 2. Chang, K. A., Hsu, T. J., and Liu P. L. –F., 2001. “Vortex generation and evolution in water waves propagating over a submerged rectangular obstacle Part II. solitary waves,” Coastal Engineering, Vol. 52, pp. 257~283. 3. Daily, J. W. and Jr. Stephan S. C., 1953. “Characteristics of the solitary wave”, Trans. ASCE, Vol. 118, pp. 575~587. 4. Dean, R. G. and Dalrymple, R. A., 1984. “Water wave mechanics for engineers and scientists”, Prentice Hall, Englewood Cliffs, New Jerscy, pp. 314~318. 5. Dong, C. M. and Huang C. J., 1999. “Vortex generation in water waves propagating over a submerged rectangular dike,” Proc. 9th Int. Offshore and Polar Engineering, Conf., III, pp. 388~395. 6. Goring, D. G. 1978. Tsunamis - the propagation of long waves onto a shelf. Report KH-R-38, California Institute of Technology. 7. Goring, D. G. and Raichlen F., 1980. “The generation in water waves in the laboratory,” Proc. 17th Int. Conf. Coastal Engineering, ASCE, pp. 763~783. 8. Goring, D, G. and Raichlen F., 1990. “Propagation of long waves onto shelf,” J. Waterway, Port, Coastal, and Ocean Engineering, pp. 118, 43-61. 9. Grilli, S. T., Subramanya R., Svendsen I. A., and Veeramony J., 1993. “Shoaling of solitary waves on plane beaches,” J. Waterway, Port, Coastal, and Ocean Engineering, Vol. 120, pp. 609~628. 10. Grilli, S. T., Losada M. A., and Martin F., 1994. “Characteristics of solitary wave breaking induced by breakwaters,” J. Waterway, Port, Coastal, and Ocean Engineering, Vol. 120, pp. 609~628. 11. Gupta, V. P., Ranga-Raju, K. G. 1987. “Separated flow in lee of solid and porous fences.” Journal of Hydraulic Engineering, Vol. 113, pp. 1266~1276. 12. Huang, C. J. and Dong C. M., 2001. “On the interaction of a solitary wave and a submerged dike,” Coastal Engineering, Vol. 43, pp. 265~286. 13. Hung, C. J., and Dong C. M., 1999. “Wave deformation and vortex generation in water waves propagating over a submerged dike,” Coastal Engineering, Vol. 37, pp. 123~148. 14. Kravchenko, A. G., Moin, P. 2000. “Numerical studies of flow over a circular cylinder at Re = 3900,” Physics of Fluids, Vol. 12, pp. 403~417. 15. Lin, C., Wei, D. J., Yen, G. H., 1998. “Investigation of vortex structures in the mixing layers of axisymmetric jets.” Journal of the Chinese Institute of Civil and Hydraulic Engineering, Vol. 10, pp. 79~92. 16. Lin, C., Chang, S. C., Ho, T.-C., Hsieh, S.-C. and Chang, K. A. 2004. “Vortex shedding process in a solitary water wave passing over a submerged rectangular dike.” Proceedings of 11th International Symposium on Flow Visulization, Notre Dame, Indiana, U.S.A., Paper No. 098. 17. Lin, C., Ho, T.-C., Chang, S. C., Hsieh, S.-C. and Chang, K. A. 2005. “Vortex shedding induced by a solitary wave propagating over a submerged vertical plate.” International Journal of Heat and Fluid Flow, Vol. 26, pp. 894-904. 18. Lin, C., Chang, S. C., Chang, K. A., 2006. “Laboratory observation of a solitary wave propagating over a submerged rectangular dike.” Journal of Engineering Mechanics, ASCE, Vol. 132, pp. 545-554. 19. Lin, C., Hwung, W. Y., Hsieh, S. C., Chang, K. A., 2005b. “Experimental study on mean velocity characteristics of flow over vertical drop.” Journal of Hydraulic Research, in press. 20. Lin, P., 2004. “A numerical study of solitary wave interaction with rectangular obstacles.” Coastal Engineering, Vol. 51, pp. 35~51. 21. Losada, M., Vidal, A.C., and Medina, R., 1989. “Experimental study of the evolution of a solitary wave at an abrupt junction,” J. Geophys. Res., No. 94, pp. 557~556. 22. Losada, I. J., Losada, M. A., and Martin, F. L., 1995. “Experimental study of wave-induced flow in a porous structure,” Coastal Engineering, Vol. 26, pp. 77~98. 23. Losada, I. J., Patterson, M. D., and Losada, M. A., 1997. “Harmonic generation past a submerged porous step,” Coastal Engineering, Vol. 31, pp. 281~304. 24. Madsen, O. S. and Mei C. C., 1969. “The transformation of solitary wave over an uneven bottom,” J. Fluid Mech. Vol. 39, pp. 781~791. 25. McCowan, J. 1891. “On the highest wave of permanent type.” London, Edinburgh, and Dublin Phil. Mag. And J. Sci., Vol.38, 1894. 26. Mei, C. C., Black, J. L., 1969. “Scattering of surface waves by rectangular obstacles in waters of finite depth.” Journal of Fluid Mechanics Vol. 38, pp. 499~511. 27. Ono, M., Deguchi, I., Kubota, S., 1997. “Flow pattern around bottom structure in waves.” Proceedings of Civil Engineering in the Ocean 15, pp. 895~900. (In Japanese) 28. Otta, A., Svendsen I. A., and Geilli S. T., 1992. “The breaking and run-up of solitary wave on beaches,” Proc. 23rd Int. Conf. Coastal Engineering, ASCE, pp. 1461~1474. 29. Rajaratnam, N., 1976. Turbulent jets. Elsevier Scientific Publishing Company, Amsterdam. 30. Rey, V., Belzons M. and Guazzelli E. 1992. “Propagation of surface gravity waves over a rectangular submerged bar,” J. Fluid Mech., Vol. 235, pp. 453~479. 31. Russell J. Scott. 1844. “ Report on waves,” Fourteenth meeting of the British Association for the Advancement of Science. 32. Seabra-Santos, F. J., Renouard D. P., and Temperville A. M., 1987. “Numerical and experimental study of the transformation of a solitary wave over a shelf or isolated obstacle,” J. Fluid Mech., Vol. 176, pp. 117~134. 33. Tang C. J. and Chang J. H., 1998. “Flow separation during solitary wave passing over submerged obstacle,” J. Hydraul. Eng., Vol. 124, pp. 742~749. 34. Ting, F. C.K. and Kim Y. K, 1994. “Vortex generation in water waves propagating over a submerged obstacle”, Coastal Engineering, Vol. 31,pp. 23~49. 35. Ting, F. C. K. and Kim Y. K. 1994. “Vortex generation in water waves propagation over a submerged obstacle,” Coastal Engineering, Vol. 24, pp. 23~49. 36. Zhuang, F., Lee, J. J., 1996. “A viscous rotational model for wave overtopping over marine structure.” Proceedings of the 25th International Conference on Coastal Engineering, Orlando, Florida, pp. 2178~2191. 37. 林呈、何宗浚、張淞傑、張廣安:“孤立波通過直立平板所產生之流場特性探討”,第27屆海洋工程研討會論文集,2005,pp. 361~368。 38. 張興漢、黃清哲、張舜鈞、丁舜臣、黃煌輝: “孤立波與透水潛堤之互制作用” ,2002中國土木水利工程學刊第十四卷,第三期,第503~514頁。 39. 張淞傑:應用流場可視化與PIV技術於孤立波通過潛堤周邊渦流流場之研究,國立中興大學土木工程研究所碩士論文,2004。 40. 張志華、唐啟釗:“模擬海嘯行經海溝現象之研究”,2005電子計算機於土木水利工程應用研討會論文集,pp. 136~140。
摘要: 本研究係以先進之質點影像測速儀(PIV)搭配高速攝影機,對於孤立波通過對稱穴槽時,穴槽周邊流場的渦流運動進行定性的觀察及定量的分析。在水深h = 7 cm、穴槽深度D = 3 cm的條件下,針對孤立波通過(波高H = 1.4 cm)不同無因次間距G/D = ∞、2.5、2.0、1.0、0.75、0.5及0.33之對稱穴槽時,因流體分離所產生之渦流流場特性,包括主渦渦Av之渦心軌跡、渦Av渦心渦度值及射流軌跡等進行比較分析。 定性分析方面,在穴槽間距為G/D = ∞、2.5、2.0時,射流軌跡呈一弧線往水面移動。然而於穴槽間距G/D = 1.0及G/D = 0.75時之射流軌跡,因受到穴槽尾端之逆向速度的影響而往尾端偏移。穴槽間距調整至G/D = 0.5及G/D = 0.33時,射流軌跡則往穴槽入射端的方向移動。渦Av渦心軌跡在穴槽間距為G/D = ∞、2.5、2.0時,渦流自入射端脫離後往水面移動而後下降,於穴槽間距G/D = 1.0及G/D = 0.75時,則在穴槽中順時針環繞一圈後往尾端移動,且並無到達水面。穴槽間距調整至G/D = 0.5及G/D = 0.33時,渦心軌跡則在穴槽中順時針環繞一圈後往入射端移動,亦無到達水面。 本文亦利用相位平均法針對各不同無因次間距加以定量分析探討,發現渦流強度隨著穴槽間距的大小不同而有所差異。當穴槽間距G/D = ∞時,渦Av之渦心渦度絕對值及環流量絕對值與其它間距相比相對較大,渦流消散時間亦較長。當穴槽間距G/D = 0.33時,渦Av之渦心渦度絕對值及環流量絕對值則為最小,渦流消散時間亦最短。且渦Av渦心渦度絕對值及環流量絕對值隨時間有先增加而後減少的趨勢。
Abstract The vortex evolutions induced by a solitary wave propagating over a symmetric cavity were investigated experimentally. The vortex shedding processes were observed qualitatively and measured quantitatively using Phantom Camera and PIV, respectively. The target solitary wave height, H, is 1.4 cm, which gives the dimensionless height ratio (H/h) of 0.15 with h being the depth of water. The depth of cavity D is 3 cm, which gives H/D = 0.47. The characteristics of vortex evolution including trajectory of jet and position of major vortex were discussed in various cases with different gap ratios (G/D = ∞, 2.5, 2.0, 1.0, 0.75, 0.5 and 0.33). Based on the observation results using flow visualization technique, it is found that the vertical jet ejects in a curvilinear trajectory from the edge to the water surface while the G/D = ∞, 2.5 and 2.0. The vertical jet shifts to the lee side due to the effect of backward velocities generated at the downstream edge of cavity when G/D = 1.0 and 0.75. With the gap ratios of G/D = 0.5 and 0.33, the corresponding vertical jet moves from the cavity to the upstream side. The flow pattern of vortical movement can be categorized to obtain the corresponding trajectory of major vortex Av according to three different sets of gap ratios. In the analysis of circulation and vorticity for the core of major vortex Av, the phase-average method was utilized in order to precisely obtain the phase-dependent distribution of flow field for vortex shedding process. The results reveal that the magnitudes of vortex strength vary with the gap ratios. When G/D = ∞, both of the corresponding vorticity at the core of major vortex Av and the absolute value of circulation become the largest and have the longest time of energy dissipation. Relatively, the vorticity at center of major vortex Av and the absolute value of circulation are minimum for all the dimensionless time at G/D = 0.33. Moreover, it is found that the vorticity at core and the absolute value of circulation of major vortex Av increase in the beginning and then decrease gradually during dissipation processes.
URI: http://hdl.handle.net/11455/15453
其他識別: U0005-3008200619150800
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-3008200619150800
Appears in Collections:土木工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.