Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/1551
DC FieldValueLanguage
dc.contributor林景崎zh_TW
dc.contributor邱健民zh_TW
dc.contributor余明興zh_TW
dc.contributor.advisor范光堯zh_TW
dc.contributor.author陳勁宏zh_TW
dc.contributor.authorChen, Ching Hungen_US
dc.contributor.other中興大學zh_TW
dc.date2012zh_TW
dc.date.accessioned2014-06-05T11:41:05Z-
dc.date.available2014-06-05T11:41:05Z-
dc.identifierU0005-1708201114031100zh_TW
dc.identifier.citation[As76] Asano, S. and R. Otsuka, “The Lattice Hardening due to Dis-solved Hydrogen in Iron and Steel,” Scripta Metallurgica , 10 (1976), p. 1015-1020. [Ak06] Akiyama, E., Wang, M. and K. Tsuzaki, “Determination of the Critical Hydrogen Concentration for Delayed Fracture of High Strength Steel by Constant Load Test and Numerical Calcula-tion,” Corrosion Science, 48 (2006) p. 2189-2202. [Bi94] Birnbaum, H. K. and P. Sofronis, “Hydrogen-enhanced Local-ized Plasticity - a Mechanism for Hydrogen-related Fracture,” Materials Science and Engineering, A 176 (1994), p. 191-202. [Da03] Dayal, R. and N. Parvathavarthini, “Hydrogen Embrittlement in Power Plant Steels,” Sadhana, 28 (2003), p. 431-451. [Ga03] Gangloff, R. P., “Hydrogen Assisted Cracking of High Strength Alloys,” in Comprehensive Structural Integrity, I. Milne, RO Ritchie and B. Karihaloo, Editors-in-Chief, J. Petit and P. Scott, Volume Editors, New York, Elsevier Science, (2003), p. 31-101. [Hi80] Hirth, J., “Effects of Hydrogen on the Properties of Iron and Steel,” Metallurgical and Materials Transactions , 11A (1980), p. 861-890. [Ht02] http://www.surtec.com/TechnicalLetters.html, 2002. [Ht09] http://www.misumi-techcentral.com/tt/en/surface/, 2009. [Hu93] 黃振賢,『金屬熱處理』,台北,文京出版社,1993年。 [Ku01] Kuramoto, S. and A. Nagao, “Visualization of Hydrogen Trans-port in High Strength Steels Affected by Stress Fields and Hy-drogen Trapping,” Scripta Materialia, 45 (2001), p. 1227-1232. [Ku80] Kumnick, A. J. and H. H. Johnson, “Deep Trapping States for Hydrogen in Deformed Iron,” Acta Metallurgica, 28 (1980), p. 33-39. [Kr01] Krom, A. and A. Bakker, “Hydrogen trapping models in steel,” Metallurgical and Materials Transactions B, 31 (2001), p. 1475-1482. [La07] Landolt, D., “Corrosion and Surface Chemistry of Metals,” Lau-sanne: EPFL Press, 2007. [Li00] 李輝煌,『田口方法---品質設計的原理與實務』,台北,高立圖書,2000年。 [Li83] Lin, J. K. and R. A. Oriani, “the Effect of Hydrogen on the Ini-tiation of Shear Localization in Plain-carbon Steels,” Acta Met-allurgica, 31 (1983), p. 1071-1077. [Li93] 黎正中譯,『穩健設計之品質工程』,台北,台北圖書,1993年。 [Li96] Liu, S. and D. Hardie, “the Effect of Stress Concentration on Hydrogen Embrittlement of a Low Alloy Steel,” Corrosion Sci-ence, 38 (1996), p. 721-733. [Lo08] Louthan, M., “Hydrogen Embrittlement of Metals:a Primer for the Failure Analyst,” Journal of Failure Analysis and Prevention, 8 (2008), p. 289-307. [Ly88] Lynch, S. P., “Environmentally Assisted Cracking: Overview of Evidence for an Adsorption-Induced Localised-Slip Process,” Acta Metallurgica, 36 (1988), p. 2639-2661. [Ma98] Mao, S. X. and M. Li, “Mechanics and Thermodynamics on the Stress and Hydrogen Interaction in Crack Tip Stress Corrosion: Experiment and Theory,” Journal of the Mechanics and Physics of Solids, 46 (1998), p. 1125-1137. [Mo79] Moriya, S., Matsui, H. and H. Kimura, “The Effect of Hydrogen on the Mechanical Properties of High Purity Iron I. Softening and Hardening of High Purity Iron by Hydrogen Charging dur-ing Tensile Deformation,” Materials Science and Engineering, 40 (1979), p. 207-216. [Or70] Oriani, R. A., “The Diffusion and Trapping of Hydrogen in Steel,” Acta Metallurgica 18 (1970), p. 147-157. [Po92] Pollock, W. J., "Statistical Treatment of Slow Strain Rate Data for Assessment of Hydrogen Embrittlement in High Strength 4340 Steel," Corrosion Science, 33 (1992), p. 1105-1119. [Pr79] Pressouyre, G. M. and I. M. Bernstein, “A Kinetic Trapping Model for Hydrogen-Induced Cracking,” Acta Metallurgica, 27 (1979), p. 89-100. [Pr80] Pressouyre, G. M., “Trap Theory of Hydrogen Embrittlement,” Acta Metallurgica, 28 (1980), p. 895-911. [Ri89] Rice, J. R. and J-S. Wang, “Embrittlement of Interfaces by Sol-ute Segregation,” Materials Science and Engineering, A 107 (1989), p. 23-40. [Sc05] Schröder-Rentrop, I., Landgrebe, R., Berger, C., and U. Hassel-mann, “Entwicklung eines praxisgeeigneten Prüfverfahrens zur Bewertung des Wasserstoffgefährdungspotenzials von Sal-zsäurebeizen und zum Vergleich der Wirksamkeit von Inhibi-toren,” Materialwissenschaft und Werkstofftechnik, 36 (2005), p. 731-747. [So89] Sofronis, P. and R. M. McMeeking, “Numerical Analysis of Hy-drogen Transport Near a Blunting Crack Tip,” Journal of the Mechanics and Physics of Solids, 37 (1989), p. 317-350. [So98] Sofronis, P. and J. Lufrano, “Enhanced Hydrogen Concentrations Ahead of Rounded Notches and Cracks - Competition between Plastic Strain and Hydrostatic Stress,” Acta Materialia, 46 (1998), p. 1519-1526. [Ti00] Tiwari, G. P., Bose, A., Chakravartty, J. K., Wadekar, S. L., Tot-lani, M. K., Arya, R. N. and R. K. Fotedar, “A Study of Internal Hydrogen Embrittlement of Steels,” Materials Science and En-gineering, A 286 (2000), p. 269-281. [Tu93] Turnbull, A., “Modelling of Environment Assisted Cracking,” Corrosion Science, 34 (1993), p. 921-960. [Wa05] Wang, M., Akiyama, E. and K. Tsuzaki, “Effect of Hydrogen and Stress Concentration on the Notch Tensile Strength of AISI 4135 Steel,” Materials Science and Engineering, A 398 (2005), p. 37-46. [Wa71] Walter, R. J. and W. T. Chandler., “Influence of Hydrogen Pres-sure and Notch Severity on Hydrogen-environment Embrittle-ment at Ambient Temperatures,” Materials Science and Engi-neering, 8 (1971), p. 90-97. [Wu05] 吳復強,『產品穩健設計-田口方法之原理與應用』,台北,全威圖書,2005年。 [Ya97] Yamasaki, S. and T. Takahashi, “Evaluation Method of Delayed Fracture Property of High Strength Steels,” Tetsu to Ha-gane-Journal of the Iron and Steel Institute of Japan, 83 (1997), p. 454-459. [Yo96] Yokobori, A. T., Nemoto, Jr, T., Satoh, K. and T. Yamada, “Nu-merical Analysis on Hydrogen Diffusion and Concentration in Solid with Emission around the Crack Tip,” Engineering Frac-ture Mechanics, 55 (1996), p. 47-60.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/1551-
dc.description.abstract氫脆乃是環境破壞的一種方式,亦是影響產品良率高低與否的因素之一,若能加以探討因子在酸洗製程環境影響,亦是對製程環境改善,減少損失有所助益。 本研究利用軸用扣環,應用實驗設計法檢驗製程環境氫脆現象,制訂實驗計畫表,將扣環幾何型號大小、硬度、開度及扣環開啟後等待酸洗浸泡時間納為實驗因子,並應用於純酸的酸洗製程環境,觀察由上述因子及其水準所搭配的實驗當中,扣環在浸泡過程產生斷裂的數量。再根據具低、高濃度差異的純酸環境,進行依扣環斷裂數的望目品質特性分析,以尋求適合檢驗氫脆的因子水準值,而其實驗的條件組合可作為檢驗的參考。 本研究針對兩純酸環境可能的望目值進行迴歸分析並加以預測驗證,就檢驗氫脆效果而言,以實驗計畫表中的扣環型號5、硬度區間HV590-620、開度的百分比100%及扣環開啟等待浸泡時間30分鐘的條件組合,於兩純酸環境的實驗值與預測值,差異較顯著,且實驗值與預測值,亦差距不大,故此實驗組合可適於純酸環境檢驗氫脆現象。zh_TW
dc.description.abstractHydrogen embrittlement is an environmental damage which affects the quality of products. If the factors causing hydrogen embrittlement af-fected by environment during pickling process could be fixed, the envi-ronment in the process would be improved and thus the loss would be re-duced. Before that, a method to check pickling environment without im-mersing products should be well defined. Thus, in this study, a retaining ring was applied to examine the pick-ling environment on hydrogen embrittlement. By setting the size, hardness, and opening of the ring and the pre-immersion duration prior to pickling as the factors for Design of Experiments, a series of experiments with dif-ferent setting levels for each factor were executed to observe the number of broken retaining rings pickled in different concentrations of acid with-out any additions, respectively. Among the experiment results, the most suitable level of each factor to sift a pickling environment was sought by setting various nominals for each concentration of acid according Taguchi method. As a result, a ring of type 5 having hardness between HV 590 and 620 clamped onto a round rod in diameter 5 mm and waiting for 30 min-utes before immersing into the pickling liquid was found as the most suit-able condition for checking the environment for hydrogen embrittlement in the pickling process by using regression analysis, additionally, which matched the experiment results.en_US
dc.description.tableofcontents摘要 i Abstract ii 目錄 iii 表目錄 v 圖目錄 vii 符號表 ix 1 前言 1 1.1 文獻回顧 2 1.1.1 氫脆 2 1.1.2 氫脆理論 4 1.1.3 氫源損害形式 8 1.1.4 氫相關損害形式 9 1.1.5 鋼材氫脆性質 13 1.1.6 氫脆相關研究 13 1.2 研究目的與方法 18 2 實驗設計與執行 19 2.1 實驗設計 19 2.2 熱處理 22 2.3 酸洗環境設定 24 2.4 實驗流程 25 3 結果與討論 30 3.1 酸洗環境實驗斷裂情況 30 3.2 純酸環境實驗結果 31 3.3 望目品質分析 34 3.4 迴歸分析 42 4 結論 50 5 參考文獻 51 附錄A 實驗設計 55 A.1 直交表 55 A.2 信號雜音比 55 A.3 變異數分析法 56 附錄B 治具設計圖 57 附錄C 滲碳 59 C.1 滲碳處理 59 C.2 氣體滲碳 59 附錄D 有限元素分析 61 D.1 分析模型建立 61 D.2 軸用扣環型號 5 64 D.3 軸用扣環型號 10 67 D.4 軸用扣環型號 20 70 D.5 應力情況比較 73 附錄E 抑制劑環境實驗 75 E.1 抑制劑環境實驗 75 E.2 變異數分析 80 E.2.1 高濃度酸劑暨添加A抑制劑實驗 80 E.2.2 高濃度酸劑暨添加B抑制劑實驗 81 E.2.3 低濃度酸劑暨添加A抑制劑實驗 82 E.2.4 低濃度酸劑暨添加B抑制劑實驗 83zh_TW
dc.language.isoen_USzh_TW
dc.publisher機械工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1708201114031100en_US
dc.subject氫脆zh_TW
dc.subjecthydrogen embrittlementen_US
dc.subject扣環zh_TW
dc.subject酸洗zh_TW
dc.subject實驗設計zh_TW
dc.subject田口方法zh_TW
dc.subject迴歸分析zh_TW
dc.subjectretaining ringen_US
dc.subjectpicklingen_US
dc.subjectDesign of Experimenten_US
dc.subjectTaguchi methoden_US
dc.subjectregression analysisen_US
dc.title應用工業軸用扣環於鋼鐵材料酸洗製程的環境氫脆檢驗研究zh_TW
dc.titleApplication of Retaining Ring to Environmental Hydrogen Embrittlement Test in Pickling Process of Steelen_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:機械工程學系所
文件中的檔案:

取得全文請前往華藝線上圖書館

Show simple item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.