Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/1552
標題: 仿葉綠體機制之奈米光電池技術研究
Development of a Chloroplastmimic Photovoltaics
作者: 陳維正
Wei, Zheng-Chen
關鍵字: Chloroplast
葉綠體
photovoltaics
thylakoid
nanopore
anodic aluminum oxide
光電池
類囊體
奈米孔洞
陽極氧化鋁
出版社: 機械工程學系所
引用: [1] 姜忠義, 成國祥, “奈米生物科技,” 五南圖書出版股份有限公司, 民 93。 [2] 川合 知二, “圖解奈米科技,” 工研院奈米中心, 民 91。 [3] 張文喬, 王國禎, “仿生物細胞膜之人工離子幫浦,” 國立中興大學精密工程研究所碩士學位論文, 民 94。 [4] http://72.14.203.104/search?q=cache:dCKI68pHg7kJ:laihowan.blogspot.com/2005/12/blog-post.html+%E5%8A%9B%E5%AD%B8%E4%BB%BF%E7%94%9F&hl=zh-TW&gl=tw&ct=clnk&cd=8&lr=lang_zh-TW。 [5] http://zh.wikipedia.org/wiki/%E4%BB%BF%E7%94%9F%E5%AD%A6。 [6] http://wordpedia.pidc.org.tw/Content.asp?ID=18806&Query=6。 [7] http://www.aptcm.com/APTCM/21.nsf/ByUNID/F85CE0AFAA6E1D0748256BF100313671?opendocument。 [8] 房瓚, 蘇嘉弘, 蔡偉博, “仿生科技,” 科學發展, 2005, vol. 396, 62~67。 [9] http://nobelprize.org/chemistry/laureates/2003/public.html [10] Z. Siwy., Y. Gu., H. A. Spohr., D. Baur., A. W.Trber., R. Spohr., P. Apel., Y. E. Korchev., “Rectification and voltage gating of ion currents in a nanofabricated pore,” Euro phys. Lett., 349-355, 2002 [11] Z. Siwy., A. Fulinski., ”Fabrication of a Synthetic Nanopore Ion Pump,” Phy. Rev., 198103-1(4), 2002 [12] Z. Siwy, P. Apel, D. Baur, D. D. Dobrev, Y. E. Korchev, R. Neumann, R. Spohr, C. Trautmann, K. O. Voss, “Preparation of synthetic nanopores with transport properties analogous to biological channels,” Surface Science, 1061-1066, 2003 [13] B. O’Regan, and M. Grätzel, Nature 353, 737-740, 1991. [14] M. DüRR, A. Schmid, M. Obermaier, S. Rosselli, A. Yasuda, and G. Nelles, “Low-temperature fabrication of dye-sensitized solar cells by transfer of composite porous layers,” Nature Materials, 4, 607-611, (2005) [15] 張智棋、李佳家、陳建忠,“一維奈米同軸陣列式複合材料的製備,”第九屆奈米工程暨微系統技術研討會。(2005) [16] 胡舒剴、賴俊熹、陳道安、黃文鑑,“應用TiO2光催化分解藻類及代謝臭味物質2-MIB之研究,” 第九屆奈米工程暨微系統技術研討會。(2005) [17] H. Shibata, N. Noda, Y. Ogura, K. Sogabe, and Y. Sawa, “Oxidation and Reduction of Nitrite Ion in the TiO2 Photo-induced Catalytic Reaction,” Biosci. Biotechnol. Biochem., Vol. 64, No. 8, (2000), pp. 1751-1753. [18] H. Shibata, Y. Ogura, Y. Sawa, and Y. Kono, “Hydroxyl Radical Generation Depending on O or HO by a Photocatalyzed Reaction in an Aqueous Suspension of Titanium Dioxide,” Biosci. Biotechnol. Biochem., Vol. 62, No. 12, (1998), pp. 2306-2311 [19] X. Wang, and G. R. Han, “Fabrication and characterization of anodic aluminum oxide template,” Journal of Microelectronic Engineering, 166-170, 2000 [20] F. Li, L. Zhang, R. M. Metzger, “"On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide," Chem. Mater. 10, 2470 (1998). [21] H. Masuda, F. Hasegwa, S. Ono, “Self-ordering of cell arrangement. of anodic porous alumina formed in sulfuric acid solution,,” J. Electrochem. Soc. 144, L127 (1997). [22] G. E. Thompson, “Porous anodic alumina: fabrication, characterization and applications,” Thin Solid Film 297, 192 (1997). [23] A. P. Li, F. Muller, A. Birner, K. Nielsch, U. Gosele, J Appl. Phys 84, 6023 (1998). [24] S. R. Park, H. Peng, and X. S. Ling, “Fabrication of Nanopores in Silicon chips by electrochemical etching,” submitted on Oct. 17, 2005 [25] http://life.nthu.edu.tw/~lslty/phy/photosys.htm。 [26] http://ice.bio.ncue.edu.tw/~92232009/_private/24-4-5-3.htm [27] 呂亞文, “光合作用與呼吸作用,”升學資訊9405期。(2005) [28] 霍格藍、竇德生, 李千毅, “觀念生物學,” 天下遠見出版, 民91。 [29] http://nobelprize.org/chemistry/laureates/2003/public.html [30] 陳建人, “微機電系統技術與應用,”行政院科學委員會精密儀器發展中心, 民92。
摘要: 本研究之主要目的乃是先藉由模仿葉綠體的機制,以人工酵素將光能轉換成分解水之化學能,再藉由濃度梯度造成分子滲透類囊體膜的特性,製造帶電離子之運動產生電流,發展新型太陽能光電池元件。 主要研究內容包含:人工酵素之製作,奈米孔洞薄膜之離子通道製作,電能量測與儲存等三大項。 在人工酵素製作方面,本研究規劃以二氧化鈦(TiO2)結合奈米碳管(CNT) 做為分解水成為H+與•OH之酵素,即仿葉綠素將光能轉換成化學能之機制。TiO2之吸收光譜原在紫外光區,直接以太陽光照射之酵素功能不明顯,若將TiO2沈積於CNT上,則其吸收光譜將變為可見光,故可做為有效將光能轉成化學能之酵素。 在離子通道方面則是規劃製作多孔性陽極氧化鋁膜(AAO)及單一奈米孔洞之矽晶薄膜,用以隔離不同濃度之H+,製造濃度梯度產生電流。葉綠體之離子通道乃是藉由H+濃度梯度製造ATP,本研究則是用以製造H+濃度梯度,進而直接產生電流。 電能量測則是製作微電化學槽,以奈米孔洞薄膜分隔成兩部分,再以電化學分析儀量測在太陽光及CNT/TiO2酵素作用下,奈米孔洞薄膜兩邊H+濃度梯度所產生之光電流。 實驗結果證實本研究所提出之新太陽能電池架構確可直接由太陽光製造光電流,研究成果具有極大之潛能。
Chloroplast is the most efficient solar energy conversion cell. Successful implementation of the conversion mechanism of the chloroplast can be a promising direction for new energy recourses. This research focuses on the developement of a chloroplastmimic photovoltaics based on the nanotechnology. The concepts of the proposed chloroplastmimic photovoltaics are using photocatalysis to resolve water into H+ and •OH, applying artificial thylakoid membrane to separate cells of H+ with different concentrateions such that concentration gradient of H+ can be generated, generating current by the diffusion of H+ due to concentration gradient. The ion diffusion property of a real cell membrane is imitated by an anodic aluminum oxide (AAO) membrane. The hydrolysis function of the enzyme in chloroplast is performed by a titania (TiO2) and carbon nanotube (CNT) combined photocatalysis to shift the absorbing spectrum of the pure titania form UV to visible light. An electrochemistry bath that used the AAO membrane as the filter to separate two vessels with concentration gradient is built to measure the photocurrent of the proposed chloroplastmimic photovoltaics. Experimental results demonstrate that the proposed simple chloroplastmimic photovoltaics can generate photocurrent directly from the sun light. Further applications can then be expected.
URI: http://hdl.handle.net/11455/1552
其他識別: U0005-1007200614381600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1007200614381600
Appears in Collections:機械工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.